
An Efficient Random Number Generator for
Low-Power Sensor Networks

Deva Seetharam and Sokwoo Rhee
Millennial Net

201 Broadway, Cambridge, MA - 02139.
{dseetharam,sokwoo}@millennial.net

Abstract— We have designed an ultra-low power sensor net-
working platform called the i-Bean Network [1], [2]. The i-Bean
Network requires a reliable RNG (Random Number Generator)
for various purposes such as random backoffs, random trans-
mission delays and random packet sequence numbers.

We could not use the existing RNGs because they require
special purpose hardware and/or involve complex computations.
To conserve battery power by minimizing computations, we
attempted to develop a simple and efficient RNG.

In this paper, we describe a simple RNG based on a free-
running timer. Although this RNG was specifically designed for
the i-Bean Network, we believe that this generator could be useful
in other low-power embedded networks.

I. I NTRODUCTION

Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin. - John Von
Neumann (1951)

We have designed an ultra-low power sensor networking
platform called the i-Bean Network [1], [2] to enable a
wide variety of control and automation applications. The i-
Bean Network is composed of numerous embedded computing
devices that communicate with each other to haul data between
sensors and host computers. These devices require a reliable
RNG for the following purposes:

• Random Packet Sequence Numbers - The IEEE 802.15.4
standard [3] specifies that packet (beacon, data and com-
mand frames) sequence numbers must be random1.

• Random Backoff - When packets collide in the channel,
the transmitting nodes back off and wait for a random
length of time before retransmitting. This random wait
duration reduces the probability of two nodes retransmit-
ting at the same time.

• Random Transmission Delays - If a node receives a
broadcast packet, it waits a random length of time before
rebroadcasting.

Since the RNG would be used as often as the packets are
transmitted, an efficient generator is necessary to decrease
power consumption and to increase battery life. We could not
use the existing RNGs [4], [5], [6] either because they require
special purpose hardware and/or complex computations.

Adding extra hardware would increase the hardware dimen-
sions and that is not acceptable because the i-Bean devices

1Since acknowledgement packets don’t carry the sender ID of the original
packet, a random sequence number serves the dual purpose of identifying the
packet and the source node.

are designed to be tiny to be unobtrusively embedded in their
operating environment. We find even simple computations
such as as division and modulo arithmetic operations to be
expensive, since the microcontroller platform (Microchip PIC)
doesn’t have native support for these operations.

A software implementation of linear feedback shift register
could have been used since it neither requires special hardware
nor complex computations. However, the simple implementa-
tion is slow and the faster ones require parallelization [7].

Since we couldn’t find a suitable RNG, we attempted to
design a simple and efficient pseudo random number generator,
despite Von Neumann’s ominous warning.

II. RANDOM NUMBER GENERATOR

We designed the generator with the following design con-
straints:

• The generator must be efficient and we define efficiency
as follows:

– It doesn’t require any multiplication or division oper-
ations. It would be desirable if the generation could
be achieved using just the logical operations.

– The maximum number of steps required for generat-
ing a single random number in the sequence is less
than ten.

– The maximum code memory required is used is less
than 50 bytes.

• The generator must produce an uniform distribution of
random numbers between 0 - 255 inclusive.

• The generator must not use any microcontroller specific
features that would prevents us from porting this code to
other hardware platforms. However, we exploit the nature
of application features. For example, since this generator
is intended for communicating embedded systems, we use
the checksum/CRC of the transmitted/received packets to
re-key the generator.

Based on these constraints, we have developed a RNG based
on a free running timer. A random number is generated by
XORing the current value of the timer with a key. After
generating a random value, ones complement of the timer
value becomes the new key and the ones complement of
the new random number becomes the next timer value. In
addition, the key also gets updated with the 8-bit CRC values
of transmitted and received packets. The code is given below.



