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ABSTRACT
The Indian electricity sector, despite having the world’s fifth
largest installed capacity, suffers from a 12.9% peaking short-
age. This shortage could be alleviated, if a large number of
deferrable loads, particularly the high powered ones, could
be moved from on-peak to off-peak times. However, con-
ventional DSM strategies may not be suitable for India as
the local conditions usually favor only inexpensive solutions
with minimal dependence on the pre-existing infrastructure.
In this work, we present nPlug, a smart plug that sits be-
tween the wall socket and deferrable loads such as water
heaters, washing machines, and electric vehicles. nPlugs
combine real-time sensing and analytics to infer peak pe-
riods as well as supply-demand imbalance and reschedule
attached appliances in a decentralized manner to alleviate
peaks whenever possible. They do not require any manual
intervention by the end consumer nor any enhancements to
the appliances or existing infrastructure. Some of nPlug’s
capabilities are demonstrated using experiments on a com-
bination of synthetic and real data collected from plug-level
energy monitors. Our results indicate that nPlug can be an
effective and inexpensive technology to address the peaking
shortage.

Categories and Subject Descriptors
B.m [Hardware]: Miscellaneous; E.4 [Data]: Coding And
Information Theory; F.m [Theory of Computation]: Mis-
cellaneous; I.6 [Computing Methodologies]: Simulation
And Modeling

General Terms
Algorithms, Design, Experimentation

Keywords
Smart Plug, Demand Response, Demand Side Management,
Peak Loads, Scheduling, Multiple Access
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1. INTRODUCTION
As of November 2011, the Indian electricity sector, despite

having the world’s fifth largest installed capacity of 185.5
GW, suffers from a 12.9% peaking shortage [7]. The situa-
tion could worsen with the current trends in population and
income growth, industrialization, and urbanization. Elec-
tricity consumption is expected to increase substantially in
the coming decades as well [10].

Considering that electricity cannot easily be stored in large
scale, peak shortage can be alleviated by increasing supply
or by reducing demand. Supply can be increased through
the use of“peaker”power plants that operate on fast-starting
fuels such as diesel or open-cycle gas/hydro turbines. Peaker
plants operate only during the peak, for a small fraction of
time, so their electricity is inherently expensive. It is es-
timated that if India were to add peakers to the existing
generation portfolio, the average supply cost might increase
by over 35% [19].

Clearly, there is a significant role and potential for demand
side management (DSM) programmes in India. The Gov-
ernment of India, through new Energy Conservation legisla-
tion, is also seeking to implement a host of such programmes
within the country [13]. However, conventional DSM strate-
gies may not be suitable for India as the local conditions
usually favor only inexpensive solutions with minimal de-
pendence on the pre-existing infrastructure [20]. One of the
disadvantages of existing DSM strategies such as direct load
control is their centralized nature which requires communi-
cation between appliance-level monitors and a central con-
troller at the utility. Since monitors require communication
capabilities, it increases their cost. More importantly, this
requires a communication infrastructure between the utility
and appliances which is expensive to deploy. Although cel-
lular communication is inexpensive in India, existing infras-
tructure will need a capacity upgrade to support household
appliances as well. An Internet based solution may not be
widely applicable as only 11.3% of Indian households have
access to Internet [9].

In this paper, we present a decentralized DSM system
based on smart plugs called nPlugs that “sit” between de-
ferrable loads and wall sockets. An nPlug senses line volt-
age and frequency to infer the load level and supply-demand
imbalance in the grid respectively. It processes the sensed
data using simple data mining algorithms to identify the
peak and off-peak periods of the grid. It runs the attached
load(s) during off-peak periods as much as possible without
violating user-specified constraints. To ensure grid and ap-
pliance safety, it avoids scheduling appliances during periods



of supply-demand imbalance. Furthermore each nPlug runs
a decentralized load rescheduling algorithm that contributes
to peak load reduction by distributing the loads over time.

The key contributions of this paper are:
• Design of a low-cost standalone smart plug that can

schedule appliances during off-peak periods. It nei-
ther requires any communication infrastructure nor
any changes to the appliance or grid. It can work with
common deferrable loads such as water heaters, wash-
ing machines, and electric vehicles.
• Design of simple and effective data mining algorithms

to determine peak and off-peak periods as well as sup-
ply demand imbalance, that can run on low-cost mi-
crocontrollers.
• Design of novel decentralized load scheduling algorithms

that contribute to peak load reduction and load-leveling
by spreading the joint load efficiently under varying
grid load conditions.
• Experimental evaluation of above-mentioned algorithms.

The rest of the paper is organized as follows. Section 2
presents the theoretical basis for inferring grid load and
supply-demand imbalance by sensing line voltage and fre-
quency. The details of nPlug hardware design is described in
Section 3. The data mining algorithms used to identify peak
and off-peak periods as well as load scheduling algorithms
used by nPlugs are presented in section 4. Experimental
evaluation of our algorithms is presented in Section 5. Sec-
tion 6 presents related work and finally section 7 concludes
with a discussion about future work.

2. POWER SYSTEMS BACKGROUND
This section uses the power systems theory to explain why

the line voltage and frequency measured in a household can
serve as good indicators of grid load and supply-demand
imbalance respectively.

