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Abstract—Recently, there has been a growing interest in wind
solar hybrid power plants as a means to overcome the inherent
intermittency in both resources. One crucial decision faced by
a hybrid plant designer is to determine an allocation of land
area between wind and solar installations so as to satisfy the
generation requirements in terms of the power output by the
plant along with the availability. In this paper, a methodology
is proposed for this optimal allocation problem under the
constraints of climate and weather conditions, land area available
for renewable energy harvesting, and PV/ wind turbine charac-
teristics. Based on historical wind speed and solar insolation data
for a given location, probabilistic models using parametric and
non parametric estimation techniques are developed to capture
the variability and periodicity in these resources. A probabilistic
model for the hybrid system is also derived using which the
optimal allocation that satisfies the generation requirements is
determined. The proposed method is validated by performing a
detailed experimental analysis on historical data for an arbitrary
location on the globe.

I. INTRODUCTION

Renewable energy resources, such as wind and solar, are
considered highly promising in the face of growing concerns
for the environment, energy conservation, and sustainable
development [1]. Daily as well as seasonal variability are
inherent to both wind and solar resources [2]. Traditionally,
the uncertainty of a standalone solar panel or wind turbine
installation is managed using a storage system. However, this
results in an increased overall cost of the output energy, and
therefore limits the benefits of using renewable energy [3]. A
hybrid solar wind energy system uses two renewable energy
sources, thereby improving the system efficiency and power
reliability, and reducing the energy storage requirement [4].
However, aggregating inherently stochastic power sources such
as wind and solar to achieve reliable electricity supply is a non
trivial problem [5].

Consider the scenario of a typical market model described
in [6], wherein each day at a specified hour, the owner of the
plant establishes a schedule of the net power export to the grid
for each hour of the next day. Power is traded in a day-ahead
spot market, and any deviations from the contracted power
due to forecast errors are settled in a balancing market. For
the hybrid plant owner who bids in this market, this has serious
implications in terms of managing the risk induced by the un-
certain renewable energy sources. It follows that the question
of characterizing the reliability of a given hybrid installation
must be answered for meaningful market participation. This is
also relevant to the planning phase of a hybrid plant, in which

the sizing of wind and solar installations must be optimized in
order to maximize magnitude and availability of energy output.

The availability of wind and solar energy at a given location
depends on climate and weather conditions and is highly
variable [4]. Therefore, a prediction model for these resources
should be stochastic in nature to be able to account for
the inherent variability. A majority of the existing tools for
forecasting these renewable resources give a deterministic
forecast, also known as a spot or a point forecast. This is
a single value for each forecast horizon. Such methods suffer
from the drawback that they provide no information about any
departure from the prediction. In decision-making applications
based on stochastic optimization or risk assessment, a point
forecast finds limited use. It has been shown that for trading
future production on an electricity market as described above,
using probabilistic predictions rather than point forecasts
yeilds greater benefits [3]. In [7] First Order and Second
Order Markov Chain Models are used to develop a purely
statistical and probabilistic wind power forecasting method.
Both models are applied on a wind power dataset and their
performances are compared with that of a Persistent Model. [3]
uses non-parametric estimation techniques to build probability
density functions for wind speed forecasting. AI techniques
like artificial neural networks, fuzzy logic, genetic algorithms,
and wavelet neural networks have been used for solar power
prediction. [8] gives an overview of all these methods as
applied to the problem of PV sizing.

Various optimization techniques for hybrid PV/wind sys-
tems sizing have been proposed in the literature. Wang et. al.
[5] discussed the applicability of the concepts of stochastic
network calculus to analyze the achievable level of system
reliability with appropriate number of PV cells, wind turbines,
and energy storage capacity. One source of difficulty in ap-
plying stochastic network calculus is obtaining reliable supply
and demand models. Tina et al. [2] presented a probabilistic
approach based on the convolution technique to assess the
long-term performance of a hybrid solar-wind power system
(HSWPS) for both stand-alone and grid-linked applications.
They generated the probability distribution functions (pdf) for
wind and solar power using parametric estimation methods.
The size of PV and wind are chosen such that the energy that
cannot be supplied to fulfill the demand is minimized. An
optimization problem is formulated to choose the most cost-
effective combination. Terra et. al. [9] proposed a procedure
to obtain the optimal sizing of a grid connected HSWPS



