
Stream Computing Based Synchrophasor Application For
Power Grids

Jagabondhu Hazra
IBM Research, India

jaghazra@in.ibm.com

Kaushik Das
IBM Research, India

kausdas8@in.ibm.com

Deva P. Seetharam
IBM Research, India

dseetharam8@in.ibm.com

Amith Singhee
IBM T J Watson Research

Center, USA
asinghe@in.ibm.com

ABSTRACT

This paper proposes an application of stream computing analytics
framework to high speed synchrophasor data for real time moni-
toring and control of electric grid. High volume streaming syn-
chrophasor data from geographically distributed grid sensors (namely,
PhasorMeasurement Units) are collected, synchronized, aggregated
when required and analyzed using a stream computing platform to
estimate the grid stability in real time. This real time stability mon-
itoring scheme will help the grid operators to take preventive or
corrective measures ahead of time to mitigate any disturbance be-
fore they develop into wide-spread. A protptype of the scheme is
demonstrated on a benchmark 3 machines 9 bus system and the
IEEE 14 bus test system.

Categories and Subject Descriptors

J.2 [Physical Sciences and Engineering]: Engineering

General Terms

Algorithms

Keywords

Stream Computing, Power Grid, Synchrophasor, Voltage Stability

1. INTRODUCTION
Modern power grids are continuously monitored by trained sys-

tem operators equipped with sophisticated monitoring and control
systems. Despite such precautionary measures, large blackouts,
that affect more than a million consumers, occur quite frequently.
Analysis of large blackouts show that one of the major cause of
these events are lack of real time situation awareness of the grid
[1]. In many blackouts, system operators were unaware that the
grid had split into several sub-systems and hence could not initiate
corrective or preventive controls in time to mitigate such events.
This has necessitated efficient tools and technologies for real time

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HiPCNA-PG’11, November 13, 2011, Seattle, Washington, USA.
Copyright 2011 ACM 978-1-4503-1061-1/11/11 ...$10.00.

grid monitoring to identify and deal with faults before they develop
into wide-spread disturbances.
In recent years, electric grids are undergoing dramatic changes

in the area of grid monitoring and control. Key factors behind
such transformation includes tremendous progress in the areas of
power electronics, sensing, control, computation and communi-
cation technologies. For instant, conventional sensors (e.g. Re-
mote Terminal Units) provide one measurement or sample per 4-
10 seconds whereas new sensors like Phasor Measurement Units
(PMUs) could provide upto 120 measurements or samples per sec-
ond. Moreover, PMUs provide more precise measurements with
time stamp having microsecond accuracy [2]. Hence, phasor mea-
surement units could provide a precise, comprehensive view of the
entire grid.
A synchrophasor system (as shown in Fig 1) includes phasor

measurement units (PMUs) to collect real-time data and a commu-
nications system (such as a private utility line, the public switched
telephone network, or the internet) to deliver the data from many
PMUs to a local data concentrator (usually hosted by the utility
that owns the PMU) called Phasor Data Concentrator(PDC). Con-
centrated data are relayed on a wide-band, high-speed communi-
cations channel to a higher-capability data concentrator sometimes
called Super Phasor Data Concentrator (SPDC), that feeds the con-
solidated data from all the PDCs into analytical applications such
as a wide-area visualization, state estimator, stability assessment,
alarming, etc. Synchrophasor applications need to ingest, process,
and analyze continuous data streams from heterogeneous sources.
The high volume of streaming data often makes it impossible to
fully store and process all the data from disk. Fortunately, emerg-
ing stream computing paradigm not only capable of dealing with
high volume of streaming data but also enables the extraction of
new insights from data in real-time. Further, it provides functional-
ities like reconfigurability, scalability etc. to the applications which
are key requirements for these power system applications.
This paper shows how streaming synchrophasor data could be

collected, synchronized, aggregated (when required) and analyzed
for real time power system application like voltage stability moni-
toring. Monitoring and analysis of these synchrophasor data let ob-
servers identify changes in grid conditions, including the amount
and nature of stress on the system, to better maintain and protect
grid reliability. Proposed scheme is evaluated on benchmark 3 ma-
chines 9 bus test system and IEEE 14 bus test system.