Figure 1: A two-bus power system

2.1 Inferring grid load from voltage
Figure 1 shows a simple “power system” wherein a load

is connected to a generator using a transmission line. ẼS
is the generator voltage, ṼR is the load voltage, Z̃LN is the
transmission line impedance, and Z̃LD is the load impedance
(all quantities are vectors). We will now see how the magni-
tude of load voltage VR decreases with increasing load. The
current flowing through the line and load, Ĩ is given by

Ĩ =
Ẽs

Z̃LN + Z̃LD

where Z̃LN = ZLN∠θ = ZLNcosθ + jZLNsinθ

Z̃LD = ZLD∠φ = ZLDcosφ+ jZLDsinφ

Here θ is phase angle between reactive and resistive com-
ponents of the line impedance while φ is the phase angle

between the load current and voltage. Now the magnitude
of current I is given by

I =
ES√

(ZLNcosθ + ZLDcosφ)2 + (ZLNsinθ + ZLDsinφ)2

Therefore the magnitude of load voltage VR is:

VR = ZLD × I

=
ZLD × ES√

(ZLNcosθ + ZLDcosφ)2 + (ZLNsinθ + ZLDsinφ)2

(1)

Since the source voltage ES and transmission line impe-
dance ZLN∠θ are generally constant, the load voltage VR
is essentially a function of the magnitude of load impedance
ZLD and the power factor cosφ. To minimize reactive power
consumption, appliances are usually designed to have high
power factor (0.9 to 1). Thus from Eq.(1) we see that the
load voltage VR is dominated by the magnitude of load
impedance ZLD. As the load increases (i.e. impedance
decreases), the load voltage VR decreases and vice versa.
Therefore as the collective load on the grid increases, the
corresponding voltage drop can be sensed at households. In
section 5, we shall plot the variation in voltage VR measured
at a household and show how it drops during peak hours.

Figure 2: Load-frequency control characteristics

2.2 Detecting supply-demand imbalance from
frequency

Conventionally, the grid frequency is regarded as an indi-
cator of imbalance between generation and demand. During
imbalance, the output of each generator is automatically
adjusted to meet the demand. This changes the system fre-
quency according to the load-frequency characteristics of the
generators as shown in Figure 2. The plot shows that when
the generation is higher than Pset (the generation needed to
support a fixed load), the frequency drops. On the other
hand, if it is less than Pset, the frequency shoots up.

Although frequency is a good indicator of imbalance, our
measurements show that it varies continuously and may not
be sufficient to identify grid load accurately. One possible
reason for this is that in anticipation of increased demand,
the generation is ramped up to keep the frequency close
to nominal levels. Even though the power systems theory
explained in this section is well-known, to the best of our
knowledge, none of the existing systems learn the voltage
and frequency patterns to derive load schedules that can
help reduce peak loads.

3. NPLUG HARDWARE DESIGN
Figure 3 shows an initial prototype of nPlug. The hard-

ware design is based on cost-performance trade-offs.



Figure 3: nPlug Prototype

As shown in Figure 4, the hardware modules (drawn in
blue) of nPlug are user controls, grid sensors, relay, real
time clock and power supply.
• User Interface

nPlug is equipped with buttons for entering schedul-
ing preferences and for overriding nPlug’s scheduling
decisions, and a 32-character (16x2) LCD.
• Controller, Memory and Storage

The current design uses a Microchip PIC24FJ128GA010
16 bit microcontroller. This 4MIPS controller has 128KB
of Program Memory, 8KB of RAM and a SPI flash
memory interface. A 4 Mb Flash memory with SPI
Interface is used to store the end user preferences, the
sensing history as well as the outputs from the learning
and scheduling modules
• Voltage Sensing

Voltage sensing is achieved with a resistive divider
(built with 1% tolerance resistors) between phase and
neutral. The divider is sized in such a way that the
dynamic range of microcontroller’s Analog to Digital
Converter (ADC) can cover the input voltage range
(110 V - 350V) 1. Since nPlug is only required to iden-
tify voltage changes due to peak demand, the mea-
surement must be accurate between 185 V and 250
V (≈ ±10% of nominal voltage). Voltage calibration
at the lower limit of decision making, at around 185V
addresses ADC resolution issues, providing an overall
accuracy better than 99% after calibration.
• Frequency Sensing

Frequency is sensed using a current-limiting resistor di-
rectly connected from the phase to the microcontroller
input. Frequency is determined by counting the num-
ber of zero-crossing positive transitions that occur in
one second.
• Real Time Clock (RTC)

Scheduling decisions are based on the accuracy of clock.
Since there is no network interface for a nPlug to syn-
chronize its internal clock with an accurate source of
time, an accurate yet power-efficient RTC (DS1307)
with battery backup (coin cell - CR 2032) is included
onboard.

4. NPLUG SOFTWARE COMPONENTS
Figure 4 shows the high level architecture of an nPlug.

An nPlug has four software components: (i) UI manager,
(ii) Data manager, (iii) Analytics module, and (iv) Load

1In India, we have observed line voltages fluctuating between
150 V to 300 V.

Figure 4: nPlug: System Overview

scheduler. The following sections explain the functionality
of each component.

4.1 UI Manager
The UI Manager accepts three user-specified constraints:

1.Earliest start time:- the earliest time at which an appli-
ance can be switched on; 2.Latest end time:- the latest time
at which the appliance must finish running; and 3.Dura-
tion:- the duration for which the appliance must be pow-
ered. For example, a residential consumer who leaves for
work at about 8 AM may specify that her insulated water
heater must be run for 30 minutes between 4 AM and 7 AM.