that involves fuzzy logic based multi-objective optimization.
The optimization technique depends on how well the hybrid
system can satisfy the demand. Borowy et. al. [10] presented
a method for calculating the optimum size of a battery bank
and the PV array of a standalone hybrid Wind-PV system
that satisfies the demand profile of a given location. Yang et.
al. [11] proposed a method to calculate the optimum system
configuration that can achieve the customers required loss of
power supply probability with a minimum annualized cost
of system based on a genetic algorithm. Yang et. al. [12]
developed a sizing model that optimizes the capacity sizes
of different components of HSPWS employing a battery bank
using an iterative technique. All the above methods rely on
load profile to obtain their solutions. But access to load data
is one of the most important and difficult steps in planning
and operation of distribution systems [13].

Our contributions include:
• A comprehensive performance assessment technique for

a wind-solar hybrid system based on local climate and
weather conditions, land area available for renewable
energy harvesting, and device limitations.

• Performance evaluation based on measures of energy
throughput and availability, so as to assist the risk/energy
trade-off decision faced by the system planner.

• Use of the above analysis to optimally size the wind
and solar installations in a given land area for a given
requirement of availability.

II. PROBLEM FORMULATION

Optimal Mix Problem: We consider a problem where a
hybrid power plant needs to be set up in a given land area at
a particular latitude/ longitude on the globe. Given the total
area of land available for renewable energy harvesting, an
optimal mix determines the best way to divide the land into
the wind and the solar resource installations based on year
round availability and maximum power output. A hybrid plant
is said to output power P with an availability of L, if at least
P MW of power is generated L% of the time over the year.
The factors to be considered are the historical behavior of the
weather of that location (obtained by extracting data for the
particular latitude/ longitude from a global weather dataset),
wind turbine and solar panel specific parameters.

III. ALGORITHM

The input to the algorithm consists of the following.
• Total land area
• Latitude, Longitude
• Solar panel parameters : Efficiency, rated power, horizon-

tal surface area.
• Wind turbine parameters : Rotor diameter, land area

required, turbine efficiency, rated power, cut-in, cut-off,
and rated wind speeds.

• Required Availability
The algorithm outputs the optimal mix in terms of
• Fraction of land to devote to wind turbine installation

• Fraction of land to devote to solar panel installation
An overview of the steps in the algorithm can be written as:

1) Extract weather data for wind speed and solar insolation
2) Identify patterns in the data and the best way to slice it

into multiple time horizons
3) Generate wind speed and solar insolation pdfs for each

time horizon individually
4) Identify and enumerate feasible wind-solar mixes in the

land area
5) Build the mix table for a given availability L as follows,

for each feasible mix m, and for every time horizon k
a) Transform the result of (3) to solar and wind power

pdfs.
b) Convolve the above to get a pdf for the hybrid

power PHybrid.
c) Set mixTable[m, k] = β, such that

Prob(PHybrid ≥ β) = L

6) Normalize the mix table for each of the columns, by
dividing each element by the maximum value in that
column.

7) Take the sum of each row.
8) Choose the mix with highest corresponding row sum as

the optimal mix for availability L.
The following describes the above steps in detail.

A. Pattern Identification in the Data and Wind/Solar pdfs

Although wind and solar data suffer from high variability,
they follow an annual periodicity with slight variations. We
therefore choose to model this variability in terms of a set
of pdfs for one year. Moreover, within a certain smaller time
frame, this variability is typically uniform. As a result, within
this time frame, a single pdf can represent the variation. We
slice the data in different ways in order to determine which
slicing captures the nature of the data best. The data can be
sliced monthly, weekly, hourly, or a combination of these
ways.

