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Abstract: Bayesian networks are apowerful method for buil ding probability models.
But the formalism does not suppat incremental model development and reuse of
models. This is partly due to the fad that Bayesian networks require predse
probability values, while incremental model development and model reuse require
the ability to abstrad probability information. We present a formalism cdled hybrid
Bayesian networks that combines the traditional formalism with that of qualitative
probabili stic networks [5]. Qualitative probabili stic networks represent probability
information with signs showing diredionality of influence between random
variables. Our formalism allows a model builder to start by spedfying only
qualitative influences and then add quantitative information as it is available and as
time permits. The modeling environment can infer bounds on unspedfied
probabili ty values based on those spedfied and on the type of qualitative influence
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1. Introduction

Bayesian networks have become the most popular
technique for representing and reasoning with
probabili stic information. A Bayesian network is a
direaed agyclic graph that represents a probabili ty
distribution. Nodes represent random variables and
arcs represent probabili stic correlation between the
variables. The types of paths (and ladk thereof)
between  variables indicaes  probabilistic
independence. Quantitative probability information
is gedfied in the form of conditional probabili ty
tables (CPT). For ead node the table spedfies the
probability of ead possible state of the node given
eat possble combination of states of its parents.
The tables for root nodes just contain unconditi onal
probabiliti es.

The key feaure of Bayesian networks is the fact
that they provide a method for decomposing a
probability distribution into a set of locd
distributions. The independence semantics
asociated with the network topdogy spedfies how
to combine these locd distributions to oltain the
complete joint probability distribution over al the
random variables represented by the nodes in the
network. This has three important consequences.
First, naively spedfying a joint probability
distribution with a table requires a number of values
exponential in the number of variables. In systems
in which interadions among the random variables
are sparse, Bayesian networks drasticaly reducethe

number of values required. Seoond, efficient
inference dgorithms exist that work by transmitting
information between the locd distributions rather
than working with the full joint distribution. Third,
the separation of qualitative representation of the
influences between variables from the numeric
quantificaion of the strengths of the influences has
a significant advantage for knowledge engineeing.
In building a Bayesian network model, one can first
focus on spedfying the qualitative structure of the
domain and then focus on quantifying the
influences. When finished, one is guaranteed to
have a womplete gspedfication of the joint
probabili ty distribution. Many commercial and free
software padkages exist for building and
performing computations with Bayesian networks.
For alist of these see[2].

Rather than build an new network from scratch for
ead new problem, it is desirable to be ale to store
and reuse network fragments, just as programmers
store and reuse @wde. But while the structure of a
network model that spedfies which variables
influence one another may be gpli cable to multiple
different  situations, the ead numericd
probabiliti es will typicdly be different in different
situations. One option isto store ad reuse only the
network structure, but we can typicdly do better
than this. Often the “diredionality” of influence
between variables will also be preserved aaoss
various different problems. For example, we may



have anetwork fragment that models the influence
of rain on the water level in ariver — the more rain
the higher the water level, al other factors being
equal. Wellman [5] introduced a representation for
modeling such qualitative probabili stic influences,
cdled Quadlitative Probabilistic Networks (QPN).
In this paper we present an environment that
combines QPNs with quantitative Bayesian
networks, which we cdl hybrid Bayesian networks.
The idea is to store network fragments with
influences represented qualitatively. When
building a new model, the network fragments are
retrieved and composed together. The model
builder can spedfy some or al of the entriesin the
conditional probability tables. The model building
environment uses the spedfied quditative
influences and any spedfied numeric probabiliti es
to infer constraints on the unspedfied entries in the
conditional probability tables. It also chedks the
consistency of the spedfied conditional probabili ty
table etries with the diredion of qualitative
influence Asafirst step to build such a system, we
present an approach to computing probability
bounds and checking consistency based on the
information of the influence type of a single
connedion from a parent node to a child node ad
the incomplete data of that CPT. The dallenge of
this problem is how we can exploit as much as
possble the incomplete CPT data together with the
influence type to spedfy reasonably tight bounds
on probabiliti es of the missing CPT data.