/* Initialize Key to the ID of the node */
unsigned char key= nodeID;

unsigned char random()
{

unsigned char rv= 0;
unsigned char tv= 0;

tv = get timer();
10

rv = tv ˆ key;
key = ˜tv;
tv = ˜rv;
set timer(tv);

return rv;
}

Although RNGs based on free-running timers have been
proposed before [8], we are not aware of a low-power RNG
tailored for sensor networks.

III. E VALUATION

We implemented this generator on a Microchip PIC
18F8720 platform running at a clock speed of 8 MHz. We ran
this RNG with initial key = 25 and tv = 0 and changed the
key once every 10 iterations to emulate2 packet transmission
or reception.

This implementation produced 10 million random bytes in
approximately 200 minutes. That is, it could generate 50,000
random bytes per minute. A plot of the distribution of random
numbers is presented in Figure 1.

Fig. 1. Random Number Distribution.

2We believe that this emulation is reasonable because the RNG would not
be invoked without any ongoing communications.

We used ENT [9] for testing this random number generator.
ENT performs the following tests and produced the corre-
sponding results:

Test Result Ideal Results
Entropy 7.713327 bits per byte.

Optimum compression
would reduce the size of
this 10000000 byte file
by 3 percent.

8 bits per byte

Chi-square Test Chi square distribution
is 3828655.45, and
randomly would exceed
this value 0.01 percent of
the times.

Depends on the distri-
bution and a percentage
value of between 10% and
90% the sequence is truly
random.

Arithmetic Mean 122.885 127.5
Monte Carlo
Value for PI

3.088126835 (error 1.70
percent)

Value of PI

Serial
Correlation
Coefficient

-0.058927 0.0

TABLE I

RNG ANALYSIS.

IV. D ISCUSSIONS ANDFUTURE WORK

This RNG seems to be efficient and produces apparently
random numbers. However, it must be subjected to a rigorous
theoretical analysis to ensure its correctness. Further more,
the results presented in Table I indicate this RNG could be
improved. The most important issue is its poor performance
in the Chi-square test. Moreover, the performance of this RNG
must be tested in the sensor network environment to ensure
that multiple devices in the network don’t go through the
same sequence of random numbers. More importantly, since
we use CRC (or checksum) of the packets to update the keys,
we must make sure that the apparently independent processes
don’t inadvertently synchronize with each other [10].

V. ACKNOWLEDGEMENTS

We sincerely thank Dr. James McBride of MIT Media Lab,
Dr. Sheng Liu of Millennial Net and Mr. Peter Gonzalez of
BlueEl technology for invaluable discussions and suggestions.

REFERENCES

[1] S. Rhee, D. Seetharam, and S. Liu, “i-bean network: An ultra-low power
wireless sensor network,” inUBICOMP Adjunct Proceedings, 2003.

[2] Millennial, “Millennial net,” http://www.millennial.net.
[3] I. . Committee, “802.15.4: Wireless medium access control and phys-

ical layer specifications for low-rate wireless personal area networks,”
http://www.ieee802.org/15/pub/TG4.html.

[4] T. Ritter, “Random number machines: A literature survey,”
http://www.ciphersbyritter.com/RES/RNGMACH.HTM.

[5] P. L’ecuyer,Handbook of Computational Statistics. Springer Verlag,
2004, ch. Random Number Generation.

[6] ——, “Uniform random number generation,”Annals of Operations
Research, no. 53, pp. 77 – 120, 1994.

[7] B. Schneier,Applied Cryptography. John Wiley and Sons, 1996.
[8] S. Dorward, R. Pike, D. L. Presotto, D. M. Ritchie, H. Trickey, and

P. Winterbottom, “The inferno operating system,”Bell Labs Technical
Journal, vol. 2, no. 1, pp. 5 – 18, Winter 1997.

[9] J. Walker, http://www.fourmilab.ch/random.
[10] J. McBride, “Synchronization of apparently independent processes in a

network.” Personal Conversations.