We consider the following 4 ways to slice the data -
• Month (M): Resulting in 12 pdfs, one for each month
• Week (W): Resulting in 52 pdfs, one for each week
• Month and 3 hours (MH3) : Every month is represented

by 8 different pdfs, for the 3 hour intervals within a day,
to get a total of 96 pdfs for the entire year.

• Month and 6 hours (MH6) : Like the above, except the
variability is thought to change every 6 hours. Results in
a total of 48 pdfs for the year.

For each of the ways listed above, we estimate pdfs for wind
speed and solar insolation for all the slices.

1) Pdf Generation: The objective is to determine pdfs
f(xs), and f(xw) for the continous variables xs (solar inso-
lation) and xw (wind speed). The pdfs are generated using
parametric and non parametric methods. In the parametric
framework, a family of distributions is chosen e.g. a Gaus-
sian distribution. Then, the parameters of the distribution are
estimated from the data. In the non-parametric framework the



distribution is directly estimated from the data with weaker hy-
pothesis on the underlying distribution. The main drawback of
the non-parametric approach is that it requires larger data sets
than the parametric approach to attain equivalent estimations,
whereas the advantage is that it limits estimation errors due to
incorrect hypothesis on the underlying distribution family[3].

a) Non-Parametric: In statistics, kernel density estima-
tion (KDE) is a non-parametric way to estimate the probability
density function of a random variable. Kernel density estimates
are closely related to histograms, but can be endowed with
properties such as smoothness or continuity by using a suitable
kernel. The general form of kernel density estimate for a
random variable x from a population {x1, x2, ..., xn} is given
by

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(1)

where h is the bandwidth which controls the degree of
smoothing in the estimate. Kernel Density Estimation can
employ various different kernels depending on the data. For
our purpose, we have selected the Epanechnikov kernel given
by [14],
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(
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2
)
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√

(5)
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(2)

b) Parametric: In order to account for the variability of
wind speed, it is assumed to be characterized by a Weibull
distribution with a scale parameter λ and a shape parameter
k. Density and distribution probability functions are given by

fv =
k

λk
v(k−1)exp[−(

v

λ
)k] (3)

Fv = 1− exp[−(
v

λ
)k] (4)

For the selected time slice, the parameters λ and k are cal-
culated using Maximum Likelihood Estimation(MLE). closed-
form characterization of ML parameter estimates k̂ and λ̂ are:

λ̂ =

[
1

n
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]1/k̂
(5)
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vk̂i = 0 (6)

where, v denotes the population of wind speed given by
{v1, v2, ..., vi, ...., vn} [15].

For solar, the modified gamma distribution is used. This
distribution models kt, where kt is the clearness index given
by the ratio of the average horizontal insolation at the site IH
to the extraterrestrial insolation on a horizontal surface above
the site and just outside the atmosphere, I0. kt is suitable to be
modeled by a parametric distribution function because it has
been seen that if two sets of data have same mean value of kt,
they will generate similar f(kt) functions [16], The modified
gamma distribution function for kt is given by:

fkt = C
(ktu − kt)

ktu
exp(λskt) (7)

where, ktl ≤ kt ≤ ktu. C and λs are functions of ktu and k̄t
given by

C = λ2sktu/(exp(λsktu)− 1− λsktu) (8)

λs = (2Γ−17.519exp(−1.3118Γ)−1062exp(−5.0426Γ))/ktu
(9)

where, Γ = ktu/(ktu − k̄t)
2) Selection of best slice: Pdfs generated using parametric

and non-parametric methods are evaluated to select the most
relevant slice. The pdfs are evaluated for the estimation accu-
racy using a modified estimator for the well known measure
of Mean Integrated Square Error.

MCV (f̂) =

∫
f̂(x)2dx− 2

n

n∑
i=1

f̂−i(xi) (10)

where f̂−i(x) is the estimated density at argument x using the
original sample apart from observation xi [14].
The slicing for which minimum mcv values are obtained, is
selected as the best slicing.

