
A Hybrid Bayesian Network Modeling Environment

Thuong Doan1, Peter Haddawy1,2, Tien Nguyen1,
and Deva

� � � � � � � � �
1

1 Decision Systems and Artificial Intell igence Lab
(DSAIL)

Department of Electrical Engineering and
Computer Science

University of Wisconsin-Milwaukee
 Milwaukee, WI 53201, USA
E-Mail: thuong@cs.uwm.edu

2Intell igent System Lab (ISL)
Faculty of Science & Technology

Assumption University
Bangkok, Thailand

E-Mail: haddawy@isl.s-t.au.ac.th

Abstract: Bayesian networks are a powerful method for building probabilit y models.
But the formalism does not support incremental model development and reuse of
models. This is partly due to the fact that Bayesian networks require precise
probabili ty values, while incremental model development and model reuse require
the abili ty to abstract probabilit y information. We present a formalism called hybrid
Bayesian networks that combines the traditional formalism with that of qualitative
probabili stic networks [5]. Qualitative probabili stic networks represent probabilit y
information with signs showing directionali ty of influence between random
variables. Our formalism allows a model builder to start by specifying only
qualitative influences and then add quantitative information as it is available and as
time permits. The modeling environment can infer bounds on unspecified
probabili ty values based on those specified and on the type of qualitative influence.
Key words: Bayesian networks, qualitative probabili stic networks, probabili stic
reasoning.

1. Introduction
Bayesian networks have become the most popular
technique for representing and reasoning with
probabili stic information. A Bayesian network is a
directed acyclic graph that represents a probabili ty
distribution. Nodes represent random variables and
arcs represent probabili stic correlation between the
variables. The types of paths (and lack thereof)
between variables indicates probabili stic
independence. Quantitative probabilit y information
is specified in the form of conditional probabili ty
tables (CPT). For each node the table specifies the
probabili ty of each possible state of the node given
each possible combination of states of its parents.
The tables for root nodes just contain unconditional
probabiliti es.

The key feature of Bayesian networks is the fact
that they provide a method for decomposing a
probabili ty distribution into a set of local
distributions. The independence semantics
associated with the network topology specifies how
to combine these local distributions to obtain the
complete joint probabili ty distribution over all the
random variables represented by the nodes in the
network. This has three important consequences.
First, naively specifying a joint probabilit y
distribution with a table requires a number of values
exponential in the number of variables. In systems
in which interactions among the random variables
are sparse, Bayesian networks drasticall y reduce the

number of values required. Second, eff icient
inference algorithms exist that work by transmitting
information between the local distributions rather
than working with the full joint distribution. Third,
the separation of qualitative representation of the
influences between variables from the numeric
quantification of the strengths of the influences has
a significant advantage for knowledge engineering.
In building a Bayesian network model, one can first
focus on specifying the qualitative structure of the
domain and then focus on quantifying the
influences. When finished, one is guaranteed to
have a complete specification of the joint
probabili ty distribution. Many commercial and free
software packages exist for building and
performing computations with Bayesian networks.
For a list of these see [2].

Rather than build an new network from scratch for
each new problem, it is desirable to be able to store
and reuse network fragments, just as programmers
store and reuse code. But while the structure of a
network model that specifies which variables
influence one another may be applicable to multiple
different situations, the exact numerical
probabiliti es will typically be different in different
situations. One option is to store and reuse only the
network structure, but we can typically do better
than this. Often the “directionali ty” of influence
between variables will also be preserved across
various different problems. For example, we may

have a network fragment that models the influence
of rain on the water level in a river – the more rain
the higher the water level, all other factors being
equal. Wellman [5] introduced a representation for
modeling such qualitative probabili stic influences,
called Qualitative Probabili stic Networks (QPN).
In this paper we present an environment that
combines QPNs with quantitative Bayesian
networks, which we call hybrid Bayesian networks.
The idea is to store network fragments with
influences represented qualitatively. When
building a new model, the network fragments are
retrieved and composed together. The model
builder can specify some or all of the entries in the
conditional probabilit y tables. The model building
environment uses the specified qualitative
influences and any specified numeric probabiliti es
to infer constraints on the unspecified entries in the
conditional probabilit y tables. It also checks the
consistency of the specified conditional probabili ty
table entries with the direction of qualitative
influence. As a first step to build such a system, we
present an approach to computing probabili ty
bounds and checking consistency based on the
information of the influence type of a single
connection from a parent node to a child node and
the incomplete data of that CPT. The challenge of
this problem is how we can exploit as much as
possible the incomplete CPT data together with the
influence type to specify reasonably tight bounds
on probabiliti es of the missing CPT data.