2. Theoretical background

Definition 1 (Bayesian retwork) [3]: A Bayesian
network is a direaded acgyclic graph of variables
(nodes) with afinite set of mutually exclusive states
and conneded by direded arcs. To eat variable A
with some parents By, B,,..., By, there is attached a
conditional probability table P(A| By, B, ..., By).

Qualitative probabili stic networks are astradions
of Bayesian networks in which qualitative
influences between nodes are represented as
positive (+), negative (-), and ambiguous (?). The
influences are interpreted in terms of first-order
stochastic dominance (FSD). If F(x) and F'(X)
denote two cumulative distribution functions, the
we say that F(X) FSD F' () iff F(x) < F’(x) for all x.

Definition 2 (Quadlitative influences) [5]: Let
F(zx,y) be the aumulative distribution function of Z
given X= x and the rest of Z's parent nodes Y=y.
We say that node X positivdy influences node Z,
denoted S'(X,2), iff O x, X, ¥, x < x O F(zx.y)
FSD F(Zx;,y). Node X negativdy influences node Z,
denoted S(X,2), when the diredion of stochastic
dominance in the definition is reversed. When
neither of these relationships holds, we say the
influenceis ambiguous and denote this as S(X,2).

A hybrid Bayesian retwork is an augmented
Bayesian network with information of qualitative
influences between nodes and the wnditiona
probability tables of nodes that may contain some
predse probability values and some bounds on
probability values. As an example, suppcse the
amount of rain positi vely influences the water level
of ariver, denoted as S'(Rain, Water_Levd). We
represent a simple hybrid Bayesian network for this
phenomenon in the Figure 1, where the parent hode
Rain paostively influences the cild node
Water_Leve with the onneding arc marked by the

sign +.
+

Can>
Figure 1: A hybrid BN for the positive influence
of Rain on Water_Level.

The variable Rain has four states: Small, Average,
Heavy, and Very Heavy, the Water_Levd variable
three states: Low, Medium, and High, both in
ascending order. A hypotheticd incomplete CPT of
the dild node Water _Levd is shown in the Table 1,

where the missing data ae initialy represented as
?.

Rain
Water Level [Small |Average |Heavy |Very Heavy
Low 0.87 |? ? 0.02
Medium ? ? 0.43 ?
High 0.03 |? ? 0.92

Table 1: The partial CPT of Water_Level given
Rain.

3. Algorithm to calculate the

probability constraints
This ®dion presents an algorithm to cdculate the
alowable maximum and minimum probabiliti es in
lieu of missing data in the CPT based on the
provided probabiliti es in that CPT and the type of
influence between a parent node A and a child node
B. We derive the mmputations for postive
influences, S'(A,B); the computations for negative
influences are similar. Let A and B have discrete
states {A;, Ay..., A} and {By, B,,..., B,} in the
ascending order, respedively, i.e, Ay <A, £ ... <
A, and B;< Bx< ... B, From Definition 2 of
qualitative positiveinfluence, we have
P(B<Bi |A)= P(B< Bi«|Ay)= ....= P(B<Bi+|A,) (1a)
or,
P(B=B; |A))< P(B=B;: |A)< ....< P(B=B+ |A) (1b)
for any By« in{By, By,..., By}

By convention, we represent the ascending orders
of the parent states Ai,..., A, in corresponding
CPT’s columns from left to right and child states
Bi,..., By, in corresponding CPT’s rows from top to
bottom.



3.1. Calculating minimum values

We divide the minimum constraint computation
into three caes: (1) cdculating for the cdls in the
first row, (2) for those in the last row, and (3) for
those in midd e rows. The 2" and 3¢ have different
ways to estimate missng values.

3.1.1. Computing P(B=By|A.) for the j*" cdl in
thefirst row where 1<j*<n

In (1a), let Bi* be B,, the smallest state of B, we
obtain the nditions for the first row of the CPT as
follows:

P(B=B,|A)= P(B=B,]Az)= ...= P(B=Bj]A,) 2
Therefore, in order to obtain the posshle minimum
value of the missng data & the j*™ cdl, we simply
scan in the first row of the CPT from the (j* + 1)
column to the last column (i.e. from left to right). If
we med any norrmissing value, that value is the
minimum constraint of P(B=B, | Ai+). If we hit the
last column and it is gill a missing value, the
minimum valueis 0.

