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Abstract—Electricity is distributed throughout the electrical
power network in 3-phase voltage. This power reaches households
as a single-phase voltage, generally 115vac or 240vac. This is
achieved by allocating households with either phases A, B, or
C of the final 3-phase power distributed to the street through
a low voltage transformer. A present problem confronting the
electrical power industry is identification of which particular
phase a household is connected to. This information is often not
tracked and the mechanisms for identifying phase require either
manual intervention or costly signal injection technologies. Phase
information is important as it is a foundation for the larger
problem of balancing phase loads. Unbalanced phases lead to
significant energy losses and sharply reduced asset lifetimes.

In this paper we propose a new approach to compute
household phase. Our techniques are novel as they are purely
based upon a time series of electrical power measurements
taken at the household and at the distributing transformer. Our
methods involve the use of integer programming and solutions
can be retrieved using branch and bound search algorithms
implemented by MIP solvers such as CPLEX. Furthermore, as
the number of measurements increase, continuous relaxations of
integer programs may also be used to retrieve household phase
efficiently. Simulation results using a combination of synthetic
and real smart meter datasets demonstrate the performance
of our techniques and the number of measurements needed to
uniquely identify household phase.

I. INTRODUCTION

The majority of electrical power is generated at large
power plants as a 3-phase AC voltage. The electricity is
initially produced at a very high voltage and injected into
a transmission and distribution network. A distribution grid
typically consists of high voltage circuits that supply power to
transformer substations that step down voltage progressively
until delivering this power to the household or building. When
finally distributing power to the house, each low voltage
transformer supplies power to about 50-200 homes. However
the electricity consumed by a household is single-phase, and
each home is connected to one of the three phases of a low
voltage transformer; either phase A, phase B, or phase C.

A key problem faced by energy distributors world wide is
the ability to maintain an accurate record of which house is on
which phase. In some cases the phase may be recorded when
connecting a new house, however this is not always possi-
ble due to the inaccessibility of the distribution transformer.
Furthermore, in the case this may be recorded the informa-
tion typically deteriorates over time due to maintenance and
repair. While there exist manual techniques for identifying
phase and solutions based on signal injection techniques,
these approaches have thus far not been adopted due to the
challenges in costs and effort required. Knowing customer
phase is important for a number of different reasons, most
important of which is phase balancing - the loads on the

three phases of a transformer must be balanced for grids to be
efficient. By identifying which house is on which phase, the
load may be evenly rebalanced between the phases.

Automated monitoring and control in grids has traditionally
been done in the high voltage transmission network portion of
the grid. More recently the medium and low voltage networks
have begun to be instrumented with intelligent monitoring
and control devices that report in real-time on the electrical
behavior of the network. In addition, energy distributors have
commenced upgrades of manually-read analogue household
meters with automated smart meters that communicate meter
readings with greater frequency back to the distributors. Col-
lectively these initiatives form the basis of many smart grid
transformations that energy distributors are undertaking.

Fig. 1. System Overview

In this paper we propose a novel technique [1] for household
phase identification that takes advantage of the recent drive
for digitization of power grids [2]. Our approach derives a
solution using a time series of discrete power measurements
taken at the households and at the distributing transformer. The
measurements are used to set up a system of linear equations
based upon the principle of conservation of electric charge
i.e., energy supplied by a feeder must be equal to the energy
consumed by all the households connected to that feeder plus
errors. The errors arise due to imperfect synchronization of
measurements at homes and transformers, and unknown and
time-varying line-loss conditions. The equations are analyzed
to determine an assignment of homes to phases that optimally
fits the measurements. As illustrated in Fig. 1, data collected
from the transformer and household meters is transported to a
server that executes phase identification algorithms. We view
the main contributions of this paper as follows:



1. A new technique for household phase identification is
proposed based upon mathematical optimization.

2. We develop integer programming formulations for noise-
less and noisy variants of the phase identification prob-
lem. We propose continuous relaxations of these integer
programs that may be used with increasing amounts of
measurements to retrieve household phase efficiently.

3. The methods, tools, and implementation using mathemat-
ical programming are outlined together with our discus-
sion of errors, uniqueness of solution, and experimental
results.