2. Theoretical background
Definition 1 (Bayesian network) [3]: A Bayesian
network is a directed acyclic graph of variables
(nodes) with a finite set of mutuall y exclusive states
and connected by directed arcs. To each variable A
with some parents B1, B2,…, Bn, there is attached a
conditional probabilit y table P(A| B1, B2,…, Bn).

Qualitative probabili stic networks are abstractions
of Bayesian networks in which qualitative
influences between nodes are represented as
positive (+), negative (-), and ambiguous (?). The
influences are interpreted in terms of first-order
stochastic dominance (FSD). If F(x) and F’ (x)
denote two cumulative distribution functions, the
we say that F(x) FSD F’ (x) iff F(x) ≤ F’ (x) for all x.

Definition 2 (Qualitative influences) [5]: Let
F(z|xi,y) be the cumulative distribution function of Z
given X= xi and the rest of Z’s parent nodes Y=y.
We say that node X positively influences node Z,
denoted S+(X,Z), iff ∀ xi, xj, y, xi ≤ xj ⇒ F(z|xj,y)
FSD F(z|xi,y). Node X negatively influences node Z,
denoted S-(X,Z), when the direction of stochastic
dominance in the definition is reversed. When
neither of these relationships holds, we say the
influence is ambiguous and denote this as S?(X,Z).

A hybrid Bayesian network is an augmented
Bayesian network with information of qualitative
influences between nodes and the conditional
probabili ty tables of nodes that may contain some
precise probabili ty values and some bounds on
probabili ty values. As an example, suppose the
amount of rain positively influences the water level
of a river, denoted as S+(Rain, Water_Level). We
represent a simple hybrid Bayesian network for this
phenomenon in the Figure 1, where the parent node
Rain positively influences the child node
Water_Level with the connecting arc marked by the
sign +.

Figure 1: A hybrid BN for the positive influence
of Rain on Water_Level.

The variable Rain has four states: Small , Average,
Heavy, and Very_Heavy; the Water_Level variable
three states: Low, Medium, and High, both in
ascending order. A hypothetical incomplete CPT of
the child node Water_Level is shown in the Table 1,
where the missing data are initially represented as
?.

Rain
Water_Level Small Average Heavy Very_Heavy
Low 0.87 ? ? 0.02
Medium ? ? 0.43 ?
High 0.03 ? ? 0.92
Table 1: The partial CPT of Water_Level given
Rain.

3. Algorithm to calculate the
probability constraints

This section presents an algorithm to calculate the
allowable maximum and minimum probabiliti es in
lieu of missing data in the CPT based on the
provided probabiliti es in that CPT and the type of
influence between a parent node A and a child node
B. We derive the computations for positive
influences, S+(A,B); the computations for negative
influences are similar. Let A and B have discrete
states { A1, A2,…, An} and { B1, B2,…, Bm} in the
ascending order, respectively, i.e., A1 ≤ A2 ≤ … ≤
An and B1≤ B2≤ …≤ Bm. From Definition 2 of
qualitative positive influence, we have
P(B≤Bi* |A1)≥ P(B≤ Bi*|A2)≥ ….≥ P(B≤Bi*|An) (1a)
or,
P(B≥Bi* |A1)≤ P(B≥Bi* |A2)≤ ….≤ P(B≥Bi* |An) (1b)
for any Bi* in { B1, B2,…, Bm} .

By convention, we represent the ascending orders
of the parent states A1,…, An in corresponding
CPT’s columns from left to right and child states
B1,…, Bm in corresponding CPT’s rows from top to
bottom.

+
Rain Water_Level

3.1. Calculating minimum values
We divide the minimum constraint computation
into three cases: (1) calculating for the cells in the
first row, (2) for those in the last row, and (3) for
those in middle rows. The 2nd and 3rd have different
ways to estimate missing values.

3.1.1. Computing P(B=B1|Aj*) for the j* th cell i n
the first row where 1≤ j*≤ n
In (1a), let Bi* be B1, the smallest state of B, we
obtain the conditions for the first row of the CPT as
follows:
P(B=B1|A1)≥ P(B=B1|A2)≥ …≥ P(B=B1|An) (2)
Therefore, in order to obtain the possible minimum
value of the missing data at the j* th cell , we simply
scan in the first row of the CPT from the (j* + 1)th

column to the last column (i.e. from left to right). If
we meet any non-missing value, that value is the
minimum constraint of P(B=B1 | Aj*). If we hit the
last column and it is still a missing value, the
minimum value is 0.