3.1.2. Computing P(B=B,JA:) for the j*™ cdl on
thelast row where 1<j*<n

In (1b), let B~ sequentialy be By, Bma, ...,Bi, O A
< A, we have

P(B=By|A) < P(B2 By| A (3m)
P(B > BJA) <P(B=B,|A) (3.1)
~ P(B=BA:) = P(B=BJA) E.my
P(B=BylA) + P(B=Bma|A+) 2 P(B=B.|A) +

P(B=Bn1/A) (3m-1)’

P(B=BnlA+) + Yizim1 P(B=BilA:) = P(B=By|A) +
Yi=1m1 P(B=Bi|A) (3.1
Moving the terms from the left to right hand side,
we obtain

P(B=BnlA) = P(B=By|A) (3.m)”
P(B=Bn|A) = P(B=By|A) + P(B=Bn.1|A) -
P(B=BmlAy.) (3m-1)”

P(B=BuA-) = P(B=BylA) + 3ic1ma ( P(B=BJA) -

P(B=Bi|A-) ) 3.
Therefore,

P(B=BJA-) = Max {

P(B=B|A), (Term m)

P(B=BlA)+P(B=Bn1A)-P(B=Bn.1|Ai).(Term m-1)

P(B=BJA) + Sickm1 (P(B=BJA) - P(B=BIA.).

(Termk)
P(B=BJA) + Siesm (P(B=BIA) - P(B=BJA.))

(Term 1)
}OA< A 3

Let rhgj] be the right hand side (RHS) of (3), the
minimum value of P(B=BJA;) is
max{rhsjl}, 1< j<j* 4

Explanation of MinConstraintLastRow: (seeFigure
2) We are going to compute P(B=B|A+) where 1<
j<j*. The minimum value of P(B=B.|A) is the
maximum of the RHS's of the formula (3). A RHS
corresponding to the j™ column is represented by

rhs[j].

MinConstraintLastRow(j*: the column number,
cptim][n]: CPT)
Double rhgfj]: right-hand-side of (3) for j™
column (1< j <j*).
Double rhs_temp: temporary value of rhg[j]
during computation.
Begin
For eac column from the first to the (j*-1)" do
(let us call it thej™ column)
If the cdl (m,j) ismissingthen
rhg[j] = MinConstraint(j,cpt).
Else
Begin
rhs_temp = cpt[m][jI;
sum = rhs_temp;
For ea row from the (m-1)" down to 1¥ do
(let us call thei™ row)
If one of two cdls (i,j)&(i,j*) ismissing
then bre&k out of thisloop.(*)
I (cpt[i][j] > cpt[i][i*]) then
rhs_temp=max{rhs_temp,
sum+(cpt[i][j]-cpt[i][j*])}
sum = sum + (cpt[i][j]-cpt[i][j*]);
Endfor;
If rhs_temp is out of therange [0, 1] then
rhs_temp = 0;
rhy[j] = rhs_temp;
End,;
Endfor;
Return Max{rhg[j]} with1< j < j*-
End.

Figure 2. The algorithm for calculating the
minimum constraint of a cell at thej*th column
on thelast row of a CPT.

During computing, that value is gored temporarily
in rhs temp. Let us consider the wlumn j. If
P(B=Bn|A) is missing in (3), we use the value
MinConstraint of that cdl as the value of RHS
corresponding to the wlumn j. We neel to cdl
reaursively MinConstraint for that cdl. If
P(B=Bn|A) is not missing, then, since the
difference of the term (k) and (k+1) in (3) is equal
to  P(B=By1|A)-P(B=Bw1lA), we repededly
consider the value of the pairs P(B=Bj|A) and
P(B=Bj|A+) for every row i. The order of
considering is from the row (m-1)" down to the 1.
For arow i, if one of these two values P(B=B;|A;)) or
P(B=B;i|A) is missng, we stop computing and take
the value we get so far (rhs temp) to assgn to
rhe[j]. However, since we stop the computation half
way, some situations result in a negative value of
rhg[j]. Thus we ned to take the maximum of that



value and O. If both P(B=Bj|A) and P(B=Bi|A-)
exist, we compare them.

