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Abstract— With advances in synchrophasor (PMU) technology, 
we have an opportunity to enhance power system monitoring 
and control schemes. In this paper, we discuss how this can be 
achieved in two ways: 1) combining PMU measurements with 
spatial and temporal knowledge of the grid to classify the 
severity of an alarm and 2) intelligently ordering alarms with 
associated recommendations to enable operators to take faster 
and better control decisions. 

Index Terms—Wide-area monitoring, analysis and simulation, 
real-time control, intelligent alarm processing, protection 
systems. 

I. INTRODUCTION  
Phasor Measurement Units (PMU) provide low latency 

data at rates ranging from 30-120 samples per second. A 
consequence of such high throughput data is an increased rate 
of generated alarms. Operator alarm overload is a well studied 
problem, and it has been shown that a control center operator 
may not be able to handle alarm rates as low as 10 alarms per 
minute (alarm rates during the first few minutes of a major 
disturbance are on average closer to 80 alarms per minute)  [1]. 
This scenario illustrates the challenge of taking necessary and 
effective control and protective actions in real-time. 

Related work in intelligent alarm processing has suggested 
a number of approaches to tackle this problem  [2]- [7]. We are 
especially interested in how the output of intelligent alarm 
processing can trigger rules that recommend (manual and) 
automatic control actions [3]. Specifically, our approach uses 
stream computing  [8] [9] as a platform to process PMU data 
and emit ordered sets of alarms. (An example of an alarm 
ordering is the temporal order in which alarms are generated 
as events unfold on the grid.) In addition to generating 
recommendation lists, a dual contribution of our work is a set 
of validation metrics that are used to evaluate the orderings 
according to user-specified criteria. 

As a by-product of this process, we also generate high-
level, spatial and temporal interpretations of the data for the 
operator. Hence, the contributions of our approach are both 

descriptive – analysis of the spatial and temporal properties of 
the alarms that are observed on the grid right now along with 
their associations and connectivity information – as well as 
prescriptive – a recommended ordering of control actions 
derived from alarm ordering. 

II. ALARM SEVERITY, CLASSIFICATION, AND RANKING 

A. Definitions 
Severity indices have been used to classify events such as 

faults on the power system. Computation of these indices is an 
essential step in intelligent alarm handling  [3]. We define 
severity indices (SI) incrementally, starting with indices that 
are event-based, i.e., based on the percentage of deviation 
from nominal value for each of the following events observed 
on busi at a given point in time: overvoltage (SI_ov), 
undervoltage (SI_uv), overfrequency (SI_of), underfrequency 
(SI_uf), overcurrent (SI_oc). These indices do not have any 
spatial or temporal (time series) component.  

Then, we introduce temporal (time series) 
knowledge into the computation of three new severity 
indices: percentage occurrence in time, critical deviation and 
area. Percentage occurrence measures the fraction of samples, 
s, which are alarmsof type  a, in a fixed time window, Wt-t0.  



      

Critical deviation measures the magnitude of deviation, dt, 
for the current sample relative to the maximum deviation 
observed in the time window.  

                                                                           (2) 

Finally, area is a normalized value of the area under the 
curve violating the limit (calculated using the trapezoidal 
method), where N represents the number of equally spaced 
intervals within a time window.   
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                                                                                          (3) 

We compute a combined temporal severity index for each 
busi by summing the individual indices.  

                                                                                          (4)                             

                                                                    
     We compute a spatial severity index for each busi by 
summing a weighted average of the temporal indices across 
buses h hops away, where weight is the inverse of the number 
of hops between buses. We define the local zone of an alarm 
(where we expect grid state to be similar) as buses at most hmax 
hops from the alarm location and set hmax = 5 (a value that can 
be configured according to empirical observation). 

                                                                                          (5) 

                                                                                                 

B. Ontology 
For each alarm, we also associate a set of known control 

actions encoded in an ontology of alarms and control actions. 
Alarms and control actions are represented as separate 
hierarchies in the ontology. Taxonomic links in the hierarchies 
represent Is-A or class-subclass relations. Alarms can be 
classified along multiple dimensions – selecting a 
categorization depends on its anticipated utility for specific 
applications. For example, consider a very simple 
classification of alarms using three categories: “Red” (extreme 
importance – requires immediate attention), “Yellow” 
(medium importance – requires quick attention), and “White” 
(low importance – not urgent). 

If it is important to be able to locate information about 
power system components affected by the alarm, then we can 
group alarms as shown in a sample hierarchy in Figure 1a. In 
Figure 1b, we present an ontology of control actions, based on 
a classification of control actions provided in  [3]. We note that 
normal control actions can be either automatic or manual, 
while emergency control actions are most often automatic. 