B. Identification of Feasible Mixes

The various possible mixes that the land area can accom-
modate is identified in this step. The wake effect seen in
wind systems mandate that wind turbines be placed at least
5 to 10 rotor diameters apart from each other. Let us say
that Afootprint is the area occupied by one wind turbine, and
Awake is the total area that each wind turbine needs around
itself for the system as a whole to overcome the wake effect.
Let Atotal be the total land area available. Then the maximum
number of wind turbines that can be installed in this land area
is tm = Atotal/Awake. Let 0 ≤ k ≤ tm be the number
of wind turbines installed in a given mix. Then the wind
installation occupies an area of Aw = k.Afootprint, and so the
solar panels can be installed over an area of As = Atotal−Aw.

C. Pdf Transformation

With the selected slice and for each identified mix, the
generated pdfs for wind speed and solar insolation / clearness
index are converted to pdfs for wind power and solar power

1) wind speed to wind power: Pw(v) is defined as

Pw(v) =

 αv3 , for VC ≤ v ≤ VR
PR , for VR ≤ v ≤ VF
0 , otherwise

(11)

where α = 1
2ηwρAw

Using the above, the wind power pdf is calculated as,



fPw
(Pw) =


F1 Pw = 0

fv((
Pw

α )1/3). 13

(
α
Pw

)2/3
0 < Pw < PR

F2 P = PR
(12)

where,

F1 = 1− [Fv(VF )− Fv(VC)] (13)
F2 = Fv(VF )− Fv(VR) (14)

VC is cut in speed, VR is rated speed, and VF is cut out
speed of wind for the wind turbine.

2) Insolation/ clearness Index to solar Power: For insola-
tion,

Ppv = ηsAsIh (15)

fPpv
(Ppv) = fIh

(
Ppv
ηsAs

)
1

ηsAs
(16)

For clearness index,

Ppv = ηsAsktIET (17)

fPpv
(Ppv) = fkt

(
Ppv

ηsAsIET

)
1

ηsAsIET
(18)

D. Pdf Convolution

Given fPw
(Pw), the pdf for wind power, and fPpv

(Ppv),
the pdf for solar power, we obtain f(Ph), the convolved pdf
for the hybrid system using the following,

f(Ph) =

∫ U

0

fpv(Ph − Pw).fPw
(Pw)dPw (19)

The upper bound of the above integration depends on the
value of Ph.

• If Ph ≤ PWR, then U = Ph
• If Ph > PWR, then U = PWR

The above convolution can be done numerically as well as
analytically.

E. Optimal Mix

For a certain mix of wind and solar, say wind = a and solar
= b, we build p pdfs, one for each of the p time horizons
identified. In order to evaluate the optimal mix, the concept of
’Availability’ is considered. The hybrid plant with the power
output pdf, Pij , for the ith mix and the jth time horizon,
produces power βij with availability L, if

Pij(X ≥ βij) = L (20)

where,1 ≤ i ≤ tm and 1 ≤ j ≤ p
We build a mix table having a row for each feasible mix,
and a column for each time horizon. For the mix i, in time
horizon j, mixTable[i, j] = βij . Table I shows the structure
of the mix table.

From Table I, it is easy to infer which mix performs best
for a specific time horizon by looking at the corresponding
column. Also, one can evaluate the performance of a mix

TABLE I
MIX TABLE FOR AVAILABILITY = L

Mix T imeHorizon1 .. T imeHorizonp

mix1 β11 .. β1p
mix2 β21 .. β2p

.. .. .. ..
mixtm βtm1 .. βtmp

across various time horizons using the corresponding row. It
is possible that a certain mix performs very well in a given
time horizon and very badly in some other. We must select a
mix that is consistent in its performance across the year, while
giving a high power throughput. To incorporate the above, the
following steps are performed on the mix table to find the
optimal mix:

1) Each column is normalized by dividing the values by
the maximum in that column.

2) For each row, the sum is taken over all the columns.
The mix that corresponds to the highest row sum is chosen as
the best mix for the required reliability L.