If P(B=B;j|A)>P(B=Bj|A:), we take the maximum
between the maximum vaue we get so far
(rhs_temp) and the current sum. The arrent sum
corresponds to aline (i™) in (3):

2 =i-uma(P(B=BA)-P(B=B(A-)) +P(B=Bi|A)-
P(B=Bi|A-).

If P(B=Bi|A)<P(B=B;i|A+), the maximum value that
we get so far is dill the best. After reading the 1%
row, we have a RHS vaue of (3) when working
with the olumn j and j*. Finaly, the possble
minimum value of P(B=B|A) is max{rhg[j]} 01<j
<j*.

3.1.3. Computing P(B=Bj|A:) in amidde row i"
wherel<j*<n, 1<i<m

In (1b), we repededly replaceB;: by B, B4, ..., B;.
Let S = 3 iisam (P(B=ByA)-P(B=B{A;)), similarly
to 31.2, we have

P(B=Bi|A+) = Max{P(B=Bi|A) + S 0]
P(B=Bi|A) + S+ P(B=Bi.1|A) - P(B=Bi.4A),  (i-1)

l;F;(B=Bi|/s,«)+s+zt:1,i.1<F>(B=B[|/Aﬁ)-F>(B=B[|/>ﬁ*)) o

Let rhg[j] be the right hand side of (5),
The minimum value of P(B=B;|A+) is max{ rhs]j] }
foral 1<j<j* (6)

Explanation of MinConstraint: (see Figure 3) The
general ideaof this algorithm is mostly the same &
3.1.2, therefore we skip the detailed explanation
due to the space limitation of the paper.
Computation of the maximum values is similar to
computation of the minimum values.

3.2. Validation and complexity of the algorithm
Assume that the value P(B=B;|A+) is misgng and its
minimum and maximum values caculated by the
above dgorithms are a and S, respedively. The
guestion is whether any valueasuchthat a<a<
(*) isavdid value for P(B=B;|A-), i.e. conforms to
the definition of its influencetype.

For the proof of the minimum computation of
pasitive influence, from (*) and (5), we have

a = P(B=Bi|A:) 2 P(B=Bj|A) + ¥ =i+1m (P(B=B{A) -
P(B=BiA))

a = P(B=Bj|A:-) 2 P(B=B|A)) + 3 =is1m(P(B=B{A) -
P(B=Bi|A-)) + P(B=B;.1|A)) - P(B=B.1|A)x)

a= P(B=BJA.) = P(B=BJA) + 3 n(P(B=BIA) -
P(B=BJAM)) + 311 (P(B=BYA) - P(B=BJA.))
o Yeim P(B=BIAL) 2 3im P(B=BJA)

5 cim P(B=BIAL) = T 1 P(B=BJA)
= P(B= Bi|Aj*) >P(Bz= Bi|Aj)

P(B=ByA+) =P(B=ByA) Oj, 1< j<j*  (7)
That means a=P(B=Bj|A) satisfies the positive
influence property in formula (1b). For the proof of
the maximum computation, analogously, we obtain
P(B=Bj|A:) < P(B2BlA))

PE> BJA:) =P(B=ByA) Of, 1< j*<j  (8)

MinConstraint(i: the row number, j*: the mlumn
number, cpt[m][n]: CPT)
Double rhgfj]: right-hand-side of (5) for j™ column.
Double S, rhs temp: temporary value of rhg[j]
during computation.
Begin
For ead column j from the first to the (j*-1)" do
S=0;
For ead row t from the (i+1)™ to the m™ row do
If the cdl (t,j) ismissing then
bre& out of thisloop.
Else
If the cél(t,j*) ismissingthen
S= S+ cpt[t][j]- MinConstraint(t,j*,cpt);
Else S= S+ cpt[t][j] - cpt[t][j*];
Endfor;
If there exists any missing cdl (t,j) in the dove
loopthen rhg[j] =0
Else
Begin
rhs_temp = cpt[i][j] + S;
accumulated_sum =rhs_temp;
For ead row t from the (i-1)" down to the 1%
do
If one or two cdls (t,j),(t,j*) missing then
bre& out of thisloop.(*)
If (cpt[t]{i] > cpt[t][j*]) then
rhs_temp = max{rhs_temp,
acamulated_sum+(cpt[t][j1-cptltl[i*D}
acamulated_sum = acaumulated_sum +
(cpt{t][i]-cpt[tli*1);
Endfor;
If rhs_temp is outranged (0-1) then
rhs_temp = 0;
End
Endfor;
rhs temp =max{ rhe[j] } 1<j <j*-1;
sum = Z(tzl,m and t<>i) Cpt[t][j*];
If the cdl(t,j*) ismissingand t >i then
replace @t[t][j*] in the sum with
MinConstraint(t,j*,cpt). If itismissng but t <i,
ignoreit.
Return max{ 1-sum, rhs_temp}
End.