3.1.2. Computing P(B=Bm|Aj*) for the j* th cell on
the last row where 1≤ j*≤ n
In (1b), let Bi* sequentially be Bm, Bm-1, …,B1, ∀ Aj

≤ Aj*, we have
P(B ≥ Bm | Aj) ≤ P(B ≥ Bm | Aj*) (3.m)

…
P(B ≥ B1 | Aj) ≤ P(B ≥ B1 | Aj*) (3.1)
⇔ P(B=Bm|Aj*) ≥ P(B=Bm|Aj) (3.m)’
P(B=Bm|Aj*) + P(B=Bm-1|Aj*) ≥ P(B=Bm|Aj) +
P(B=Bm-1|Aj) (3m-1)’
…
P(B=Bm|Aj*) + ∑i=1,m-1 P(B=Bi|Aj*) = P(B=Bm|Aj) +
∑i=1,m-1 P(B=Bi|Aj) (3.1)’
Moving the terms from the left to right hand side,
we obtain
P(B=Bm|Aj*) ≥ P(B=Bm|Aj) (3.m)’ ’
P(B=Bm|Aj*) ≥ P(B=Bm|Aj) + P(B=Bm-1|Aj) -
P(B=Bm-1|Aj*) (3.m-1)’ ’
…
P(B=Bm|Aj*) = P(B=Bm|Aj) + ∑i=1,m-1 (P(B=Bi|Aj) -
P(B=Bi|Aj*)) (3.1)’’
Therefore,
P(B=Bm|Aj*) ≥ Max {
P(B=Bm|Aj), (Term m)
P(B=Bm|Aj)+P(B=Bm-1|Aj)-P(B=Bm-1|Aj*),(Term m-1)
…
P(B=Bm|Aj) + ∑i=k,m-1 (P(B=Bi|Aj) - P(B=Bi|Aj*)),
 (Term k)
…
P(B=Bm|Aj) + ∑i=1,m-1 (P(B=Bi|Aj) - P(B=Bi|Aj*))
 (Term 1)
} ∀ Aj ≤ Aj* (3)
Let rhs[j] be the right hand side (RHS) of (3), the
minimum value of P(B=Bm|Aj*) is

max{ rhs[j]} , 1 ≤ j < j* (4)

Explanation of MinConstraintLastRow: (see Figure
2) We are going to compute P(B=Bm|Aj*) where 1≤
j<j* . The minimum value of P(B=Bm|Aj*) is the
maximum of the RHS’s of the formula (3). A RHS
corresponding to the j th column is represented by
rhs[j].

MinConstraintLastRow(j* : the column number,
cpt[m][n]: CPT)
 Double rhs[j]: right-hand-side of(3) for j th

column (1≤ j < j*).
 Double rhs_temp: temporary value of rhs[j]
during computation.
Begin
For each column from the first to the (j* -1)th do
 (let us call it the j th column)
 If the cell (m,j) is missing then
 rhs[j] = MinConstraint(j,cpt).
 Else
 Begin
 rhs_temp = cpt[m][j];
 sum = rhs_temp;
 For each row from the (m-1)th down to 1st do
 (let us call the i th row)
 If one of two cells (i,j)&(i,j*) is missing
 then break out of this loop.(*)
 If (cpt[i][j] > cpt[i][j*]) then
 rhs_temp=max{ rhs_temp,
 sum+(cpt[i][j]-cpt[i][j*])}
 sum = sum + (cpt[i][j]-cpt[i][j*]);
 Endfor;
 If rhs_temp is out of the range [0, 1] then
 rhs_temp = 0;
 rhs[j] = rhs_temp;
 End;
Endfor;
Return Max{ rhs[j]} with 1 ≤ j ≤ j*-1
End.
Figure 2: The algorithm for calculating the
minimum constraint of a cell at the j*th column
on the last row of a CPT.

During computing, that value is stored temporarily
in rhs_temp. Let us consider the column j. If
P(B=Bm|Aj) is missing in (3), we use the value
MinConstraint of that cell as the value of RHS
corresponding to the column j. We need to call
recursively MinConstraint for that cell . If
P(B=Bm|Aj) is not missing, then, since the
difference of the term (k) and (k+1) in (3) is equal
to P(B=Bk+1|Aj)-P(B=Bk+1|Aj*), we repeatedly
consider the value of the pairs P(B=Bi|Aj) and
P(B=Bi|Aj*) for every row i. The order of
considering is from the row (m-1)th down to the 1st.
For a row i, if one of these two values P(B=Bi|Aj) or
P(B=Bi|Aj*) is missing, we stop computing and take
the value we get so far (rhs_temp) to assign to
rhs[j]. However, since we stop the computation half
way, some situations result in a negative value of
rhs[j]. Thus we need to take the maximum of that

value and 0. If both P(B=Bi|Aj) and P(B=Bi|Aj*)
exist, we compare them.