The rest of the paper is organized as follows. Section II
presents motivation and related work. The phase identification
approach based on a time series of power measurements is
introduced in section III. Section IV presents the mathematical
models and solutions techniques based on optimization. Sec-
tion V discusses experimental results. We conclude in section
VI with key observations and opportunities for further work.

II. MOTIVATION AND RELATED WORK

While utilities usually have knowledge of the grid topology
at its core, accurate information regarding the connectivity at
the customer edge of the network is variable. There is consid-
erable motivation to ensuring an accurate record of phase per
household. These are based on improving the efficiency of the
electrical network, extending lifetime of assets, and facilitating
the infusion of renewable energy within the grid.

In a 3-phase system, three feeders carry three alternating
currents which reach their instantaneous peaks at different
times. These phases must be balanced - the magnitudes of
current and voltage must be equal for all three phases -
for the grids to be efficient. Unbalanced feeders not only
increase power losses and the risk of overload, but also affect
power quality and electricity prices. Imbalances also lead to
overheating and consequently, shorten the lifespan of the grid
assets such as transformers [3]. Typically the operator may
manually compute the load endured by a transformer as a
collective 3-phase load. This unfortunately does not highlight
that one phase may be experiencing a significantly higher load
in comparison to the other phases. Depending on customer
demands and how they are assigned to different phases, loads
on the three phases of a transformer can constantly remain
unbalanced. By identifying their phase, households may be
reassigned to a different phase so that load is evenly balanced
between the phases, thus reducing power loss and improving
the operational efficiency of the network.

A further motivation for phase identification is to facilitate
introduction of distributed energy generation [4] at the house-
holds. The excess energy generated at the households can be
injected back into the network over one of the three phases.
Hence the need to determine phase is important to ensure a
balanced infusion of power into the grid. The reasoning for
balancing this is similar to the distribution of energy in the
other direction - from the grid to the households.

The literature on phase identification at the household level
is limited. Caird [5] discloses a system and method for phase

identification with suitably enhanced automated meters that
can detect phases based upon a unique signal injected into the
phase line. The disadvantage of signal injection methods is
that they require enhanced hardware to transmit and receive
special signals at different points of the grid, increasing capital
and maintenance costs.

Our approach on the other hand, doesn’t require any addi-
tional hardware other than household and transformer meters.
Moreover, there is no requirement for interventions through
signal injection or physical access to record measurements.

Dilek’s [6] work on phase prediction in circuits is similar in
spirit to our approach. The author employs a Tabu search on
power flow measurements to determine the phase of various
loads. However there are a number of differences. Unlike [6],
our work discusses different types of errors, optimal solutions
for both noiseless and noisy versions of the problem, unique-
ness of solutions, and relaxations that can be used to obtain
solutions efficiently with increasing number of measurements.
Whereas the approach of [6] is tested only on a few loads, we
present experimental results for larger number of homes.

III. DESIGN METHODS AND TOOLS

A. Phase Identification Approach

In our approach, household phase is determined using a time
series of synchronized measurements collected from homes
and the transformer. The principle of conservation of electric
charge implies that during any time interval, the total load on
a phase equals the sum of demands of customer households
on that phase. Since these demands vary with time and across
different households, customer phases can in fact be recovered
by analyzing home and transformer load measurements over
several time steps.

Time Households (Wh) Phases (Wh)
Interval H1 H2 H3 H4 H5 H6 A B C
(0, 10] 2 3.5 1 2.5 4.5 4 5.5 1 11
(10, 20] 3 3 10 5.5 7 1.5 6 10 14

...
...

...
...

...
...

...
...

...
...

The above table shows an example time series of power
measurements taken from homes and the distributing trans-
former over intervals of ∆t = 10 minutes each. For instance,
the first row shows that during the first 10 minutes home H1

consumed 2 watt-hours (Wh) while the total power supplied
by phase A is 5.5 Wh. We wish to determine household phases
from the above measurements. Now observe that, at each time
step, loads of homes ′H1 ′ and ′H2 ′ sum up to the load on
phase ′A ′ Similarly, columns ′H4 ′, ′H5 ′, and ′H6 ′ sum up
to column ′C ′. Column ′H3 ′ is same as column ′B ′. Thus we
conclude that {H1,H2} must have been connected to Phase A,
{H3} to B, and {H4,H5,H6} to C.

