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ABSTRACT
In this paper we describe an ongoing project which devel-
ops an automated residential Demand Response (DR) sys-
tem that attempts to manage residential loads in accordance
with DR signals. In this early stage of the project, we pro-
pose an approach for identifying individual appliance con-
sumption from the aggregate load and discuss the effective-
ness of load disaggregation techniques when total load data
also includes appliances that are unmonitored even during
the training phase. We show that simple discriminative
methods can directly predict the appliance states (e.g. on,
off, standby) and the predicted state can be used to calcu-
late energy consumed by the appliances. We also show that
these methods perform substantially better than the gen-
erative models of energy consumption that are commonly
used. We evaluated the proposed approach using publicly
available REDD data set, and our experimental evaluation
demonstrates the improvement in accuracy.

Categories and Subject Descriptors
I.5.2 [Design Methodology]: Pattern Analysis

General Terms
Algorithms, Performance, Design, and Verification

Keywords
Energy management, non-intrusive, data mining, context-
awareness and ubiquitous computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
e-Energy 2012, May 9-11 2012, Madrid, Spain.
Copyright 2012 ACM 978-1-4503-1055-0/12/05 ...$10.00.

1. INTRODUCTION
Since electricity cannot be stored effectively in large quan-

tities, power grids must continuously match supply and de-
mand. This can be challenging because power must be gen-
erated and supplied to each customer as it is called for in-
stantly, in quantities that vary rapidly. Meeting these fluc-
tuating demands requires keeping a vast array of expensive
transmission, distribution and generation equipment on con-
stant standby. The amount and size of these equipment must
be sized to meet peak demand rather than the average. As
a result, the power grids usually suffer from low load factor
and are underutilized most of the time. For example, the
US national load factor is about 55%, and 10% of genera-
tion and 25% of distribution facilities are used less than 400
hours per year, i.e., 5% of the time [2]. Shaping the demand
to reduce the peak and smooth the variation can greatly
improve power system efficiency and yield huge savings [6].

Demand response (DR) programs encourage end consumers
to alter their electricity consumption in response to DR sig-
nals such as incentives and real-time electricity prices so
that peak demand may be reduced [20]. Reducing peak de-
mand preempts the need to invest in additional generation
capacity that gets utilized only during narrow peak periods,
thereby minimizing costs and added environmental pollu-
tion. Studies indicate that even minor shifts in peak de-
mand have major implications in terms of savings for both
consumers and utilities [19]. A Lawrence Berkeley National
Lab report estimates that during 2006-08, the potential size
of peak load reduction from existing DR resources in the US
was as much as 5-5.8% of peak national demand [4]. As per
another study, DR programs alone could achieve up to half
of EU’s 2020 targets concerning energy savings and CO2

emissions [5].
Traditionally, only industrial customers have been partic-

ipating in DR programs. However, facilitating the partici-
pation of residential consumers as well is likely to result in
considerable savings given that this is a growing sector and
accounts for a sizable portion of the total energy consumed.
For instance, in EU-27 nations, the domestic sector con-



sumed 24.6% of total energy in 2007 while the sector grew
by 8% from 1990 and 2007 [9]. Despite the savings possi-
ble through DR, the success of these programs essentially
hinges upon user participation and their timely response to
DR signals. One of the main barriers in involving house-
holds to participate in DR is the lack of systems that can
automatically respond to DR signals [1, 3]. Automating DR
is not straightforward as home appliances must be managed
in accordance with DR signals without compromising the
comfort of consumers. A deep and accurate understanding
of user’s energy consumption patterns in relation to their
regular activities is crucial for automatic DR Systems [11,
7], as well as for undertaking studies that focus on inducing
long-term sustainable behaviors at a societal level [8].

To address this need, we are developing Wattzup, a context-
aware automated DR system. This system, to minimize con-
sumer inconvenience, aims to manage residential loads while
respecting the context1 of residential consumers. In this pa-
per, we present only one component of Wattzup that iden-
tifies active appliances at specific time and appliance level
consumption details using only the aggregated (household
level) consumption data. We also discuss the effectiveness
of load disaggregation techniques when total load data also
includes appliances that are unmonitored even during the
training phase.

The rest of the paper is organized as follows. Section 2
gives an overview of Wattzup. Section 3 describes our ap-
proach for identifying appliance usage from aggregated con-
sumption data and Section 4 presents the evaluation results
of our approach. Finally, Section 5 concludes the paper with
a summary of the results and a discussion on load disaggre-
gation effectiveness.

2. WATTZUP OVERVIEW
The conceptual design of our proposed system, Wattzup, is

shown in Figure 1. There are two major components or pro-
cessing stages in the system. The first component is designed
to recognize and determine which appliances are in use at
a specific time. While this is reasonably simple when all
appliances and circuit breakers have monitoring sensors at-
tached to them, we believe that this needs to also be feasible
in contexts where appliance monitoring sensors are limited
or only aggregate smart meter data is accessible. We then
generate set of patterns that imply the energy/appliance us-
age behavior of the occupants, and record these patterns as
the baseline (normal) patterns and keep them as basic rules
of the system.