4.2 Data Manager
The data manager works as an interface between the hard-

ware sensors and storage. nPlugs sense the grid at regular
time intervals to measure line voltage and frequency . The
sensed data is preprocessed and saved in the data storage
for analysis by the analytics module. Due to memory and
processing constraints of nPlug hardware, there are limita-
tions on the data volume that it can handle. Therefore the
data manager compresses the sensed data prior to storage.

The data is compressed using the Piece-wise Aggregate
Approximation (PAA) technique [12] that is simple enough
to compute even on a microcontroller. PAA compresses the
sensed data by segmenting the data sequence into fixed-
length sections and calculating the mean value of these sec-
tions. Given a time series V with n data points, V =
{v1, v2, . . . , vn}, PAA divides the series into the segments of
length w and creates a compressed series V ′ = {v′1, v′2, . . . ,
v′m} of length m = n

w
, where

v′i =
1

w

i×w∑
j=(i−1)×w+1

vj ∀i ∈ {1 . . .m}

Thus PAA compresses the original data by a factor of w.
PAA attempts to preserve the similarities in the original
time series and allows data analysis on the compressed rep-
resentation instead of the original. Furthermore, PAA sup-
ports stream processing that is beneficial in the resource-
constrained environments such as nPlug. In nPlug, we use
w = 300 that provides sufficient dimensionality reduction



and still retains granular (5 minutes interval) information
for further data analysis. Figure 5 shows the voltage time
series measured at an indian household for a day at every
second (blue) and the corresponding PAA compressed time
series (red).

4.3 Analytics
The analytics module uses the sensed voltage and fre-

quency data to identify (i) peak and off-peak periods and
(ii) situations of supply-demand imbalance.

4.3.1 Inferring peak and off-peak periods
nPlugs learn the peak and off-peak periods of the power

grid by analyzing the voltage time series data collected and
stored by the data manager. This information is then used
to make scheduling decisions for the deferrable load attached
to the nPlug.

Figure 5: Sensed voltage time series (in blue), with PAA
data compression (in red) and the grid load pattern (in
green).

The peak and off-peak periods are identified using two
steps. Firstly, the stored PAA data is transformed into a
more meaningful symbolic representation i.e. low, medium,
or high load by using an approach similar to Symbolic Aggre-
gate Approximation (SAX) [12]. The SAX representation is
used when the time series exhibits a Gaussian distribution.
In order to discretize/label a time-series with k alphabets,
the SAX approach defines k−1 break points β1, β2, . . . , βk−1

in the Gaussian curve producing k equal-sized areas under
the curve. All values within an interval (βi, βi+1) are coded
with the symbol corresponding to the interval. However the
voltage time series does not follow a Gaussian distribution
and yields a distribution that is skewed towards one side.
Therefore we use domain knowledge and identify lower and
upper break-points using the following heuristic:

V` = min(V ′) + 0.3× (max(V ′)−min(V ′))

Vu = min(V ′) + 0.7× (max(V ′)−min(V ′))

Thus values less than or equal to (≤) V` are classified as
high load level, greater than or equal to (≥) Vu as low load
level, and the values in between as medium load level. The
resulting three-alphabet time series is called as the grid load
pattern V̄ . In figure 5, the grid load pattern is shown using
the green color. The dotted lines in the figure indicate the
two break points V` and Vu.

Let V̄ 1, ..., V̄ c denote the grid load pattern for previous c
days. In the second step, a median grid load-pattern V̂ for
a 24-hour period is computed by considering the grid-load
pattern of previous c days, where each entry at time t is

the median of previous c entries at the same time, that is
v̂t = medianci=1(v̄it). All times periods of high load in the
median grid load pattern are regarded as peak periods and
the balance as off-peak periods.

4.3.2 Inferring supply-demand imbalance
To ensure grid and appliance safety, nPlugs avoid schedul-

ing appliances during periods of supply-demand imbalance.
Unlike peak load, the supply-demand imbalance situation
does not repeat periodically every day. The imbalance is
mostly due to unplanned or sudden change in demand or
supply and can be detected by using the line frequency, as
discussed in Section 2. nPlug learns the normal operating
range of grid frequency by analyzing the sensed frequency
data and identifies the imbalance as an outlier. We use the
2-SD (two standard deviation) statistical test [5] to compute
the thresholds of normal operating frequency. The lower and
upper operating thresholds, f` and fu, are computed as:

f` = fµ − 2× fσ
fu = fµ + 2× fσ

where fµ and fσ are the mean and standard deviation of
sensed frequency data. Since mean and standard deviation
can be computed in an online manner on a microcontroller,
it is not required to store the entire frequency time series
data. In order to reduce sensitivity to the extreme outliers
that can change fµ and fσ, values beyond 3-SD are discarded
from computations. At every sampling time interval, nPlug
senses the line frequency, ft, and if it is less than f`, it
is identified as the situation of supply demand imbalance.
Otherwise, f` is updated by using ft. Figure 6 shows the
frequency time series along with the thresholds f` and fu.

Figure 6: Sensed frequency time series for a day at a house-
hold. The mean, fµ, and 2-SD operating frequency thresh-
olds, f` and fu, are indicated using the solid and dashed
lines respectively.