In the above example, at each time step, the total load
on a phase is exactly equal to the sum of loads of homes
connected to that phase. In practice however, due to line losses,
synchronization errors, and other errors discussed next, the
load measurement at a phase is only approximately equal to
the sum of load measurements of homes on that phase.



B. Measurement Setup and Errors
Consumer smart meters can record and report periodic

measurements of power consumed in watt-hours (Wh) over
small time intervals of ∆t = 15 or 30 minutes, as setup by
the utility (For e.g. Itron smart meters used by CenterPoint
Energy in US record Wh over 15 min intervals). Government
regulations require that the watt-hours reported by consumer
meters be accurate, typically of the order of 99.5% accuracy.
A meter records readings based on its internal clock and this
clock may be out of synch with respect to the true clock.
For e.g. if a meter reports that 75Wh were consumed from
10:00:00 to 10:15:00 AM and its clock lags the true clock by
1 sec, in reality the 75Wh were consumed from 10:00:01 to
10:15:01 AM. Therefore even if all consumer meters are setup
to report over the same time intervals, each may suffer from a
different clock drift and report Wh consumed over a slightly
different time interval.

Meters deployed at transformers are much more complex
devices. Unlike consumer meters, they measure several fine-
grained parameters needed to monitor a transformer, such as
voltage, power factor, fault analysis parameters, etc. Typically
the meters publish average values of parameters over small
time intervals. Therefore the watt-hours computed from these
parameters for each phase are estimates of the actual watt-
hours supplied and may contain errors. (The real power (Wh)
supplied by a phase can be computed as a product of rms
voltage, rms current, and power factor measurements). In
addition, similar to a consumer meters, clock synchronization
problems may also occur at the transformer meter.

Other sources of errors include line losses and unmetered
loads. Since power lines connecting transformer phases to
homes possess a certain amount of electrical resistance, some
of the transferred energy is lost as heat. These losses vary with
ambient temperature, load, age of the feeder, etc. Transformers
may also have unmetered loads such as street lights which
affect measurements taken during the night.

IV. PHASE IDENTIFICATION TECHNIQUE

A. Mathematical Model and Problem
The phase identification problem is modeled as follows. Let

m be the number of measurements taken over time and let n be
the number of homes. Let C = {1, . . . , n} be the set of indices
for customer homes, J = {a, b, c} the set of indices for phases,
and K = {1, . . . ,m} the set of indices for measurements. Let
xij be an indicator variable which determines the connectivity
of home i to phase j i.e.,

xij =

{
1 if home i is connected to phase j

0 otherwise
(1)

where i ∈ C and j ∈ J. Since each home is connected to
exactly one of the three phases, we have

xia + xib + xic = 1 ∀i ∈ C (2)
Let hki denote the (possibly erroneous) measurement at home
i in the kth time step. Let pkj denote the (possibly erroneous)
measurement at phase j at the kth time step. Then the prin-
ciple of conservation of electric charge implies the following
relationship:

n∑
i=1

hkixij + ekj = pkj ∀k ∈ K ∀j ∈ J (3)

where ekj ∈ R is the error in the kth measurement correspond-
ing to the summation for phase j. ekj compensates for the
difference between the sum of home measurements and their
phase measurement arising due to errors discussed in III-B.
Thus the model allows errors to vary across measurements.

We will use the following matrix form to express constraints
(2) and (3). Let H = [hki]m×n be the matrix of home mea-
surements. Let Xj = [x1j, . . . , xnj]

T , Pj = [p1j, . . . , pmj]
T ,

ej = [e1j, . . . , emj]
T . Define M, X, P, and E as follows.

M =

 H 0 0
0 H 0
0 0 H

X =

 Xa

Xb

Xc

P =

 Pa

Pb

Pc

E =

 ea

eb

ec

 (4)

Let D3 = [In In In] where In is an n× n identity matrix.
Let 1n denote an n× 1 vector of all 1’s. Then (2), (3) give

D3 X = 1n (5)
M X + E = P (6)

The phase identification problem is to determine the unknown
binary phase assignment vector X ∈ {0, 1}3n given H, P, and
unknown E from (5) & (6). The following sections discuss
noiseless and noisy variants of the above problem and show
how they could be solved.

B. The Noiseless Problem and Solution

With no errors, the loads on phases exactly match the sum
of loads of respective homes, i.e. the vector E = 0 in (6).