43

Figure 1: A synchrophasor network consisting of PMUs, PDCs

and communication network

2. STREAM COMPUTING
Several power system applications that would need to perform

very low latency computations on real-time streaming data. It needs
a computational framework that can scale well with increasing large
amounts of streaming data and increasingly complex and numerous
applications running in parallel on this data. Similar challenges
have been faced in other fields. An example is financial engineer-
ing, where split second investment decisions have to made based
on computations on large volumes of streaming data [3], often in-
volving data analytics, pattern discovery and model training tasks
similar to the case of power system or presently known as smart
grid applications. A popular solution emerging for these scenarios
is stream computing.
Stream programming is typically done by creating a dataflow

graph [4] of operators (as shown in Fig. 2), which performs the
computation required by the application. The inputs to the dataflow
graph can be data from a variety of sources, such as internet sock-
ets, spreadsheets, flat files, or relational databases, and may be con-
sumed by one or more input operators in the graph. A synchro-
nization primitive is an example of an operator which consumes
data from multiple data streams and then outputs data only when
data from each stream is read. This can be a useful operator for
PMU data which can arrive at different times from different PDCs
due to variable network delays and sampling times. Other relevant
operators would be a fast Fourier transform (FFT) operator or a
moving average operator. Each data element arriving at the input
to an operator is typically treated as an event and the operator takes
appropriate action when events occur at its input. Operators may be
pipelined to perform in a sequential manner: output data from one
operator is consumed by the next downstream operator. Operators
may also perform in parallel if they do not have data dependencies:
output from one operator may be consumed by two or more dif-
ferent operators working in parallel. There operators are typically
contained within containers called stream processing elements. For
fast, parallel execution, the processing elements are automatically
partitioned onto parallel processors and/or machines. The optimal
partitioning depends on factors such as the amount and type of data
streaming through different processing elements, the resource re-
quirements for each of them and the dependencies between them.
Hiding the details of parallel programming from the user greatly
improves productivity and efficiency of streaming application de-
ployment. The flexibility of input formats, the ease of developing

Figure 2: InfoSphere stream processing graph

and connecting the operators, and the automatic compilation onto
parallel processors makes stream processing attractive.
Even though stream computing languages make application de-

velopment quite easy, one may need to redesign traditional algo-
rithms and applications to optimally use the stream processing flow.
Reference [5] gives an overview of algorithmic advances and chal-
lenges in implementing efficient streaming versions of traditional
algorithms. A specific example in this context is [6], where the
authors implement decision tree learning for a streaming system.
Real-time data will be available from increasingly numerous data
sources across the grid. Stream computing frameworks hold the po-
tential to enable scalable real-time applications that can extract in-
formation from this data to enable more complete situational aware-
ness and very fast operational response and control.
Although several stream computing platforms [7], [8] have been

developed recently, we are using IBM InfoSphere Streams [9], a
stream processing middleware from IBM Research that supports
high-performance, reconfigurable stream computing.

3. APPLICATION REQUIREMENTS
Real-time analytical applications for synchrophasor data demand

some functional and non-functional requirements from the implem-
tation platform.

3.1 Functional requirements
Key functional requirements of the application for the real time

operation are as follows:

• Synchronization: Although the clocks of all the PMUs are
synchronized at the accuracy of 1 microsecond, but the sam-
pling rate and the latency for different PMUs are different.
So, the data traveling from different locations have to be syn-
chronized again by the programming platform for the analy-
sis. There are some operators like Barriers and Delay which
are specifically suitable for these type of tasks. Barrier does
not operate on the data until data from all the ports arrive.
Delay operator is used to delay a stream by a given amount
of time while keeping the inter-arrival times of the tuples in-
tact.

• Analysis engines: Analytics like transient prediction, voltage
stability index calculation and state estimation form the core
of real-time synchrophasor applications. Streams allows im-
plementation of a variety of computations in the Functor op-
erator using the Streams Programming Language (SPL). For

44

complex analytics, which would typically be implemented in
C++, Streams provides a very flexible and efficient interface
between SPL and C++ to implement custom Streams opera-
tors using C++. This interface is optimally efficient because
the Streams compiler converts all SPL to C++ code and build
the final operator object code using C++ compilation. All
user-define C++ code would then be compiled together with
the pre-defined operators.