4.4 Scheduling
This section discusses various strategies used by nPlugs to

schedule deferrable loads by taking into account user speci-
fied constraints as well as grid load conditions. The schedul-
ing algorithms used by nPlugs contribute to peak load re-
duction and load-leveling without any centralized control.

An nPlug receives the earliest start time St, latest end
time Et, and the operational duration d of the appliance
from the end user. The time between St and Et is treated as
divided into discrete time intervals each of width τ . Let n =
(Et − St)/τ be the total number of time slots and D = d/τ
be the number of contiguous slots needed by the appliance
to finish work (loads are assumed to be non-splittable). We



now discuss three scheduling schemes that may be used by
nPlugs: (i) Off-peak scheduling, (ii) Randomized scheduling,
and (iii) GSMA Scheduling.

4.4.1 Off-peak Scheduling
This is a plain vanilla scheduling scheme wherein an nPlug

attempts to avoid peak time intervals if possible. As dis-
cussed in section 4.3.1, nPlugs learn the peak time intervals
adaptively by sensing the grid. Hence the set of feasible start
times to schedule the appliance are all slots ∈ [St, Et − D]
excluding the set of peak time slots, where the device can be
run for D continuous slots. The nPlugs use a simple rule-
based approach wherein the appliance is scheduled at the
earliest possible time slot that provides minimum overlap
between the operational slots and the peak time slots.

4.4.2 Randomized Scheduling
Although Off-peak scheduling is useful and easy to im-

plement, it may cause coordinated peaking during off-peak
hours if several nPlugs use the same rule to shift loads to
common time slots. Randomized scheduling attempts to dis-
tribute the loads uniformly across time. Each nPlug picks
a slot uniformly at random among all slots ∈ [St, Et − D]
and schedules the appliance at the start of the slot. Peak
time slots may also be excluded if necessary. Given suffi-
cient number of time slots, randomized scheduling yields a
uniform demand distribution across the off-peak slots and a
commensurate reduction in the peak load.

The performance of randomized scheduling can be seen
by comparing the loads introduced by both randomized and
optimal scheduling schemes over time. Let m be the total
number of all customer appliances that need to be scheduled
between St and Et and ` be the load introduced by each
appliance. An optimal scheme will schedule loads back-to-
back and introduce a constant load of µ∗ = m

(n/D)
` = mD`

n

on the grid during each time slot between St and Et.
For the randomized scheme above, appliances start in slots
∈ [1, n − D] uniformly at random. Let xjt = 1 if the jth
appliance starts in the time slot t, 0 otherwise. Therefore
Pr(xjt = 1) = E[xjt ] = 1/(n − D). Let Lt be the total load
introduced at any time slot t, ∀t > D.

Lt = `

t∑
i=t−D

m∑
j=1

xji ∴ µt = E[Lt] = `

t∑
i=t−D

m∑
j=1

E[xji ] =
mD`

n−D

The random load Lt and its average µt can be compared by
using Chernoff bound. For δ ≥ 0,

Pr(Lt > (1 + δ)µt) <
( eδ

(1 + δ)(1+δ)
)µt

The above probability decreases exponentially with number
of appliances. For e.g., if m > 50, even for δ = 0.2, it
hits 0. This implies that Lt ≈ µt. µt in turn is close but
slightly larger than µ∗ = µt(1−Dn ). Therefore for smallD/n,
the difference between randomized and optimal scheduling
is small.

4.4.3 GSMA (Grid-sense multiple-access)
Both off-peak and randomized scheduling schemes above

help reduce peak loads. However they cannot respond to
fluctuations in demand or supply since they are agnostic to
the running load in the grid. In gsma-scheduling, which is
inspired from multiple-access protocols in networks, multiple

nPlugs continuously sense the grid and attempt to acquire
service in the presence of varying load. The nPlugs use
voltage sensing to determine if the load on the grid is low
or high (i.e. if spare capacity is available or not). If the
sensed voltage is sufficiently high, the appliance is switched
on, otherwise the nPlugs back-off and attempt to schedule
the appliance at a later stage. The length of each time slot
τ is assumed to be long enough so that if appliances are
switched on or off in the previous time slot, the altered
grid capacity can be sensed in the next slot.

Algorithm 1 presents the pseudocode of gsma-based prob-
abilistic negative linear back-off (pnlb) algorithm used by
the nPlugs. In pnlb, the contention between multiple nPlugs
is resolved in two steps. Firstly, if at time t, an nPlug wishes
to sense the grid, it uses a contention window of length wc(t)
and senses the grid at time slot t+ r where r is chosen uni-
formly at random ∈ [0, wc(t)−1]. Secondly, after sensing the
current voltage vc during a time slot, each nPlug switches on
the appliance with a probability p that is proportional to the
currently available grid capacity. wc(t) and p are given by
Eq.(2) where V` and Vu are the safe operating voltage thresh-
olds of the grid inferred from the sensed data (section 4.3.1).
The first step mimics the behavior of the optimal schedul-
ing scheme (section 4.4.2) and the second step ensures that
users react to varying grid load whenever possible.