To complete the association, we introduce a relation, 
hasControl, which is defined between leaf nodes in the alarm 
hierarchy and leaf nodes in the control action hierarchy. This 
relation is a many-to-many mapping between a set of alarms 
and a set of possible control actions that can be used to 
respond to these alarms. For example, as shown in the figure, 
both “generator outage” and “line trip” alarms have the 
associated control action, “load shedding”. 

C. Ranking Functions 
We use each severity index computation as a ranking 

function, Ri, and apply this function to a stream of PMU data. 
Since each alarm is flagged in the data, we aggregate all the 
alarms and assign a rank score to each alarm.  

After a pre-defined time interval, we re-order the 
aggregated alarms based on their rank scores resulting in an 
ordered set of control actions. Since we operate in a stream 

computing environment, we apply multiple ranking functions 
in parallel, thereby obtaining lists of alarm orderings, 
12nwhich can be compared. The result of this 
comparison will enable operators to respond in real-time (or 
near real-time) to alarms and enact mitigating procedures. 

 

 

 

 

 

 

 

 

 

 

 

 
           Figure 1. Ontology of alarms (a) and control actions (b). 

 

 

                      Figure 2. IEEE 30 bus test system. 

   

       
                 Figure 3. Temporal severity index computation. 
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                 Figure 4. Spatial severity index computation. 
 

Time 
(sec) 

Spatial severity alarm 
ranking 

Temporal severity alarm 
ranking 

70 7 5 28 27 22 7 5 2 1 3 

80 7 5 28 27 22 7 5 2 1 3 
90 7 5 28 27 22 7 5 2 1 3 

100 7 5 28 27 22 7 5 2 1 3 
110 7 5 28 27 22 7 5 2 1 3 
120 7 28 5 27 22 7 5 1 2 3 

130 28 27 24 22 30 2 1 30 26 29 
140 7 28 5 27 22 7 5 2 1 3 

150 28 27 24 30 22 7 5 6 28 4 
160 28 7 27 8 22 7 5 6 8 4 

       Table 1. Ranking of buses based on spatial/temporal severity. 

   
Busi Busj Spatial  

severity 
correlation 
coefficient 

Temporal 
severity 
correlation 
coefficient 

1 2 0.913 0.799 

1 5 0.502 0.406 

2 5 0.428 0.300 

8 11 0.968 0.759 

8 13 0.976 0.831 

11 13 0.991 0.850 

5 7 0.995 0.999 

5 9 0.929 0.389 

5 28 0.741 0.172 

7 9 0.416 0.949 

7 28 0.778 0.193 

9 28 0.933 0.859 

          Table 2. Pearson product-moment correlation coefficients. 

                

Whereas alarm grouping or filtering has been commonly 
discussed in the literature, this is typically applied with respect 
to static criteria specified in pre-defined rules. In our work, 
each ranking function allows us to dynamically examine a 
group of alarms according to user (operator) specified criteria 
– for instance, the time to resolve the alarms as well as spatial 
and temporal properties. Why this is relevant becomes clear if 
we examine how the relative importance of different alarms as 
defined by these properties varies over some pre-defined time 
window. For our experiments, we simulated cascaded line 
trips on the IEEE 30 bus test system  [10] (shown in Figure 2) 
for 10 minutes.  

In Figure 3, we show a sample of four buses and their 
temporal severity during the 10 minute interval. From this 
diagram, we observe that the values of temporal severity for 
bus7 and bus5 are correlated. In Table 1, we observe that 
between 80 and 110 seconds, bus7 and bus5 have the highest 
spatial and temporal severity index scores, respectively. The 
strength of the spatial and temporal correlation (as computed 
from the Pearson product-moment correlation coefficients) for 
selected pairs of buses is given in Table 2.  

In Figure 4 and Table 1, we show the buses that are most 
severely affected over time in terms of spatial severity. 
Looking at different time windows, we observe changes in the 
spatial severity of the buses. For example, initially, bus28 is not 
the most severely affected bus (and therefore, does not have 
the highest spatial severity index score). However, its spatial 
severity rank moves up with the passage of time. 

We need to re-rank the alarms periodically as the relative 
ordering of the alarms changes over time. Consider the 
example of bus2 and bus5, which have similar temporal rank in 
the interval from 70 to 130 seconds; however, they have a low 
correlation co-efficient for the entire 10 minute interval. The 
duration of the time interval for re-ranking alarms will be 
determined by a number of factors, including the desired type 
of control action, and therefore, should be configurable in an 
operational system. For example, if the system provides 
recommendations for manual control actions to the operator, 
re-ranking alarms too often may not be productive. Under the 
fault conditions described above, the operator may decide to 
re-rank alarms every 5 minutes. 