Figure 3: The algorithm for calculating the
minimum constraint of a cell at the j*™ column
on amiddlerow i " of a CPT.

However, in order to show the existence of P(B =
BilA+) in inequations (7) and (8), we neal to chedk
that in ead row i, there existjandj’, 1 <j < j* <
j’< n, such that P(B = Bj|A) < P(B = Bi|A;). Thisis



cdled the consistency of the influence type with the
given data of CPT. In our implementation, we
include afunction to ched this consistency when
cdculating the probability bounds. If the CPT is
inconsistent, the program alerts the user and stops
the bounds computation.

When working with a CPT (m rows, n columns)
and computing the constraints for an arbitrary cdl
at the position (i,j), we must go through m/2 rows
and n/2 columns on average. Thus, the complexity
isO(mxn/4)=0(mxn).

4. Implementation

We have implemented a prototype hybrid Bayesian
network modeling environment in Java. As a
demonstration of this prototype, let us come bad to
the example & the end of Sedion 2 with the data in
the Table 1. For missng data, enter “?’" and the
program displays it as the bound [0.0, 1.0] (see
Figure 4).

k23 Node properi _Leve I[=[F| |
Ei Single CPT of Water_Level !ﬂm
Parentnode:  Rain Qualitative Influence: Positive
Order! State ! Srmall Average Heawy Wery_Heaw
0|Low [n87 [0.0,1.0] [0.0,1.0] 0.0z -
i 1{‘Mgmum 00,10 10.0,1.01 0.43 10.0,1.0]
2/ High |0.03 [0.0,1.0] [0.0,1.0] 082
L4l _>l_I

“SeiGensianis | View Canstraints |
Caltulate ths constraint values
Cancel Help

Figure 4. A single CPT of the Water_L evel node
with some missing data.

To cdculate the mnstraints for missing data, we
click the button “Set Constraints’, then we obtain
the resulting CPT in the Figure 5. For example, the
probability of High Water_Leve given Heavy Rain
is between 0.03 and 0.55. Note that in this example,
the program has checked the mnsistency of paositive
influence type with the given data and displays the
result on the upper-right corner of the window.

[E Single CPT of Water_Level _ O] x]
Parentnode;  Rain Gualitative Influence: Pogilive == Consistent.
Qrder State Small I Average I Heaw Very_Heavy
0|Low 0.87 [0.02, 0.87] 10.02, 0.87) 0.02 -
1| Medium 0.1 [[0.0, 043 [0.43 0.06
2[High 0.03 [[0.03, 0.55] [10.03, 0.55] 002
il JJ
CEetneane d| | viewcanstais |
[ | e | Heln |

Figure 5. A single CPT of the Water_Level node
with constraintsfor missing data.

5. Discussion

The notion of qualitative probabili stic networks was
first proposed by Wellman [5] then the dgorithm
for propagation of qualitative influences in a QBN
was gudied by Druzdzd & Henrion [1]. Recently
Liu & Welman [4] bhave formulated an
approximation on Bayesian networks to compute
bounds of cumulative distribution functions by
locdly strengthening or wegkening seleded CDFs.
We have built upon this work to suppart knowledge
aqquisition in hybrid BNs. As the first step, we
have built algorithms and implemented them in a
prototype program to cdculate the bounds of
missing data in a single CPT of a dnild node with a
parent node and its influencetype. We ae carying
out reseach for the cae of synergies of any subset
of parent nodes. This task is rather complicaed
since we would like to alow the program to
cdculate the synergistic CPTs of any combination
of parent nodes with different synergistic type such
as noisy-or, noisy-and, etc..
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