Algorithm 1 Probabilistic Negative Linear Back-off (pnlb)

Input: St, Et, τ , d, Vu, V`, f`
1: n = (Et − St)/τ , D = d/τ , t← 0
2: if t ≥ n−D goto step 15
3: wc ← n−t

D
% set the contention window

4: r ← randint(0, wc − 1)
5: t← wait(r, t) % wait for r time slots
6: (vc, fc)← sense % sense the grid voltage and frequency
7: if (vc < V`) then
8: p← 0
9: else if (vc > Vu) then

10: p← 1
11: else
12: p← (vc − V`)/(Vu − V`)
13: end if
14: if rand(0, 1) < p and fc > f` then
15: switch(on) % acquire service with probability p
16: t← safewait(D, t) % switch on for D time slots
17: switch(off); exit
18: else
19: t← wait(1, t); goto step 2

20: end if

wc(t) = max
{

1,
n− t
D

}
, p =

{ 0 if vc < V`
1 if vc > Vu
vc−V`
Vu−V`

otherwise
(2)

To understand pnlb, observe that given n slots and m ap-
pliances, the minimum number that need to use the grid in
each slot so that all finish on time is k = m

(n/D)
. If the load

on the grid is high in the first few slots and low later, then
< k can use the grid at first and > k later. When the al-
gorithm starts, the contention window wc = n/D, so that
k = m/wc nPlugs attempt to acquire service in the first slot
on average. If the grid capacity is high so that p ≈ 1, then
about k will begin service. If the capacity continues to re-
mains high, about k more will acquire service in the next
slot. If the capacity decreases, then m′ = k(1 − p) users
may fail and use a smaller contention window w′c = n′/D,



so that m′/w′c will attempt to acquire service in a future
slot. As time progresses wc gradually decreases so that the
remaining users sense the grid at the right rate to finish on
time. If an appliance has failed to acquire service in all slots,
it is switched on before its finish time. After an appliance
is switched on, nPlugs use “safewait” where they sense the
grid voltage and frequency regularly and if necessary switch
off the appliance to ensure grid reliability.

4.4.4 Performance of GSMA scheduling
pnlb can be regarded as variant of “gsma/oa(overload

avoidance)”along with specified service deadlines, i.e. nPlugs
acquire service at a certain rate in order to avoid overload
whenever possible, as well as try to finish on time. Also
during safewait state, they relinquish service if necessary to
ensure grid reliability. However nPlugs do not proactively
use any overload-detection(od) protocol to actively drop-off
in case they exceed capacity after acquiring service. The
capacity can exceed even with oa in place due to the follow-
ing reasons: Firstly, when nPlugs attempt to acquire service
with a certain probability, the random number of these that
actually acquire service may be more than the average. Sec-
ondly, since it is hard for nPlugs to determine in advance
the voltage drop that will result from their appliance, the
cumulative load introduced by nPlugs that actually acquire
service may exceed capacity of the grid. The benefit of an
od-protocol is that it can allow only some nPlugs to drop-off
instead of all, to reach the operating capacity.

In order to understand the performance of pnlb and gen-
eral gsma-based variants for demand dispatch, we now relax
the requirement that appliances need to be serviced before a
deadline and study the asymptotic performance of two best-
effort gsma variants: (i) pj-persistent gsma, and (ii) (pj ,
p`)-persistent gsma. We assume that the system has a total
capacity to serve about k nPlugs(appliances) simultaneously
and a total of m(t) nPlugs contend for service at any time
t. We assume that nPlugs can sense the running capacity
of the system c(t), that is the number of nPlugs currently
being serviced.

The pj-persistent gsma follows oa as in pnlb. At each
time slot, after sensing that the system has free space, un-
served nPlugs attempt to acquire service with probability
pj . If successful, they get served for a fixed number of slots
and leave the system. The (pj , p`)-persistent gsma follows
both oa and od. As before, at each time slot, after sensing
that the system has free space, unserved nPlugs attempt to
acquire service with probability pj . If successful however,
they enter a ‘temp’ state and begin to receive service. At
each time slot, the ‘temp’ nPlugs sense the grid load to check
if the current capacity is ≤ k. If so, they all move to ‘joined’
state where they continue to receive service until finished.
If not, each ‘temp’ nPlug leaves the system with probability
p`. Note that both protocols are fair and do not prioritize
nPlugs.

It is not hard to see that at any time t, the optimal value
of pj(t) = {k − c(t)}/m(t). Similarly, the optimal leaving
probability for ‘temp’ nPlugs is p`(t) = {c(t) − k}/c`(t),
where c`(t) denotes the number of ‘temp’ nPlugs in the sys-
tem. Figure 7 shows the asymptotic performance of both the
protocols as a function of offered load, with optimal values
of pj and p`. The performance is measured using two met-
rics: (i)Throughput which gives the ratio of capacity used
for service excluding any excess, over the capacity used by

the optimal scheme and (ii)Overload which gives the ratio
of excess capacity used over the capacity used by the op-
timal scheme. We see that the asymptotic throughput of
both the protocols reaches close to 90%. As expected, the
pj-persistent protocol yields a slightly larger overload and
hence a slightly better throughput. The plot shows that by
choosing right values pj and p`, the performance of decen-
tralized scheduling schemes such as pnlb can be made close
to that of centralized ones. Future work will convert the
persistent gsma protocols above into those that use a vary-
ing contention window so that optimal values of pj and p`
can be chosen in an automated manner.
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Figure 7: Asymptotic performance of pj-persistent and
(pj , p`)-persistent schemes for demand dispatch

Differences with networking protocols The above
protocols differ from csma protocols used by the mac-layer
to share a communication channel in the following way. In
networks, if more than one node attempts to acquire service,
all the nodes fail due to a collision. However for a grid that
can serve about k appliances, if k + δ acquire service, then
some of the δ users can drop-off while the others can continue
running.