1) Single Measurement: For one measurement from a
single time step, if the meter readings from homes and
transformers can be converted to integers without loss of
accuracy, the problem reduces to a variant of Subset-sum
problem [7]. Given the Wh for each of the three phases, we
are interested in finding three disjoint subsets of homes, such
that the Wh of homes within each subset sum up to the Wh
of a different phase. The subset-sum problem is NP-hard and
can be solved in pseudo-polynomial time using a dynamic
program. However, one measurement may not yield a unique
solution.

2) Multiple Measurements: In the general case when we
have a series of measurements, (5) & (6) can be combined as:

A =

[
M

D3

]
B =

[
P

1n

]
(7)

Thus we have a system of constrained linear equations

(ILP1) AX = B

xij ∈ {0, 1}, ∀i ∈ C,∀j ∈ J (8)

(8) is a 0-1 integer linear program (ILP) with zero objective
function. It can have multiple solutions, especially when the
number of measurements (i.e. constraints) is low. CPLEX’s [8]
MIP (mixed integer programming) solver can be used to obtain
a solution to (8). However, ILPs are NP-hard and therefore
some instances of (8) may require exponential time. We now



propose two relaxations that can be used to retrieve the unique
solution to (8) in polynomial time given sufficient number of
measurements.

i) Linear systems relaxation:

AX = B

�����
xij ∈ {0, 1} xij ∈ R, ∀i ∈ C,∀j ∈ J (9)

(9) is an unconstrained relaxation of (8) wherein we have
dropped the integrality constraints on X. It can be solved using
linear algebra provided A has full rank. When this holds, the
linear equations (9) and the ILP (8) both yield the same unique
binary solution. This is because the ground truth that generates
these measurements is in fact binary and the full rank condition
implies that the system has a unique solution.

The matrix A has 3n columns and 3m + n rows. However
only 2m+n rows are independent. This is because it suffices
to find the phase assignment corresponding to any two phases,
the unassigned homes would have to be connected to the third
phase. Therefore rank(A) = min{3n, 2m+n}. This implies
that when m = n, A has full rank so that phases of all homes
can be recovered simply as X = A−1B.

ii) Linear programming (LP) relaxation: First we transform
the binary variables in (8) from {0, 1} to {−1, 1} using the
transformation Y = 2X − 13n. Note that X ∈ {0, 1}3n ⇔
Y ∈ {−1, 1}3n. Therefore we have the following ILP that is
equivalent to (8):

AY = 2B − A13n, Y ∈ {−1, 1}3n (10)

To solve the above, we use the following LP relaxation:

(LP1) Min ‖Y‖1

s.t. AY = 2B − A13n

((((((
Y ∈ {−1, 1}3n Y ∈ [−1, 1]3n (11)

The objective function of LP1 is not strictly linear due to L1

norm, but it can be linearized using standard LP methods. The
following lemma relates (11) to (10).

Lemma 1: If (11) returns an integer solution, that solution
is the unique integer solution of both (11) and (10).
We omit the proof due to space constraints. The proof follows
from the fact that the fractional solution ∈ [−1, 1]3n has a
lower L1 norm than an integer solution ∈ {−1, 1}3n.

Note that the converse of Lemma 1 is not true. (11) can
return a fractional solution even if (10) has a unique integer
solution. However, in [9], authors show that the probability
that a system of the form (11) returns a unique integer solution
is high. In particular this probability rapidly approaches 1 for
m > n/2. In section V, we show the same using experiments.

Solution Space: Fig. 2 shows the solution space for the
noiseless case. Given one measurement, the problem reduces
to a variant of subset-sum. Given a few measurements, we
would need to solve the ILP (8) that is NP-hard and may yield
multiple solutions. When the number of measurements exceeds
n/2, it is highly likely that we can use the LP relaxation (11) to
retrieve the unique integer solution in polynomial time. When
m = n, we can retrieve the unique solution simply by solving
the system of linear equations (9).

Fig. 2. Noiseless Problem: As the number of measurements increase, the
phase identification problem can be solved efficiently.