The operator may also be interested in observing 
correlations across different strata of buses, e.g., “buses 
connected to generators”. This property can be qualified even 
further as (a) “topologically adjacent buses connected to 
generators” and (b) “topologically non-adjacent buses 
connected to generators”. Hence, we rank alarms based on 
higher-order properties, i.e., properties of the bus associated 
with an alarm. 

III. EXPERIMENTS 
To demonstrate the feasibility of our approach, we 

evaluated it on the benchmark IEEE 30 bus test system  [10] as 
shown in Figure 2.  We created a cascading scenario starting 
with a 3-phase-to-ground fault (dead short circuit) for 100 ms 
near bus2 on line2-5. A fault was initiated at 60 seconds and 
was cleared at 60.1 seconds by tripping line2-5. Along with the 
tripping of line2-5, 20 MW load was lost at bus2.  There was a 
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sudden voltage dip due to the short circuit. Even though 
voltage recovered, the generators were accelerating gradually 
due to electromechanical dynamics.  At time t =120 seconds, 
line2-6 tripped due to power swing. The tripping of two 
important lines, line2-5 and line2-6, resulted in severe overload 
on line2-4 and line1-3. Eventually, the overload relay tripped 
line2-4 and line1-3 soon after line2-5 tripped. The cascaded 
tripping of 4 lines – line1-3, line2-4, line2-6 and line2-5 – within a 
few minutes divided the system into two islands. Bus1 and 
bus2 formed one island and the remaining buses formed the 
other island. The first island collapsed due to overfrequency 
(i.e., generation was much higher than the load). The second 
island also collapsed due to underfrequency (i.e., load was 
higher than generation). For the given scenario, multiple 
alarms were generated and the proposed severity-based alarm 
rankings (Top 5 alarms per ranking method shown in Table 1) 
can be validated according to different criteria.  

We observe that the alarms in the spatial severity and 
temporal severity rankings shown Table 1 belong to different 
groups. In the spatial severity alarm ranking, alarms on bus5 
and bus7 are overcurrent alarms whereas alarms on bus28, bus27 
and bus22 are undervoltage alarms. In the temporal severity 
ranking, alarms on bus5 and bus7 are overcurrent alarms, 
alarms on bus1 and bus2 are overfrequency alarms, and the 
alarm on bus4 is an undervoltage alarm.  

First, we validate each alarm ranking in terms of the 
reduction in the total number of alarms.  We do this by 
simulating the associated control actions for the alarms, one at 
a time using power flow simulation. In the spatial alarm 
ranking, for example, the alarm on bus7 is fixed with the 
following control actions, namely, by minimizing congestion 
on line5-7 by decreasing generation at bus5 and increasing 
generation at bus2. Even though this resolves the second 
alarm, the remaining alarms still exist. In the temporal 
ranking, if we resolve alarms on bus5 and bus2 with two 
control actions, by 20 MW generation backing at bus1 and 
generation rescheduling at bus2 and bus5, all the remaining 
alarms are resolved automatically.  

As discussed in Section II, the ontology has links from 
alarms types to control actions. This knowledge is pre-
computed so that an automatic recommendation of control 
actions is generated per alarm ordering. When there are 
multiple control actions for a specific alarm type (as described 
above), the system enumerates the possible orderings of these 
control actions and evaluates them using power flow 
simulation (this can be done efficiently with the parallelism of 
stream computing). Using the simulation results, the system 
determines the ordering of alarms and associated control 
actions that minimizes the number of remaining alarms and 
continuously adapts the ontology with this operational 
knowledge. In this example, we have shown how proactively 
resolving alarms through simulating control actions not only 
can identify the “better” alarm ranking (in this case, the 
temporal ranking), but also pinpoint the “causal alarms” – 
alarms which when resolved minimize the total number of 
remaining alarms. 

While the simulation-based metric is powerful and can 
also be considered a time-based metric – in an operational 

system, the user (operator) would want to minimize the total 
number of alarms, and consequently, the time needed to bring 
the power system back to a stable state faster – it may not be 
the only criterion for evaluation.  For instance, the operator 
may be interested in monitoring “priority” buses (e.g., buses 
connected to generators) for alarms.  For the IEEE 30 bus test 
system, such a criterion would rank alarms on any of the 
buses, bus1, bus2, bus5, bus8, bus11, and bus13, before alarms on 
the other buses (we refer to this as the priority ordering).                                                  

It is possible to measure how the severity rankings 
compare to some default order. For example, if we assume the 
default order to be the priority ordering of buses then, we can 
compare this to any severity ranking at time, ti. For example, 
given the rankings in Table 1, starting at t=70 seconds, we can 
measure how dissimilar the spatial and temporal rankings are 
to the default order. The ranking method that results in lower 
average dissimilarity is rated as the “better” method. 