5. EVALUATION
In this section, we present the experimental evaluation

of the nPlug algorithms. For this evaluation, we use data
from an ongoing project [4], where plug-level energy mon-
itors have been instrumented in a few homes in Bangalore
and Chennai in India in order to collect the consumption
profiles of household appliances. In addition to reporting
the energy usage, these monitors also report the line voltage
and frequency every second. This time series is used by the
analytics module to infer peak periods and detect supply-
demand imbalance. We use three months (October 2011 to
January 2012) of voltage and frequency time series data in
our experiments.

5.1 Inferring peak and off-peak periods
Figure 8(top) plots seven different voltage time series cor-

responding to seven days, as sensed by a smart plug at a
household for a week. The plot shows that (i) the line volt-
age varies over a wide range from 218 to 250V and (ii) the
voltage time series exhibits a similar trend every day with
some differences. The voltage remains high at night when
the load on the grid is low. It decreases after about 6AM in
the morning when appliances are typically switched on. The
voltage decreases during the day mostly remaining within
a range and decreases further in the evenings after about
6PM when people generally return from work and electric-
ity is used for lighting and other appliances. This shows that
voltage could be a good indicator of the load in the grid.



Figure 8: Voltage time series for 7 days (top) at an Indian
households and the inferred grid load pattern (bottom)

Figure 9: Histograms of voltages at 7:00 PM (left, peak) and
3:00 AM (right, off-peak)

Figure 8(bottom) plots the corresponding median grid
load pattern that is inferred by the analytics module af-
ter the voltage time series is compressed using PAA (sec-
tions 4.2 and 4.3.1). The voltage values between V` = 228V
and Vu = 238V are classified as medium load, while those
below and above are classified as high and low load respec-
tively. The time period from 6:45 to 8:30PM is classified as
one of the peak periods while 10:30PM to 6AM is classified
as an off-peak period.

In order to determine if the inferred peak period is indeed
a period when the load on the grid is high, we compare the
voltage-based inference with the grid load reports published
by the Southern Regional Load Despatch Center (srldc) in
India [18]. According to these reports, the evening peaks
in south India occur at about 7:00PM and 7:30PM during
winter and summer months respectively while 3:00AM is off-
peak. Figure 9 (left) shows the histogram of voltages from
7:00-7:20PM for three months of data. We see that 95%
of the time the voltage remains below V` = 228 implying a
peak period. Similarly figure 9 (right) shows the histogram
for 3:00-3:20AM in the morning when the voltage always
remains above Vu = 238 implying an off-peak period. Thus
the voltage-based inference concurs with the published grid
load measurements.

5.2 Inferring supply-demand imbalance
Figure 10 shows the distribution of frequency time series

along with the 2-SD thresholds f` = 49.4 and fu = 50 (sec-
tion 4.3.2). We see that the frequency measurements vary in
a very narrow range and exhibit a Gaussian-like distribution.
About 95% of the values lie within the 2-SD thresholds and
the balance are classified as outliers by the analytics module.
The 2-SD thresholds inferred from the data are close to the
standard operating thresholds in India which are 49.4Hz and
50.1Hz. Therefore frequency measurements may be used to
detect supply-demand imbalance.

Figure 10: Distribution of frequency time series along with
2-SD thresholds

5.3 Scheduling
In this section, we present the results of Monte-Carlo sim-

ulations conducted to evaluate the performance of decentral-
ized scheduling schemes discussed in section 4.4: (a) Ran-
domized scheduling and (b) gsma-based pnlb. We compare
the performance of these schemes against no scheduling (i.e.
no nPlugs) and optimal centralized scheduling using direct
load control. The performance is measured using three met-
rics: maximum peak demand, throughput, and overload (de-
fined in section 4.4.4).

We consider the following deferrable appliances in our ex-
periments, which are commonly used in cities across India:
(a) water heater (2.5KW) (b) washing machine (0.8KW) (c)
water pump (2.5KW, used to pump up supplied or ground
water) (d) Inverter (0.7 KW, used for power backup). These
appliances are scheduled within the user specified time pe-
riods by randomized scheduling and pnlb to reduce peak
loads.

We present the results for three scenarios documented in
Table 1: (1) Single peak from water heaters (2) Single peak
from water heater plus varying background load (3) Multi-
ple peaks from different appliances plus varying background
load. In each case, the grid threshold capacity is set large
enough so that the optimal centralized scheme can sched-
ule the appliances without violating the threshold capacity.
In addition the grid is assumed to have a spare generation
capacity that is 50% of the threshold capacity. The through-
put and overload of schemes is measured with respect to the
threshold capacity.