• Application health visualization: Such applications are used
to monitor and control critical infrastructure (electric power
grids). Hence, it becomes quie important to monitor the
health of the application itself so as to respond to any fail-
ures in the software (e.g., broken TCP connection to the data
sources). InfoSphere Streams provides the capability for real
time visualization of the operators and flow of data streams
in the running application.

• Historian: It is expected to store large amounts of time se-
ries synchrophasor data for post fault analysis. The applica-
tion should be able to store and retrieve such a vast amount
of data whenever required. This facility is easily achieved by
integrating InfoSphere Streams operators with a historian of
choice, for example a time series data base. Such integra-
tion is enabled by the C++ and Java interfaces available in
Streams.

• Filtering noisy data: Due to instrumentation, communica-
tion or other errors, some noise might be incorporated in the
data. It is helpful if the platform provides some methods
to filter such data. InfoSphere Streams provides an operator
called ’FILTER’ which can filter these noisy data if those
data have values which are beyond a pre-specified range.
Further, it might be helpful in diagnosing permanent instru-
mentation faults if history of the data shows similar noise for
a longer amount of time.

3.2 Non-functional requirements
The software platform should also provide the following non-

functional capabilities:

• Low latency: Since real time operation is envisaged using
large amount of data flowing over large geographical and
network distance, it is always desirable to have minimum la-
tency introduced by the programming platform or the appli-
cation itself. The latency introduced by the operators in the
InfoSphere Streams is negligible since it plays with the data
in the fly without the requirement of storing them.

• High data throughput: In a large power system, data will
flow from large number of PMUs deployed over the system
which produce data at a maximum rate of 120 samples per
second. So it is expected for the application to handle large
amount of data from 1000 of PMUs flowing at the rate of
MB/s. Since InfoSphere Streams can operate on these data
in parallel in multiple nodes without the need of storing them
therefore, InfoSphere Streams can apparently handle infinite
streams of data in real time.

• Reconfigurability: In power system, equipments are put out
for maintenances or due to outages. So the software platform
should allow for dynamic reconfiguration of the system with-
out requiring to stop the software.This facility is provided by

InfoSphere Streams since it allows for dynamic connections
and submitting as many jobs as needed. Streams generated
by one application often serve as input to another, and the
second application may be deployed when the first is already
running. The Import and Export special operators support
dynamic application composition, where one application ex-
ports a stream, another application imports the stream, but
both applications are instantiated separately and may even
be mutually anonymous.

• Scalability: The software developed should allow for differ-
ent size and configuration of the system so that the future
upgradation of the system is not limited by the software ca-
pabilities. InfoSphere Streams achieves this goal by com-
bining a simple and flexible flow language with an extension
mechanism for integrating native code as fast, flexible, and
reusable stream operators.

• Highly available Software should be highly available in the
sense that even during any configuration change or software
upgrades the software should not be shut down. Further, even
if communication to any of the PMUs is lost due to any rea-
sons, still then the software should be available. In InfoS-
phere Streams, if any of the nodes fails, the tasks of that node
can be taken by the other nodes, thereby making the software
available even during faults or maintenances of the nodes.

• Easily re-deployable: The software should be easily re-deployable
to any system regardless of any system parameters. InfoS-
phere Streams dynamically deploys the operators so dynam-
ically it makes the codes ompatible for re-deploying.

• Easy integration with downstream applications/engines: It
should be easily integrable to any other power system anal-
ysis engine regardless of the format of that engine. Info-
Sphere Streams allows configuring output port into various
format(TCP socket, UDP socket, File).

4. VOLTAGE STABILITY INDEX
Having above mention features and capability, InfoSphere Streams

could be efficiently used for various real time power grid applica-
tions like state estimation, visualization, voltage stability monitor-
ing, transient stability monitoring, adaptive protection, High volt-
age AC and DC line control, frequency control, congestion man-
agement, real time energy pricing, etc. This paper shows an ex-
ample how stream computing could be used for real time voltage
stability monitoring.
A voltage stability monitoring system measures voltage stability

which is a serious concern for grid operators due to its importance
in ensuring system security and power quality. Loss of voltage sta-
bility, also known as a voltage collapse, can either result from the
inability of the power system to supply reactive power or by an
excessive absorption of reactive power by the system itself. Grid
operators use a metric known as Voltage Stability Index (VSI) to
determine the probability of a voltage collapse and to identify vul-
nerable buses (a bus is also known as a substation). Voltage stability
index of bus i is defined as [10]:

Vsi =
∂Pi/∂δi

∑
n
j=1, j 6=i Bi jV j

(1)

45

Where, n is number of buses in the system, Pi is the real power
injection at bus i, V j is the magnitude of voltage at bus j, δi is the
phase angle of voltage at bus i and Bi j’s are elements of the network
admittance matrix. Bi j = 0 if no transmission line connects bus i
directly to bus j in the grid. The stability index of a grid is sim-
ply the minimum of stability indices of all its buses and therefore
depends on the most vulnerable bus. For a stable grid, the stability
index is generally greater than 0.8. However a value close to 0.5
indicates that the grid is on the verge of a collapse.

4.1 Aggregation for Graceful Degradation
In a voltage monitoring system, PMU devices measure and pub-

lish streams of voltage parameters (magnitudeV j , phase angle δi) of
buses within the grid. Applications subscribe to these streams in or-
der to compute the VSI’s of buses. During network overload, PMU
streams traveling from the publishers toward a subscriber can be
aggregated at intermediate nodes to minimize load. Voltage moni-
toring system, like a lot of smart grid applications, can safely work
with such aggregated data. As discussed in [11] different aggrega-
tion functions can be applied in-network during conditions of over-
load, thus gracefully degrading the quality of VSI’s inferred at the
subscriber.

Data Prioritization Not all data from all PMUs is equally im-
portant to compute the VSI’s of buses. In particular, the following
heuristic can be used to drop low priority data and reduce network
load. Data from PMUs deployed at transmission/distribution sub-
stations whose reported values are below their rated values must
be given higher priority because such a dip indicates proximity to
voltage collapse. Therefore the following steps can be used for data
prioritization at an intermediate node for voltage stability monitor-
ing:

1: Collect PMU voltage magnitudes Xt = [v1,v2, ...,vn] (in per
units) measured at a common time instant t.

2: Sort Xt in ascending order.
3: for i= 1 to n do
4: if X it <= vth then
5: select X it
6: end if

7: end for

where, vth is threshold value of voltage that is usually set at 1.0.

Data Dropping In power systems, voltage phasor measurements
do not change abruptly unless there are disturbances or faults in the
system. During normal operation, the state of the system changes
gradually. Therefore during overload, data from PMU streams orig-
inating from grid subsystems that are operating normally and do
not change significantly over time, can be dropped. The following
function can be used to drop data for voltage stability monitoring:

1: Let Xt = [x1t ,x
2
2, ...,x

n
t] and Xt−1 = [x1t−1,x

2
t−1, ...,x

n
t−1] be the

data at time instants t and t−1 respectively
2: for i= 1 to n do
3: if abs(xit −x

i
t−1) <= xi

th
then

4: drop data xit
5: end if

6: end for

where, xi
th
is threshold value of the data. In a realistic setting, a

threshold of 0.005 per unit can be used for voltage magnitudes and
0.5 degree for phase angles.

Data Clustering Several PMUs in the grid may report voltage
values that are identical or numerically close to each other. These
could be clustered to reduce data volume. Following steps can be
used for clustering:

1: Let Xt = [x1,x2, ...,xn] be the data of time instant t. Let k be the
number of clusters.

2: Choose k random data points as initial cluster center µ
3: Calculate the distance, d(i, j) from the center of each cluster to
each data point

4: for i= 1 to k do
5: for j = 1 to n do
6: d(i, j) = (‖ x j−µi ‖)

2

7: end for

8: end for
9: Assign each data point, x j to the cluster i where d(i, j) is min-
imal

10: Compute mean center of each cluster µi for all clusters
11: Repeat Steps 3-10 until all the data points are assigned to their
optimal cluster centers.