We measure the dissimilarity between ordered lists using 
both Kendall’s tau and Spearman’s footrule  [11]. For 
Kendall’s tau, an inversion between a pair of elements, i and j, 
in a list, , is defined such that i<j but (i)>(j). Kendall’s tau 
is a count of the total number of inversions in The formula 
for computing this metric is as follows: 

                                                                                          (6)  

                                                                                

In our case, we use a variant of Kendall’s tau – we define 
an inversion to be any priority alarm not appearing in the Top 
5 ranking: 

                                                                                          (7) 

 

For Spearman’s footrule, displacement is the distance an 
element moved from its original position in the default order. 
Therefore, the total displacement is computed as follows:                           

                                                                                          (8)    

                                                                             

For the time interval from t=70 to 160 seconds in Table 1, 
we note that there were alarms observed for all the priority 
buses. Therefore, at any time t, each priority alarm has a rank 
in both the spatial and temporal orderings. (Note that all these 
ranks are not shown in Table 1). In Table 3, we compute 
Kendall’s tau and Spearman’s footrule values for each time 
instant. 

We observe that the average Kendall’s tau value for the 
spatial ranking (4.2) is greater than the temporal ranking (2.3). 
Similarly, for Spearman’s footrule metric, we find the average 
value for spatial ranking (105.3) is greater than the temporal 
ranking (61.3). According to both metrics, temporal severity 
ranking is the “better” ranking with lower average 
dissimilarity scores. This also supports our initial evaluation 
result using the simulation-based metric, which showed that 
the temporal severity ranking minimized the time needed to 
bring the power system back to a stable state faster as alarms 
are progressively resolved. 
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Spatial 
severity alarm 

ranking 

Temporal 
severity alarm 

ranking Time 
(sec) Tau Footrule Tau Footrule 

70 4 96 2 52 

80 4 96 2 52 
90 4 96 2 64 

100 4 96 2 52 
110 4 96 2 52 
120 4 97 2 57 

130 5 130 2 95 
140 4 105 3 67 

150 5 130 2 68 
160 4 111 4 54 

       Table 3. Comparison of spatial/temporal severity rankings. 

To summarize, using the simulation-based metric as well 
as (7) and (8), the operator is able to evaluate alarm orderings 
under different sets of conditions. With the parallelism 
provided by the stream computing platform, it is possible to 
generate multiple alarm orderings at run-time and to choose 
the “best one”. By simulating control actions, the operator can 
proactively estimate the time needed to resolve alarms in a 
given ordering. In addition, the operator can check for specific 
conditions such as whether an alarm ranking preserves the 
property that priority alarms are given precedence and/or are 
collocated or whether alarms on vulnerable assets are resolved 
quickly. 

Our approach is extensible as new alarm orderings can be 
introduced into the computational framework with relative 
ease. It is also flexible as the selection criteria for the best 
ordering can change over time and is configurable by the user. 
Consequently, temporal severity, spatial severity, or any other 
ranking method can be evaluated dynamically according to 
specific properties or criteria that the operator decides is 
important under current operating conditions. 

IV. RELATED WORK 
Early alarm management systems were focused on logical 

analysis or rule-based processing of alarms [4]. For example, 
one way to reduce alarms is by logically grouping related 
alarms – this has sometimes been referred to as alarm 
“suppression” or “filtering” in the literature [1]. There are 
multiple rules for alarm filtering ranging from duration-based 
to static priority assignment [3]. More recent approaches for 
alarm reduction have focused on the extraction of features 
from raw data to understand the causal conditions behind 
alarms [2] and the use of inductive learning to find the root 
cause (failure tree) behind alarms  [12]. 

V. CONCLUSIONS 
In this paper, we have described how to order alarms on 

the power grid in real-time according to different severity 
measures and how to evaluate these orderings according to 
specific properties of interest to the user. Since control actions 
are automatically associated with the alarms, each ordering of 

alarms also suggests an ordering of control actions that should 
be taken by the operator. Simulation-based evaluation metrics 
such as the one described in the paper also enable the operator 
to identify causal alarms, which when resolved, minimize the 
total number of remaining alarms, thereby bringing the power 
system back to a secure state faster. 

Describing a conceptual algorithm for alarm processing 
that also offers recommendations and decisions, Kyriakides, 
Stahlhut, and Heydt  [3] state: 

Obviously, like all other power system controls, decisions 
on when and if to implement are rarely made on the basis of a 
single consideration; rather, a range of considerations need to 
be assessed in control system designs. 

Our intent is not to fully automate the decision-making 
process exercised by operators for power systems control, but 
rather to supplement it by formally characterizing and 
quantifying the “range of considerations” that operators must 
consider before making a decision on how to handle alarms. 
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