In order to establish the correspondence between voltage
and grid capacity, we assume that the grid voltage varies be-
tween Vmin = 225V and Vmax = 255V with a safe operating
region from V` = 228 to Vu = 249V. The voltage of the grid
at any time t is computed as

v(t) = Vmin + (1− P (t)

Pmax
)× (Vmax − Vmin) (3)



Scenario No. Appliance types Number of appliances Additional variable load User Preferences
1 Water Heaters 100 No [4:00, 7:00, 30]
2 Water Heaters 100 Yes [4:00, 7:00, 30]
3 Water Heaters, Water Pumps, 200 Yes [4:00, 7:00, 30],[5:00, 7:00, 20]

Washing Machines, Inverters [6:00, 8:15, 40], [6:40, 8:15, 25]

Table 1: Summary of experimental scenarios (the user preferences are specified as [earliest start time, latest end time,
operational duration(min)])

Scenario Maximum Peak Demand (kW) Throughput (%) Overload (kWh)
No. w/o nPlug Random PNLB w/o nPlug Random PNLB w/o nPlug Random PNLB
1 250±0 80±3.8 72.5±1.5 23.89±1.67 82.29±6.73 93.24±2.07 94.54±1.34 20.08±6.57 6.12±1.63
2 370±6 208±8 190±3 78.24±1.87 87.34±3.45 94.14±2.39 89.29±1.63 23.54±6.21 9.61±3.23
3 325±5.20 211.9±10.23 185±6.65 80.11±1.78 88.23±3.87 94.28±2.28 91.42±2.58 34.84±9.22 8.56±3.88

Table 2: Summary of Monte-Carlo simulations for different decentralized scheduling algorithms based on three metrics:
Maximum Peak Demand, Throughput, and Overload (kWh load above threshold generation capacity).

Figure 11: Performance of different scheduling schemes: rows top to bottom: Scenarios 1 to 3. Columns left to right: Base
case without nPlug, Randomized scheduling, and pnlb. (a)-(c): Scheduling of of 100 water heaters using nPlug. (e)-(f):
Scheduling 100 water heaters in the presence of varying background load. (h)-(i): Scheduling 200 appliances of different types
of appliances in the presence of varying background load. Randomized scheduling and pnlb contribute to peak load reduction
and load-leveling.

where P (t) is the load in the grid at time t and Pmax is the
threshold capacity. Note that the above method to compute
voltage from grid load may not be completely realistic. The
voltage change in a household is a function of both load in
the household as well as the grid and is hard to estimate.
Moreover it depends on several factors such as the distance
of the household from the transformer and so on. Therefore

our experiments evaluate the performance of scheduling al-
gorithms assuming the simplified model of grid load men-
tioned in (3). For gsma-based pnlb, the time slot length τ ,
that is used to sense the grid at regular intervals, is set to
1min.

Scenario 1 The first scenario is designed to capture com-
mon domestic demand patterns observed in major Indian



cities during the early morning hours. Since most house-
holds switch on their heater for about 30 min, this demand
induces a peak during morning hours [11, 16, 14]. Figure
11(a) shows such a peak when 100 water heaters are switched
on between 6:15 and 7AM. In order to reschedule this load,
note that users are generally insensitive to the exact time
at which the heaters are switched on as long as hot wa-
ter is available by a certain time. Also since water heaters
have insulation, water once heated remains useable for a few
hours. Therefore we assume that users specify 4:00 AM as
the earliest start time, 7:00 AM as the latest end time, and
duration as 30min. For this scenario, the threshold capacity
Pmax is set to 42.5KW since this is the minimum capacity
needed to operate 100 water heaters for half an hour each,
so that all the heaters finish their operation within 3 hours.
Figure 11(b) and (c) show the results for one sample run of
randomized scheduling and pnlb. The average and standard
deviations for 20 runs are shown in Table 2.

We see that randomized scheduling provides a good dis-
tribution of the load and as expected some overload. pnlb
mimics the behavior of the optimal centralized scheme but
with a small peak towards the end. This occurs since ap-
pliances that were not scheduled earlier are switched on to-
wards the end so that all appliances finish on time. The
throughput of pnlb remains above 90% with low overload.
Thus the peak load reduces significantly by using nPlugs
with randomized scheduling or pnlb.

Scenario 2 Having established the benefits of decentral-
ized scheduling, we now evaluate the performance of schedul-
ing schemes in the presence of varying background load. The
background load corresponds to the domestic loads that are
either non-deferrable or ones that do not use nPlugs. This
load is assumed to have a mean amplitude of 50% of the
peak load.

Figure 11(d)-(f) shows the results when water heaters are
scheduled by nPlugs in the presence of varying background
load. Again, we observe that randomized scheduling dis-
tributes the load uniformly over time. However it does not
efficiently use available grid capacity since it does not sense
the running load in the grid. On the other hand pnlb that
uses a gsma-approach, senses the running load and there-
fore uses the varying capacity more efficiently, thus yielding
a better throughput and lower overload.

Scenario 3 The third scenario is designed to mimic the
demand pattern in metropolitan cities where the use of mul-
tiple high power electrical appliances is more common [11].
Figure 11(g) shows a demand pattern that was constructed
by considering appliance ratings and commonly occurring
appliance mix in metropolitan households where multiple
appliances are switched on simultaneously resulting in mul-
tiple peaks.

For scheduling using nPlugs, different appliances are as-
sumed to have overlapping start and end times and different
operational durations as shown in Table 1. Figure 11(h)-(i)
plot the results for one sample run of randomized scheduling
and pnlb. Table 2 presents the mean and standard devia-
tions over 20 runs. We see that both schemes contribute
to peak load reduction and load-leveling even when differ-
ent appliances with different user constraints are attached to
nPlugs. pnlb allows nPlugs attached to different appliances
to use the available capacity efficiently even as appliances
are switched on and off and the grid load varies.