The second component focuses on understanding the con-
text that underpins the specified usage pattern. We aim to
extract the correlations between the appliance usage pat-
terns and consumer context such as occupant’s demograph-
ics (e.g. age, gender), external factors (e.g. weather and
temperature), major events (e.g. popular sport matches),
and location information from mobile phones and/or social
media (if available and accessible). A very simple example
is the fact that television usage patterns may differ signifi-
cantly from their normal baseline usage during major sport-
ing events/natural disasters.

Our objective for understanding correlations between de-

1We refer to ’context’ in the pervasive computing sense in-
formation that pertains to the what, where, when and why
of a particular user and her activities [18].
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Figure 1: Watzzup System Overview

mand patterns and context is developing automated DR pro-
grams that can manage loads without inconveniencing con-
sumers. Moreover, such correlations can also be useful for
accurate prediction of residential demands.

3. APPLIANCE USAGE RECOGNITION
Currently we are in the first stage of this project that

focuses on learning the normal patterns of energy consump-
tion. We start this stage by recognizing active and inactive
appliances based on Non-intrusive Appliances Load Moni-
toring (NALM) concept introduced by Hart [10]. Past and
recent NALM works on real and reactive power (macro) data
falls into two categories. The first group of approaches typ-
ically analyzes changes in power to determine which appli-
ance is changing state (e.g. from on to off) [17, 14, 16].
While these approaches give significant accuracy in detect-
ing most consumptive appliances e.g. heating, ventilation
and air conditioning (HVAC) appliances, common problems
arise when there are two or more appliances with similar
energy consumption characteristic [17] and the interval be-
tween two aggregate meter readings is large [14]. The second
group of algorithms disaggregates total load consumption by
analyzing snapshot data [13, 12]. The value of using snap-
shot data is that the accuracy remains similar when data
stream is interrupted or unavailable for a specific interval.
Thus, in this paper, we propose a disaggregation method
based on snapshot data.

Load disaggregation problem is defined as given ȳ be a
discrete sequence of observed aggregate power readings of
n number of individual appliance ȳ = {ȳ1, ȳ2, ..., ȳT }, ȳt =∑n

i=1 y
(i)
t ,i = 1, ..., n, t = 1, ..., T , determine the operational

state/load of each appliance in a specific time ŷ
(i)
t [13]. In

real condition, the total household consumption data ȳ may
include energy consumption from unmonitored household
appliances since appliance level sensors deployment does not
cover all appliances inside the house due to cost and in-
stallation issues. This condition has significantly increased
the challenge of providing high accuracy load disaggregation
models when compared with other research in the area that
assumes that aggregate data is the sum of appliance level
data.

4. EARLY EXPERIMENTS AND RESULTS
Unlike other NALM based systems which use generative

models of energy consumption to determine which appliance
goes on or off, we focus on discriminative approach that pre-



dicts the most likely or possible appliance state configura-
tion from total power consumption in a specific time period
using simple non parametric classification algorithms. In
our model, we first automatically discretize each appliance’s
load y(i) into z states where z ≥ 2, since each appliance has
at least 2 states, on and off. When real power consumption
of an appliance at specific time is 0, we can consider this
appliance is not in use or in off state. So, for any number of

z, we assign all y
(i)
t = 0, y

(i)
t ∈ y(i) as off. We then use EM

algorithm [15] to cluster the non-zero appliance load into z-
1 clusters and label those clusters sequentially based on the
cluster mean. As an example, if z = 3 (on, off, standby), we

assign all y
(i)
t = 0 as off, then we cluster y

(i)
t 6= 0 into two

clusters. For descriptive clarity, a cluster that has highest
mean of power consumption is labelled as on cluster and the
other cluster is labelled as the standby cluster. We keep each
cluster mean as state power demand and use it to recalculate
the appliance power consumption from predicted state.

Having discretized our training data set, we then run kNN
algorithm to build the predictive model. For each aggre-
gate load ȳt in the test data, we find k nearest neighbors
from the training data based on their Euclidean distance of
aggregate load, day and time of the day attributes. Each
neighbor has a combination of appliances’ state as a result
of previous discretization process. We then decide the most
possible state combination from those neighbors based on
the majority/voting approach.

One important point of emphasis is that simple ’Subset-
Sum’ type techniques, where we find the set of appliances
that sum up to the observed consumption, do not work well
on this data set since a large portion of the home energy
consumption is not monitored directly. The primary char-
acteristics of our method that are important to emphasize
are: (i) The discriminative machine learning approach we
use is based directly on historical consumption data which
consists of each monitored appliance’s consumption data and
total household consumption that includes both monitored
and unmonitored appliances energy consumption; (ii) The
method does not directly predict consumption levels, but
activity or state, and then uses historical data to predict
usage level. This seems to improve accuracy substantially
compared to previous approaches that directly estimate con-
sumption levels; (iii) The method is simple and computa-
tionally efficient while offering high enough accuracy for the
next steps of a complete DR system.