Partial Computations VSI computations can be performed in a
distributed manner since VSI of a bus only depends on measure-
ments at that bus and those buses directly connected to it. There-
fore instead of forwarding raw PMU streams, nodes can participate
in computations and only forward partially computed results. With
usual notation, Eq. (2) shows that VSI of bus i can be estimated
using partial summations that can be performed at different inter-
mediate nodes of the network:

1

Vsi
=

n

∑
j=1, j 6=i, j∈A

Bi jV j

∂Pi/∂δi
+

n

∑
j=1, j 6=i, j 6∈A

Bi jV j

∂Pi/∂δi
(2)

5. EXPERIMENT
Application is evaluated on benchmark 3 machines 9 bus system

as shown in Fig. 3 and IEEE 14 bus test system. Benchmark 9 bus
system has 3 generators, 6 transmission lines, and 3 transformers.
It is divided into three zones: Zone 1 - buses 2, 5, and 7; Zone 2
- buses 1, 4, and 6 and Zone 3 - buses 3, 8, and 9. Each bus or
substation has a PMU that generates a stream of samples at a rate
of 20Hz. PMUs report their streams to respective local Phasor Data
Concentrator (PDC) nodes. That is, PMUs in Zone 1 report mea-
surements to PDC1, PMUs in Zone 2 to PDC2 and PMUs in Zone 3
to PDC3. These PDCs in turn forward the measurements to a cen-
tral super PDC (SPDC) that hosts the voltage stability monitoring
application. Similarly, 14 bus system is also divided into 3 zones
and in each zone one PDC is placed.

Figure 3: Benchmark 3 macines 9 bus test system

For 9 bus test system, InfoSphere stream processing graph is
shown in Fig. 4. In this graph, Source operators are used to col-

46

lect live data from the grid sensors. Source operator creates stream
from data flowing from the external sources. This operator sup-
ports universal resource locators (URIs) like file, UDP datagram-
based socket, and TCP socket connection. Tuples within the data
streams are then sorted using Sort operator. Sort operator creates a
temporary window based on either tuple count or time and sort the
tuples within the window based on tuple attributes. In this applica-
tion tuples are sorted based on data time stamp. In Fig. 4 first 3 sort
operators run within PDC1, next 3 run in PDC2, and last 3 run on
PDC3. Within each PDC, data streams from sensors are synchro-
nized using Barrier operator which consumes tuples from multiple
streams, outputting a tuple only when a tuple from each of the in-
put streams has arrived. Similarly, streams from three local PDCs
are again synchronized in SPDC using another barrier operator as
shown in Fig. 4. Local PDCs could host applications like fault
detection, fault analysis, circuit breaking switching, disturbance
recording, etc and generate appropriate feed back controls. Local
PDCs also host the data aggregation functions to manage commu-
nication congestions. Each local PDC combines the tuples from
each sensor and creates one tuple and send to the super PDC. Super
PDC unbundles the tuples using f unctor operator, sorts the tuples
based on time stamp and hosts the application. In the data stream,
all the tuples having same time stamp are separated by punctuation
mark. This punctuation mark is incorporated using punctor opera-
tor as shown in Fig. 4. Aggregate operator creates a temporary data
window, fills it with the tuples having same time stamp (between
two punctuation mark) and extracts the required information for a
particular application from the raw data streams. Extracted infor-
mation are used within f unctor operator to determine the stability
of the grid in real time.
In order to demonstrate the real time voltage stability monitoring

scheme, two case studies are made. In the first case, grid is assumed
to operate in rated condition and it is gradually overloaded by up
to 20% of its rated capacity using a step size of 1%. In the second
case, with the increase in grid load, we have incorporated a fault
in the system and transmission lines. Fig. 5 shows the voltage sta-
bility indices (VSIs) of all the substations of 9 bus system. Fig. 5
shows that VSIs decrease correctly in response to overloading and
last three curves corresponding to buses 5, 6, and 8 have low sta-
bility indices. Hence these are most affected buses by overload and
voltage instability is more likely to happen in these buses. Thus
real time visualization of these stability curves will provide situa-
tion awareness of the complete grid to the system operators. Fig.
6 presents grid behavior with a fault in the grid. It clearly shows
the fault inception point and also shows as soon as fault is incepted
in the grid, stability indices of buses 4, 5 and 6 drastically reduces
and become unstable within few seconds. However, such situation
could be avoided if proper controls are initiated as soon as fault is
detected by the monitoring scheme.
We evaluated the impact of in-network aggregation of PMU streams

on the accuracy of voltage stability index calculations using aggre-
gation algorithms described in section IV. Figure 7 shows the com-
puted VSI for bus 14 under different operating conditions when the
grid is overloaded from 0-20%. We can see that the aggregation
functions alter the VSI only by a small factor. The VSI estimate
computed using various aggregation algorithms remains close to
the VSI computed using raw PMU streams and in general all the
aggregation algorithms perform well.
Figure 8 compares the different aggregation algorithms and plots

the error in estimated voltage stability indices averaged across all
14 buses in the grid. Overall, all aggregation algorithms perform
well and the errors vary between 1-8%. One can observe that par-
tial computation method perform best compared to other aggrega-