6. RELATED WORK
Demand Side Management or Demand Response(DR) [21]

is essentially a mechanism for inducing the consumers to al-
ter their consumption patterns in response to changes in sup-
ply so that available capacity may be shared efficiently. Such
demand change is usually induced through variable pricing,
financial (dis)incentives, and explicit or direct load control.
Although these are more popular in the power sector, they
are applied in various sectors including transportation (e.g.
congestion pricing) as well. Several DSM systems and pro-
grams have been proposed for reducing the peak power loads
and some of these are even operational today. In this section,
we review both the centralized and decentralized demand
management schemes.

One of the earliest proposed grid-friendly appliances is
Frequency Adaptive, Power-energy Re-scheduler (FAPER)
invented by Schweppe [17]. FAPER senses grid frequency
and reschedules the power flow to a load on the basis of de-
viations in frequency. As explained previously, frequency
alone may not be sufficient to sense peak loads. More-
over, FAPER does not consider consumer’s preferences while
scheduling loads. For example, on a particular day, if the
load on the grid is high during a time period, consumers may
not be able to run their appliances during this period if only
the grid conditions are considered. Responsive Load Con-
troller from RLtec [3] uses an approach identical to that of
FAPER and has similar shortcomings. Another example is
the Grid-Friendly controller from PNNL [15], that can be in-
stalled in refrigerators, air conditioners, or other household
appliances. It monitors the power grid and turns appliances
off for a few seconds to minutes in response to grid overload.
RLtec and Grid-Friendly devices are not standalone devices
and must be incorporated into the appliances. Although new
appliances could be fitted with such controllers, it may not
be possible to retrofit millions of appliances already in use.
Moreover, these controllers react only to grid conditions and
do not support a mechanism to proactively schedule appli-
ances to reduce load or as per consumer convenience. Nest
[1] is a thermostat management system that learns the pre-
ferred temperature settings of the consumer and maintains
the room temperature accordingly. But, Nest can manage
only heating and cooling loads. It is not a appliance-level
schedule management device.

Peaksaver [2] is a smart thermostat that allows utilities
to cycle central air conditioners and reduce their run time -
typically during hot weekdays of summer - when the load on
the grid is usually high. Peaksaver requires centralized con-
trol and is designed to work only with air conditioners and
not with other loads that can be time shifted. Bluepods
from Voltalis[6] are devices that plug into home electrical
pannels and are controlled over the web. During peak de-
mand, a signal is sent to Bluepods to turn off air condition-
ers. Williamson et al. have proposed Distributed Intelligent
Load Controllers (DILC) [8] to mitigate the power imbal-
ance due to intermittent renewable energy sources. Both
DILC and Bluepod require a communication infrastructure
to receive signals from control centers.

Unlike above systems, nPlug provides an inexpensive and
decentralized load scheduling mechanism that can minimize
peak loads while respecting the preferences of consumers.



7. CONCLUSIONS AND FUTURE WORK
There has been an increasing interest in DSM strategies

to address the peak load problems faced by utilities all over
the world. In this work, we present nPlug, a smart plug that
uses voltage sensing to identify peak and off-peak periods of
the grid. nPlugs time-shift the attached loads to off-peak
periods while respecting the end user preferences and grid
load conditions. They do not require any communication in-
frastructure nor any changes to the appliance or grid. They
are simple, affordable, and scalable and could be used in de-
veloping as well as developed countries. We give the high
level architecture and the hardware design details of nPlugs.

Using preliminary voltage measurements collected at a
household, we showed that line voltage is a good indicator
of grid load and presented simple analytics techniques to in-
fer peak and off-peak periods from voltage time series. We
presented novel decentralized scheduling algorithms - ran-
domized scheduling and gsma-based pnlb that is inspired
by csma protocols in networks. Our experimental results
show that both these algorithms could be used by nPlugs to
achieve significant peak load reduction and load-leveling in
the presence of varying grid load.

We are considering several future extensions to our work.
Firstly, we plan to collect voltage measurements from neigh-
boring homes which are under the same phase or transformer
to study how load of one household affects the voltage of
other households and how soon other households can sense
this. Second, we are analyzing the performance of gsma-
based schemes and plan to study congestion control tech-
niques in the context of decentralized scheduling. Third, we
are attempting to relax the assumption that the deferrable
loads must be run continuously. we are investigating the
mechanisms to incorporate the ability to handle loads that
can be interrupted such as water heaters and air condition-
ers. It requires a thorough understanding of the impact
on the appliance performance and consequent energy con-
sumption. For instance, if a water heater is powered up
and down frequently, the total energy consumption might
increase. Moreover, if there is a large gap between two con-
secutive running time slots, the heating elements could cool
down and might require additional energy to heat up to
reach prior levels. Lastly, we plan to extend the schedul-
ing schemes to consider appliances like electric vehicles and
inverters which have varying electricity demands depending
upon their existing charge and storage capacity. However,
such scheduling schemes must include additional heuristics
as they have to factor in the impact of battery lifetimes with
varying charging/discharging cycles.

A few questions also remain unanswered. Even though the
nPlugs are inexpensive, the economic incentives for end users
to use them is not clear. It might require legislative changes
to encourage appliance manufacturers to embed nPlug-like
functionality into deferrable loads. If incorporated, appli-
ances can be both grid and user friendly with minimal user
intervention. If a large number of nPlugs are deployed in
the field, the load curves used by distribution companies
may also need to be altered and that in turn could alter
the generation portfolio. Another issue is that of security.
Smart plugs such as nPlugs can potentially be tampered by
users and used to automate launching coordinated attacks
that intentionally overload the grid.
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