C. The Noisy Problem and Solution
This is the general setting wherein errors can vary across

measurements due to loss of synchronization, line losses, and
factors discussed in III-B. We now propose two approaches to
retrieve a solution to the noisy variant of phase identification
problem (5)-(6). We determine a phase assignment solution
vector X that optimally fits the measurements by minimizing
either the L1 or L2 norm of the error vector E. As long as errors
do not grow significantly with measurements, the approaches
below will retrieve the true underlying phase assignment
solution with increasing number of measurements.
Approach 1) Min L1 norm: Integer Linear Program (ILP)

(ILP2) Min
X

‖P − MX‖1 (Linear function)

s.t. D3 X = 1n×1 (Linear Constraints)

X ∈ {0, 1}3n (Integer constraints) (12)

Approach 2) Min L2 norm: Integer Quadratic program (IQP)

(IQP1) Min
X

‖P − MX‖2
2 (Quadratic function)

s.t. D3 X = 1n (Linear constraints)

X ∈ {0, 1}3n (Integer constraints) (13)

Solutions to ILP2 and IQP1 can be obtained using CPLEX’s
MIP solver. The choice of IQP1 vs. ILP2 depends on errors
and computational performance. For gaussian errors, IQP1

yields the maximum likelihood estimate (MLE) of the true un-
derlying solution. In terms of computation, IQP1 is quadratic
with 3n integer variables whereas ILP1 is linear, however with
3n + 3m variables. The additional 3m continuous variables
are needed to linearize the L1 norm in the objective function
of ILP1.

1) Multiple Solutions: For a fixed number of measure-
ments, ILP2 and IQP1 may yield multiple optimal solutions
and the problem of checking if a given optimal solution is
unique is NP-hard [10]. Also when the error is high, ILP2

and IQP1 may yield optimal solutions with objective function
value lower than that of the true underlying solution. Therefore
a practical approach is to find all phase assignment solutions
that lie in the close vicinity of the optimal. Let g(X) denote
the objective function of ILP2/IQP1 and let X∗ be an optimal
solution. Then one could find all solutions X with a relative
optimality gap of α = {g(X)−g(X∗)}/g(X). α can be set close
to 0, for e.g 5%. CPLEX’s MIP solver allows the retrieval of
multiple solutions within a given optimality gap.



2) Continuous Relaxations LP2 and QP1 : We now present
relaxations that may be used to retrieve the phase assignment
solution efficiently with increasing number of measurements.
We replace the integer variables X ∈ {0, 1}3n with their
continuous counterparts X ′ ∈ [0, 1]3n in (12) and (13) to
obtain relaxations denoted by LP2 and QP1 respectively.
LP2 is a linear program and QP1 is the constrained least
squares problem [11]. Both LP2 and QP1 can be solved effi-
ciently. Given a fractional solution X ′ ∈ [0, 1]3n obtained via
LP2/QP1, we round it back to an integer solution X ∈ {0, 1}3n

as follows. Let j1 be such that x ′ij1
= maxj∈J{x

′
ij}. We set

xij = 1 for j = j1 and xij = 0 ∀j 6= j1. This is repeated
∀i ∈ C. The rounding method ensures that every home is
assigned to exactly one phase.

We demonstrate via experiments that as the number of mea-
surements increase, rounded solutions of relaxations LP2/QP1

essentially coincide with optimal solutions of ILP2/IQP1.

V. EXPERIMENTS

We summarize the main results of our experiments. We con-
ducted several Monte-Carlo simulations using three different
datasets: dataset1 of n = 250 homes, with meter readings
generated uniformly at random, dataset2 of n=140 homes,
with meter readings constructed from actual consumption pro-
files of Canadian homes collected every ∆t = 15 min by [12],
and dataset3 of n=100 homes with anonymous meter read-
ings collected every ∆t = 30 min by an Australian utility. In
each dataset, homes are randomly assigned to different phases
in order to generate phase measurements. The mathematical
programs of Sec. IV are solved by invoking CPLEX [8] from
within MATLAB [13]. We compare the optimal solutions output
by these programs with the true underlying phase assignment
solutions as a function of number of measurements. Results
are plotted over multiple runs of experiments.

1) Noiseless Problem: In this case, we test the success
rate of relaxation LP1 (11), i.e. how often LP1 yields the true
integer phase assignment solution with increasing amounts of
measurements. Fig. 3(a) shows the benchmark results using
dataset1 over 100 runs of experiments for n = 50 and 250

homes. The blue curves (left) plot the results when homes
are evenly assigned to each of the 3 phases with probability
1/3 while the red curves (right) plot the results for uneven
phase assignments. We observe that when the number of
measurements m<n/2, LP1 often yields fractional solutions
and therefore the success rate is low. However when m > n/2,
LP1 very often yields the true integer solution and its success
rate rapidly approaches 1. These results concur with those of
[9].