Figure 5: Real time voltage stability monitoring using InfoS-

phere Streams

Figure 6: Real time voltage stability monitoring using InfoS-

phere Streams

tion functions. This is not surprising given that distributed compu-
tations do not introduce any error. The error in partial computations
results from loss of time synchronization between measurements.
On the other hand, error for data prioritization is high and fluctuates
widely. The error for data clustering is high as well, but remains
constant. Lastly, the error level for data dropping fluctuates, but
within a small range.
Figure 9 shows the percentage reduction in traffic volume with

different in-network aggregation algorithms. The figure shows that
in general 20-50% data reduction is possible by using aggregation
algorithms designed for voltage monitoring application. In case of
data prioritization, the possibility of reduction in traffic gradually
decreases from 32% to 21% as most of the substations suffer from

Figure 7: Voltage Stability Index of bus 14 computed using a

number of different in-network aggregation algorithms.

47

Figure 4: InfoSphere Streams processing graph for real time voltage stability monitoring

Figure 8: Errors in Voltage Stability Index averaged over 14

buses with different in-network aggregation algorithms.

voltage problems with increased overload. For data dropping algo-
rithm, reduction in data fluctuates between 20-40% as voltage pha-
sors change significantly with roughly 2-3% change in load. Simi-
larly, clustering (with 8 clusters) results in about 40% reduction of
traffic while partial computations (with 3 PDC nodes) results in the
largest reduction of about 50%.
The above experiments clearly demonstrate that voltage stability

monitoring can safely work with in-network aggregated data. Thus
this property can be exploited for any practical grid of several thou-
sand substations to reduce traffic volume during network overload
and gracefully degrade application performance.

6. CONCLUSIONS
This paper illustrated how stream computing analytic could be

used for real time voltage stability monitoring of electric grid. This
monitoring scheme will provide a real time situation awareness
to the grid operator to help in taking preventive/corrective control
ahead of time. As stream computing supports scalability, the ap-

Figure 9: Reduction in traffic volume with different in-network

aggregation algorithms.

plication could be easily deployed to any real grid irrespective of
size.

7. REFERENCES

[1] G. A. et al., “Reasoning about naming systems,” IEEE Trans
Power Systems, vol. 20, no. 4, pp. 1922–1928, November
2005.

[2] K. Zhu, L. Nordstrom, and L. Ekstam, “Application and
analysis of optimum pmu placement methods with
application to state estimation accuracy,” in IEEE PES
General Meeting, 2009, pp. 1–7.

[3] H. Wu, B. Salzberg, and D. Zhang, “Online event-driven
subsequence matching over financial data streams,” in ACM
SIGMOD Intl. Conf. on Management of Data, 2004.

[4] B. Gedik, H. Andrade, K. L. Wu, P. Yu, and M. Doo, “Spade:
The system s declarative stream processing engine,” in
SIGMOD, 2008, pp. 1123–1133.

[5] S. Muthukrishnan, Data streams: algorithms and
applications. Now Publishers, 2005.

48

[6] G. Hulten, L. Spencer, and P. Domingos, “Mining time
changing data streams,” in ACM Conf. on Knowledge
Discovery and Data Mining, 2001.

[7] D. J. A. et al, “The design of the borealis stream processing
engine,” in Proc. CIDR, 2005, p. 277-289.

[8] T. S. Group, “Stream: The stanford stream data manager,”
2003.

[9] IBM-Research, “Infosphere streams,”
http://www-01.ibm.com/software/data/infosphere/streams/.

[10] A. K. Sinha and D. Hazarika, “Comparative study of voltage
stability indices in a power system,” Electrical Power and
Energy Systems, vol. 22, no. 8, pp. 589–596, 2000.

[11] V. Arya, J. Hazra, P. Kodeswaran, D. Seetharam,
N. Banerjee, and S. Kalyanaraman, “Cps-net: In-network
aggregation for synchrophasor applications,” in Third
International Conference on Communication Systems and

Networks (COMSNETS), 2011.

49