If P(B=Bi|Aj)>P(B=Bi|Aj*), we take the maximum
between the maximum value we get so far
(rhs_temp) and the current sum. The current sum
corresponds to a line (i th) in (3):
∑t=i-1,m-1(P(B=Bt|Aj)-P(B=Bt|Aj*))+P(B=Bi|Aj)-
P(B=Bi|Aj*).
If P(B=Bi|Aj)≤P(B=Bi|Aj*), the maximum value that
we get so far is still the best. After reaching the 1st

row, we have a RHS value of (3) when working
with the column j and j* . Finall y, the possible
minimum value of P(B=Bm|Aj*) is max{ rhs[j]} ∀1≤j
< j* .

3.1.3. Computing P(B=Bi|Aj*) in a middle row i th

where1≤ j*≤ n, 1<i<m
In (1b), we repeatedly replace Bi* by Bi, Bi-1, ..., B1.
Let S = ∑t=i+1,m (P(B=Bt|Aj)-P(B=Bt|Aj*)), similarly
to 3.1.2, we have
P(B=Bi|Aj*) ≥ Max { P(B=Bi|Aj) + S (i)
P(B=Bi|Aj) + S + P(B=Bi-1|Aj) - P(B=Bi-1|Aj*), (i-1)
…
P(B=Bi|Aj)+S+∑t=1,i-1(P(B=Bt|Aj)-P(B=Bt|Aj*)) (1)
} (5)
Let rhs[j] be the right hand side of (5),
The minimum value of P(B=Bi|Aj*) is max{ rhs[j] }
for all 1 ≤ j < j* (6)

Explanation of MinConstraint: (see Figure 3) The
general idea of this algorithm is mostly the same as
3.1.2, therefore we skip the detailed explanation
due to the space limitation of the paper.
Computation of the maximum values is similar to
computation of the minimum values.

3.2. Validation and complexity of the algorithm
Assume that the value P(B=Bi|Aj*) is missing and its
minimum and maximum values calculated by the
above algorithms are α and β, respectively. The
question is whether any value a such that α ≤ a ≤ β
(*) is a valid value for P(B=Bi|Aj*), i.e. conforms to
the definition of its influence type.

For the proof of the minimum computation of
positive influence, from (*) and (5), we have
a = P(B=Bi|Aj*) ≥ P(B=Bi|Aj) + ∑t=i+1,m (P(B=Bt|Aj) -
P(B=Bt|Aj*))
a = P(B=Bi|Aj*) ≥ P(B=Bi|Aj) + ∑t=i+1,m(P(B=Bt|Aj) -
P(B=Bt|Aj*)) + P(B=Bi-1|Aj) - P(B=Bi-1|Aj*)

…
a = P(B=Bi|Aj*) ≥ P(B=Bi|Aj) + ∑t=i+1,m(P(B=Bt|Aj) -
P(B=Bt|Aj*)) + ∑t=1,i-1(P(B=Bt|Aj) - P(B=Bt|Aj*))
⇔ ∑t=i,m P(B=Bt|Aj*) ≥ ∑t=i,m P(B=Bt|Aj)

…
 ∑t=1,m P(B=Bt|Aj*) = ∑t=1,m P(B=Bt|Aj)
⇔ P(B ≥ Bi|Aj*) ≥ P(B ≥ Bi|Aj)

…

 P(B ≥ B1|Aj*) = P(B ≥ B1|Aj) ∀j, 1 ≤ j < j* (7)
That means a=P(B=Bi|Aj*) satisfies the positive
influence property in formula (1b). For the proof of
the maximum computation, analogously, we obtain
P(B ≥ Bi|Aj*) ≤ P(B ≥ Bi|Aj’)
…
P(B ≥ B1|Aj*) = P(B ≥ B1|Aj’) ∀j’ , 1 ≤ j* < j’ (8)