2) Noisy Problem: We introduce three types of errors in
the datasets: (a) Gaussian, (b) Gaussian random walk, and (c)
Clock skew errors. (b) & (c) mimic clock synchronization er-
rors while (a) represents errors due to a combination of factors
discussed in Sec. III-B, e.g. line losses, synchronization, etc.

(a) Gaussian errors: In this case, every home and phase
meter reading r is made erroneous by introducing a gaussian
error whose standard deviation is proportional to the size of

the reading, i.e., the erroneous reading r ′ ∼ N (µ = r, σ =
fr), f ∈ [1, 5]%. A large load therefore implies a large error.

For integer programs, we observed that IQP1 (13) is much
more slower than ILP2 (12). Table I shows benchmark results
for ILP2 using dataset3 over 25 runs of experiment. In

m Optimal = True phase assignment? Avg. time (sec)
Error: 1% 2% 3% 1% 2% 3%

2n 100% 96% 76% 10 50 263
3n 100% 100% 100% 13 29 116

TABLE I
GAUSSIAN ERRORS 1-3%: PERFORMANCE OF ILP2, dataset3, n=100

each case ILP2 yields a unique optimal solution. When no. of
measurements is twice the no. of homes (m = 2n) and the
error is high (3%), for 24% of all runs, the optimal solution
had a lower objective function value than that of the true
underlying phase assignment solution. However as the number
of measurements increase to 3n, the optimal solution always
coincides with the true underlying phase assignment solution.
The right column shows the mean time taken by CPLEX on
a linux system (Intel T9400 2.53GHz processor, 3GB RAM).
Since measurements constrain the set of possible solutions,
fewer measurements with high error result in a larger search
space and hence more search time.

In case of relaxations, both QP1 & LP2 (Sec. IV-C2)
yield solutions without any perceptible delay. However when
measurements become really large (e.g. 10n), LP2 is a slower
compared to QP2 since LP2 has more variables. Fig. 3(b) &
(c) plot the quality of rounded solutions output by QP1 for 50

and 250 homes respectively using dataset1. The blue curves
show the success rate, i.e. the fraction of times the rounded
solution coincides with the true underlying phase assignment,
for different error rates as a function of increasing number
of measurements. The red curves show the average fraction
of homes assigned the true phase over multiple runs. As the
measurements increase, the rounded solutions coincide with
the true phase assignment solution. Since each meter reading is
made erroneous, as the number of homes increases, so does the
total error. Therefore both more homes and more errors require
larger number of measurements to retrieve the true household
phase. Fig. 3(d) plots the results for LP2 with n=250 homes.
We observe that LP2 takes more measurements than QP1 to
retrieve the true solutions. This is not surprising given that
IQP1 is the MLE for gaussian errors. Fig. 3(e) & (f) show
similar benchmark results for dataset2 and dataset3. In
both cases, 7n measurements were sufficient to retrieve the
true phase assignments with up to 3% gaussian errors.

(b) Gaussian random walk: To simulate synchronization
errors, we assume that each meter’s clock has errors behaving
as a gaussian random walk. Instead of clocking the load
after every ∆t units, the kth measurement clocks the load
for the interval [Tk−1, Tk] where Tk=Tk−1 + N (µ=∆t, σ =
f∆t), f ∈ [0.5, 1.5]%. For e.g., for ∆t = 15min & f = 0.5%,
σ = 4.5sec. This is a very high error; for real clocks σ is a
few milliseconds. Fig. 3(g) shows the benchmark results for
QP2 using dataset2. Despite the errors, as measurements
increase, QP2 eventually retrieves the true phase assignments.