IV. EXPERIMENTS

The experiments were conducted for a land area of 20 acres
at the location (33.5, 77.5). Global reanalysis data for wind
speed and solar insolation were extracted for this location
for the years (2001-2010) over the months (January, April,
July, and October). This set of equidistant months was chosen
in order to capture the seasonal variation in both resources,
while at the same time limiting the large volume of data that
is input to the system. The global reanalysis data set used
here is the Global Land Data Assimilation System (GLDAS)
dataset. GLDAS data are produced by specific instances of
the Land Information System (LIS) software framework for
high-performance land surface modeling and data assimilation
developed within the Hydrological Sciences Branch at NASA
Goddard [?].

A. Pdf Estimation

1) Wind: Pdfs for wind speed v are generated using non-
parametric method and parametric method (Weibull distri-
bution) for all possible ways of data slicing. For the non
parametric method, the bandwidth parameter is chosen based
on the MCV measure described in section III-A2. On iterating
over a range of values for bandwidth, and measuring the MCV
for each, the optimal bandwidth (the one for which a minimum
MCV was obtained) is arrived at as shown in Figure 1. Pdfs
developed using non-parametric methods for the month of
January are shown in Figure 2. The MCV measure is also
useful in choosing the best way to slice the data. For each of
the different slicing ways, MCV was calculated and tabulated
as in Table II (shows average MCV values over all slices).
Since a smaller MCV is an indicator of higher predictability
within the same family of distributions, MH3 was chosen as
the best method to slice the data, and as a result 32 pdfs (8 for
each month) were obtained over the year for each parameter.



Fig. 1. MCV vs Bandwidth

TABLE II
MCV VALUES FOR WIND SPEED PDFS

SLICES MCVnon−parametric MCVparametric

M -0.17321 -0.269932
MH3 -0.23685 -0.422410
MH6 -0.18822 -0.312177

W -0.18125 -0.316778

2) Solar: Pdfs for Ih are generated using non-parametric
method, and pdfs for kt are generated using parametric method
(Modified Gamma Distribution) for all possible ways of data
slicing. Pdfs for M and MH3 developed using non-parametric
methods for the month of January are shown in Figure 3. It is
helpful in visualizing the effect of slicing on the resultant pdfs.
While the pdf based on the whole months data is multimodal,
the individual pdfs based on the same data, but sliced by hour,
show well defined peaks around specific values.

B. Mix Identification and Pdf Transformation

In identifying the various feasible mixes and obtaining
the hybrid power pdfs corresponding to each, device specific
parameters for the wind turbine and the solar panel must be
incorporated. For our experiments, the following typical values
of certain parameters are taken into consideration:

• Wind Turbine Parameters- Cut-in Speed = 3 m/s, Cut-off
Speed = 25 m/s, Rated Speed = 13 m/s, Afootprint = 0.25
acres, Efficiency = 42%, Awake = 2.5 acres .

• Solar Panel Parameters- Efficiency = 12%
According to these parameter settings, there are 8 feasible
mixes : 1st mix has 1 turbine, 2nd mix has 2 turbines and so
on. The remaining area of land is dedicated for solar panels.
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Fig. 2. Wind pdf for MH3 in Jan generated using non-parametric method
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Fig. 3. Solar pdf for Jan generated using non-parametric method

For each mix, the wind speed and solar insolation pdfs for
the 32 slices were transformed into wind power and solar
power pdfs respectively. These were then convolved using
equation 19 to obtain a hybrid power pdf fPh

for each slice.
Figure 4 shows the seasonal variation in the power generation
of the hybrid installation during the 3 hour interval 1300-1600
hours, for the months of January and July.

Fig. 4. Hybrid Power pdf for mix 3, hour 1300-1600

C. Optimal Mix

For a given value of availability L, power output values βij
are calculated for all the 9 mixes over the 32 time horizons as
given by equation 20. Tables III and IV show the populated
mix tables for an availability of 70% for the months of January
and July respectively.