To validate our approach two main evaluations have been
performed. Firstly, we identify the accuracy in terms of
identifying state of each appliance based on aggregate load
to measure the performance of the proposed approach in
detecting active and inactive appliances. Secondly, we com-
pare the performance of our approach with other algorithms
that run on similar data set. From the best of our knowl-
edge there are two other approaches that have been tested
on this data set, Kolter and Johson [13] and Parson et al
[16]. Kolter and Johnson implement a generative Factorial
HMM to model and test all appliances within the houses.
Parson et. al. identify most energy consuming appliances
(refrigerator, microwave, and clothes dryer) by implement-
ing unsupervised iterative hidden markov model. Our ex-
periment is similar to Kolter and Johnson’s supervised al-
gorithm, thus we compare our result to their published su-
pervised approach results on the same dataset.

Our approach have been evaluated on the publicly avail-
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Figure 2: State Prediction Accuracy

able REDD data set [13]. The REDD data set contains 6
houses energy consumption data that contains both appli-
ance and total consumption level data. However, the data
is historical and static (there are no updates) and only 4
houses consist of at least two weeks data. In our experiment
we focus on these houses. Over these two weeks data, we
use first week data as training set and second week data as
test set. We aggregate both circuit (appliance) level and
total household consumption data into 10 seconds interval.
The total household load comprises all monitored appliances
energy consumption and additional load of unmonitored ap-
pliances.

The experimental evaluation demonstrates the improve-
ment of accuracy in identifying the appliance states and
predicting the total energy as shown in Figure 2 and Figure
3 respectively. Figure 2 shows our state prediction accu-
racy. Both 2 states discretization and 3 states discretization
achieve around 88% average accuracy on states detection.
This result shows that our proposed algorithm is reasonably
effective in recognizing active (on/standby) and inactive (off)
appliance. Having reasonably good accuracy in predicting
state of appliances, we then recalculate the energy consump-
tion of each appliance based on the predicted states and cal-
culate the accuracy of total energy being correctly assigned.
We use Kolter and Johnson’s [13] performance evaluation
formula to calculate the accuracy.

Acc = 1−

∑T
t−1

∑n
i=1

∣∣∣ŷ(i)
t − y

(i)
t

∣∣∣
2
∑T

t−1 ȳt

As can be seen in Figure 3, our 3 states discretization ap-
proach achieves more than 80% accuracy for each house.
These results compare favorably with Kolter and Johnson’s
supervised approach, which achieves on average 42.7% us-
ing simple means and 64.5% using FHMM [13]. This signifi-
cant improvement in terms of total assigned energy accuracy
is due to the appliance state discretization techniques and
the additional context features (time and day) that we use.
This initial evaluation provides us with evidence that there
is scope to significantly improve on the prediction accuracy
of NALM techniques in a condition where only few number
of the appliance level sensors installed on major appliances.

5. DISCUSSION
This project proposes an automated DR system that com-

bines sensor based appliance data analysis and publicly avail-
able rich context data to maximize the energy savings within
residential premises. In this very early stage of the project,
we propose a very simple discriminative approach to dis-
aggregate energy load which gives fine-grained information
of active and inactive appliances from only total household
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Figure 3: Total Load Accuracy

consumption even when only a subset of appliances are mon-
itored during the training phase. Experiments show that the
proposed approach achieves a reasonably good accuracy in
state prediction and a significant accuracy improvement in
total energy prediction.

In practical deployments, the measured total consumption
will include unmonitored household appliances since appli-
ance level sensors deployment will not cover all appliances,
due to cost and installation issues. Thus, the most impor-
tant challenge to be addressed is ‘Can energy disaggregation
methods be useful even when only a few appliances are mon-
itored even in the training phase?’. If the answer to this
question is ‘Yes’, then it helps attain an understanding of
appliance usage despite the absence or the limited number
of the appliance level sensors and make the case that effec-
tive demand response is possible with just the monitoring of
a few important devices.

Additionally, while most previous attempts at appliance
disaggregation have build generative models of appliance us-
age we see that discriminative methods that attempt to clas-
sify appliances that are on or off directly from total usage are
simple to implement yet very successful in practice as shown
here. This is complementary to the discriminative methods
in [12] where it is assumed that the measured loads form ma-
jority of the total load. They also rely on time series of usage
while we see that even time slot by time slot classification
performs very well in practice.

The final topic of discussion raised by our work is ‘What
is the NALM accuracy required for successful DR systems?’.
The 88% accuracy in state prediction becomes an important
milestone for the subsequent stage of the project. Moreover,
having 82% accuracy in total energy correctly assigned, we
intend to use this aggregation technique for our future work.

Our immediate focus is on analyzing the level of accuracy
required to have reliable DR system, developing the unsu-
pervised load disaggregation method and discovering effec-
tive techniques for leveraging situation awareness through
external/rich context information.
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