(a)

m/n

S
u

c
c
e

s
s
 r

a
te

 o
f 

L
P

 

 

0.2 0.4 0.5 0.6 0.8

0

0.2

0.4

0.6

0.8

1

n=50, even

n=250, even

n=50, uneven

n=250, uneven

m/n

A
v
g
 /
 S

u
c
c
e
s
s
 r

a
te

 o
f 
Q

P

(b)

 

 

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Avg. 1%

Avg. 3%

Avg. 5%

Succ. 1%

Succ. 3%

Succ. 5%

m/n

A
v
g
 /
 S

u
c
c
e
s
s
 r

a
te

 o
f 
Q

P

(c)

 

 

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Avg. 1%

Avg. 3%

Avg. 5%

Succ. 1%

Succ. 3%

Succ. 5%

m/n

A
v
g
 /
 S

u
c
c
e
s
s
 r

a
te

 o
f 
L
P

(d)

 

 

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Avg. 1%

Avg. 3%

Avg. 5%

Succ. 1%

Succ. 3%

Succ. 5%

m/n

A
v
g
 /
 S

u
c
c
e
s
s
 r

a
te

 o
f 
Q

P

(e)

 

 

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

Avg. 1%

Avg. 2%

Avg. 3%

Succ. 1%

Succ. 2%

Succ. 3%

m/n

A
v
g
 /
 S

u
c
c
e
s
s
 r

a
te

 o
f 
Q

P

(f)

 

 

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

Avg. 1%

Avg. 2%

Avg. 3%

Succ. 1%

Succ. 2%

Succ. 3%

m/n

A
v
g
 /
 S

u
c
c
e
s
s
 r

a
te

 o
f 
Q

P

(g)

 

 

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

Avg. 0.5%

Avg. 1%

Avg. 1.5%

Succ. 0.5%

Succ. 1%

Succ. 1.5%

m/n

A
v
g
 /
 S

u
c
c
e
s
s
 r

a
te

 o
f 
Q

P

(h)

 

 

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

Avg. 10%

Avg. 20%

Avg. 30%

Succ. 10%

Succ. 20%

Succ. 30%

Fig. 3. Performance of mathematical programs: (a) No Errors, LP1, dataset1, (b) Gaussian errors, QP1, dataset1, n=50, (c) Gaussian errors, QP1,
dataset1, n=250, (d) Gaussian errors, LP2, dataset1, n=250, (e) Gaussian errors, QP1, dataset2, n=140, (f) Gaussian errors, QP1, dataset3,
n=100, (g) Gaussian random walk errors, QP1, dataset2, n=140, and (h) Clock skew errors, QP1, dataset3, n=100.

(c) Clock Skew: Clock skew results when a clock’s fre-
quency differs from that of the true clock. To compute the
frequency of a meter’s clock with skew, we assume that
the total time difference between the meter’s clock and true
clock after 10n measurements lies uniformly in the interval
[−f∆t, f∆t], f ∈ [10, 30]%. For e.g., for ∆t = 30min, n = 100

homes, 10n measurements take ∼ 21 days. If f = 10%, after
21 days the true and meter clocks could differ by as much as 3

min. This is a very high skew error; after tens of days, the time
difference between a true clock and a real clock with skew is
in the order of milliseconds. With these errors, Fig. 3(g) shows
the benchmark results for QP2 using dataset3. For errors as
high as 10%, correct phase assignments are retrieved. But for
higher errors, we see a reverse trend: QP2 retrieves correct
solutions for less measurements and incorrect solutions for
more measurements. This reverse trend occurs when errors
grow significantly with measurements. As long as errors
remain bounded with increasing number of measurements,
correct solutions are eventually retrieved.

VI. DISCUSSIONS AND FUTURE WORK

In this paper, we presented a novel approach for phase iden-
tification in smart distribution grids. The measurements from
meters at homes and the distributing transformer are collected
into a linear system of equations; and an inverse solution
is desired. We present a collection of integer programs and
their continuous relaxations, which can be used to compute
household phase with increasing number of measurements.
We systematically explore the behavior of these mathematical
programs as a function of different types of errors. Our
experiments demonstrate that as long as the errors do not
grow significantly with measurements, household phase can
eventually be retrieved given sufficient measurements.

Future work will investigate the performance of our ap-

proaches using real metering data obtained from both trans-
formers and homes as well as explore the performance of MIP
solvers with larger number of households. A related issue
is to determine confidence levels for rounded solutions of
relaxations in terms of number of measurements. We also wish
to handle the case of missing measurements. Lastly, phase
identification is the first step towards the larger problem of
phase balancing and we shall investigate this problem taking
into account various costs associated with phase re-balancing.
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