TABLE III
POWER OUTPUT FOR AVAILABILITY = 70 % FOR JANUARY (IN MW)

Mix 1-4 4-7 7-10 10-13 13-16 16-19 19-22 22-1
1 0 0 1.16 2.33 2.01 .10 0 0
2 0 0 1.24 2.45 2.20 .10 0 0
3 0 0 1.27 2.51 2.31 .10 0 0
4 0 0 1.28 2.53 2.35 .10 0 0
5 0 0 1.28 2.52 2.36 .10 0 0
6 0 0 1.28 2.51 2.36 .09 0 0
7 0 0 1.27 2.49 2.35 .09 0 0
8 0 0 1.26 2.47 2.34 .09 0 0

In the above tables, there are several time horizons for which
power output is zero. These correspond to the night time, when
there is no solar energy. During these periods, wind speed fails
to exceed the cut in wind speed for the turbines 70% of the
time, and hence the power throughput for 70% availability
comes out to be zero. It can be observed from Table III that



TABLE IV
POWER OUTPUT FOR AVAILABILITY = 70 % FOR JULY (IN MW)

Mix 1-4 4-7 7-10 10-13 13-16 16-19 19-22 22-1
1 0 .51 3.88 5.24 4.54 1.59 .01 0
2 0 .47 3.79 5.24 4.58 1.60 .01 0
3 0 .59 3.91 5.26 4.60 1.59 .01 0
4 0 .49 3.80 5.25 4.60 1.58 .01 0
5 0 .53 3.88 5.24 4.56 1.57 .01 0
6 0 .49 3.89 5.21 4.57 1.56 .01 0
7 0 .48 3.56 5.17 4.62 1.54 .01 0
8 0 .48 4.13 5.18 4.58 1.52 .01 0

mix 5 performs best for the month of January in terms of
total power generation whereas, Table IV depicts that mix 3
performs better than others for the month of July.
In order to determine the most suitable mix which performs
best across the year, we performed normalization on the mix
table.

The normalized table for the month of January is shown in
Table V. The best mix is the one corresponding to the highest

TABLE V
NORMALIZED MIX TABLE FOR AVAILABILITY = 70 % FOR JANUARY

Mix 1-4 4-7 7-10 10-13 13-16 16-19 19-22 22-1
1 0 0 0.91 0.92 0.85 1 0 0
2 0 0 0.97 0.97 0.93 1 0 0
3 0 0 0.99 0.99 0.98 1 0 0
4 0 0 1 1 0.99 1 0 0
5 0 0 1 0.99 1 1 0 0
6 0 0 0.99 0.98 0.99 0.9 0 0
7 0 0 0.99 0.98 0.99 0.9 0 0
8 0 0 0.98 0.98 0.99 0.9 0 0

row sum in the normalized mix table. The row sums were
taken over all the normalized 32 columns. For an availability
of 70%, mix 5 is found to be the best.
Similarly, the optimal mix is determined for different values of
availability and shown in Table VI. It is interesting to note the
trade-off between availability and minimum energy generated
in the considered 4 months. If the availability is high, the
minimum energy output is less and vice versa. It can also be
noted from Table VI that if the required availability is too
low the choice of mix becomes obvious. It reduces to either
complete solar or wind installation, depending on which has
more potential in the specific location.

TABLE VI
OPTIMAL MIXES FOR VARIOUS AVAILABILITY VALUES

Availability Best Mix Energymin in MWh
80 % 5 365583
70 % 5 435612
60 % 7 499689
50 % 8 576879
40 % 8 732468

V. CONCLUSION

In this paper, we have described a probabilistic approach to
optimizing the land allocation for a HSWPS. We show that
the choice of slicing as applied on data affects the predictive

ability of the probabilistic models. Our results validate the
intuitively obvious fact that for low availability, the optimal
solution tends to allocate an overwhelming fraction of the
land resource to one extreme of wind/solarand while for
high availability a mix (which is precisely estimated by our
methods) of both renewables is desired. While we consid-
ered the metric of maximizing power throughput for a given
availability, the probabilistic description of the hybrid system
is flexible enough to encompass other metrics, e.g. LPSP or
EINS, when demand profile is available. Future work includes
incorporating cost of devices and the possibility of using
multiple types of turbines and solar panels.
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