MinConstraint(i: the row number, j* : the column
number, cpt[m][n]: CPT)
Double rhs[j]: right-hand-side of(5) for j th column.
Double S, rhs_temp: temporary value of rhs[j]
during computation.
Begin
For each column j from the first to the (j* -1)th do
 S = 0;
 For each row t from the (i+1)th to the mth row do
 If the cell (t,j) is missing then
 break out of this loop.
 Else
 If the cell (t,j*) is missing then
 S = S + cpt[t][j]- MinConstraint(t,j* ,cpt);
 Else S = S + cpt[t][j] - cpt[t][j*];
 Endfor;
 If there exists any missing cell (t,j) in the above
loop then rhs[j] = 0
 Else
 Begin
 rhs_temp = cpt[i][j] + S;
 accumulated_sum = rhs_temp;
 For each row t from the (i-1)th down to the 1st

 do
 If one or two cells (t,j),(t,j*) missing then
 break out of this loop.(*)
 If (cpt[t][j] > cpt[t][j*]) then
 rhs_temp = max{ rhs_temp,
 accumulated_sum+(cpt[t][j]-cpt[t][j*])}
 accumulated_sum = accumulated_sum +
 (cpt[t][j]-cpt[t][j*]);
 Endfor;
 If rhs_temp is outranged (0-1) then
 rhs_temp = 0;
 End
Endfor;
rhs_temp = max{ rhs[j] } 1 ≤ j ≤ j*-1;
sum = ∑(t=1,m and t<>i) cpt[t][j*];
If the cell (t,j*) is missing and t > i then
 replace cpt[t][j*] in the sum with
 MinConstraint(t,j* ,cpt). If it is missing but t < i,
 ignore it.
Return max{ 1-sum, rhs_temp}
End.
Figure 3: The algorithm for calculating the
minimum constraint of a cell at the j*th column
on a middle row i th of a CPT.

However, in order to show the existence of P(B ≥
Bi|Aj*) in inequations (7) and (8), we need to check
that in each row i, there exist j and j’ , 1 ≤ j ≤ j* ≤
j’≤ n, such that P(B ≥ Bi|Aj) ≤ P(B ≥ Bi|Aj’). This is

called the consistency of the influence type with the
given data of CPT. In our implementation, we
include a function to check this consistency when
calculating the probabili ty bounds. If the CPT is
inconsistent, the program alerts the user and stops
the bounds computation.

When working with a CPT (m rows, n columns)
and computing the constraints for an arbitrary cell
at the position (i,j), we must go through m/2 rows
and n/2 columns on average. Thus, the complexity
is O(m × n / 4) = O(m × n).

4. Implementation
We have implemented a prototype hybrid Bayesian
network modeling environment in Java. As a
demonstration of this prototype, let us come back to
the example at the end of Section 2 with the data in
the Table 1. For missing data, enter “?” and the
program displays it as the bound [0.0, 1.0] (see
Figure 4).

Figure 4. A single CPT of the Water_Level node
with some missing data.

To calculate the constraints for missing data, we
click the button “Set Constraints” , then we obtain
the resulting CPT in the Figure 5. For example, the
probabili ty of High Water_Level given Heavy Rain
is between 0.03 and 0.55. Note that in this example,
the program has checked the consistency of positive
influence type with the given data and displays the
result on the upper-right corner of the window.

Figure 5. A single CPT of the Water_Level node
with constraints for missing data.

5. Discussion
The notion of qualitative probabili stic networks was
first proposed by Wellman [5] then the algorithm
for propagation of qualitative influences in a QBN
was studied by Druzdzel & Henrion [1]. Recently
Liu & Wellman [4] have formulated an
approximation on Bayesian networks to compute
bounds of cumulative distribution functions by
locally strengthening or weakening selected CDFs.
We have built upon this work to support knowledge
acquisition in hybrid BNs. As the first step, we
have built algorithms and implemented them in a
prototype program to calculate the bounds of
missing data in a single CPT of a child node with a
parent node and its influence type. We are carrying
out research for the case of synergies of any subset
of parent nodes. This task is rather complicated
since we would like to allow the program to
calculate the synergistic CPTs of any combination
of parent nodes with different synergistic type such
as noisy-or, noisy-and, etc..

6. References
[1] Druzdzel, M. J., and Henrion, M.. Eff icient

Reasoning in Qualitaive Probabili stic
Networks, Proceedings of the Eleventh
Conference on Artificial Intelli gence, July
1993.

[2] Haddawy, P.. An Overview of Some Recent
Developments in Bayesian Problem Solving
Techniques, AI Magazine, Special Issue on
Uncertainty in AI, Summer 1999.

[3] Jensen, F.V.. An introduction to Bayesian
Networks, Springer, 1996.

[4] Liu, C.L., and Wellman, M.P.. Using
Qualitative Relationships for Bounding
Probabilit y Distributions, Proceedings of the
Fourteenth Conference on Uncertainty in
Artificial Intelli gence, July 1998.

[5] Wellman, M.P.. Fundamental Concepts of
Qualitative Probabili stic Networks, Artificial
Intelli gence 44:257-303, 1990.

