
Pushpin Computing System Overview:

a Platform for Distributed, Embedded,

Ubiquitous Sensor Networks

Joshua Lifton

1

, Deva Seetharam

2

, Mi
hael Broxton

1

, and Joseph Paradiso

1

1

MIT Media Lab, Responsive Environments Group, 1 Cambridge Center 5FL,

Cambridge, MA 02142 USA

flifton, mbroxton, joepg�media.mit.edu

http://www.media.mit.edu/resenv/

2

MIT Media Lab, Physi
s & Media Group, 20 Ames Street,

Cambridge, MA 02139 USA

deva�media.mit.edu

http://www.media.mit.edu/physi
s/

Abstra
t. A hardware and software platform has been designed and im-

plemented for modeling, testing, and deploying distributed peer-to-peer

sensor networks
omprised of many identi
al nodes. Ea
h node possesses

the tangible a�ordan
es of a
ommonpla
e pushpin to meet ease-of-use

and power
onsiderations. The sensing,
omputational, and
ommuni
a-

tion abilities of a \Pushpin", as well as a \Pushpin" operating system

supporting mobile
omputational pro
esses are treated in detail. Exam-

ple appli
ations and future work are dis
ussed.

1 Introdu
tion

\A
o
hroa
h has 30,000 hairs, ea
h of whi
h is a sensor. The most

omplex robot we've built has 150 sensors and it's just about killed us.

We
an't expe
t to do as well as animals in the world until we get past

that sensing barrier."

Rodney Brooks in Fast, Cheap & Out of Control [1℄

Sensors to transdu
e physi
al quantities from the real world into a ma
hine-

readable digital representation are advan
ing to the point where size, quality

of measurement, manufa
turability, and
ost are no longer the major stumbling

blo
ks holding us ba
k from
reating ma
hines equipped with as mu
h sensory

bandwidth as some animals, if not people. Rather, we are fa
ed with a problem

of our own devising { how do we
ommuni
ate,
oordinate, pro
ess, and rea
t

to the
opious amount of sensory data now available to the ma
hines we build?

Certainly, some su

ess in harvesting and responding to multiple data streams

originating from a quantity of sensors has been demonstrated (e.g. [2℄), but su
h

examples do not s
ale; using traditional sensing methods, even adding one more

sensor to an array of a
ouple dozen sensors presents a formidable
hallenge on

2 Joshua Lifton et al.

both the hardware and software fronts. As the number of sensors in
reases to the

thousands, hundreds of thousands and beyond, any tra
table solution will have

to rely on prin
iples of self-organization at the level of the sensors themselves in

order to guarantee the proper s
aling properties. In this sense, it behooves us

to begin treating sensor systems as distributed networks wherein ea
h node is

a self-suÆ
ient sensing unit and
oordination among nodes takes pla
e lo
ally,

automati
ally, and without
entralized supervision.

Distributed sensor networks are immediately relevant to many real world

appli
ations; robot skins, smart
oors, battle�eld re
onnaissan
e, environmental

monitoring, HVAC (heating, ventilation, air-
onditioning)
ontrol, high-energy

parti
le dete
tors, and spa
e exploration are among the many areas that
ould

bene�t from distributed sensor networks. Perhaps the greatest use of distributed

sensor networks, however, lies not in the preexisting appli
ations they augment,

but rather in the future appli
ations they enable. Obviously, it is impossible to

fully enumerate these future appli
ations, but it is not hard to spe
ulate that

advan
es in any number of �elds will only make that list longer.

In this paper we introdu
e the Pushpin Computing platform as a general pur-

pose hardware and software toolkit for studying, designing, prototyping, and de-

ploying dense sensor networks. Details of the hardware and programming model

are given, as well as the design
onsiderations that lead up to the
urrent imple-

mentation. A simple example is illustrated step by step.

2 Related Work

Depending on the parti
ular
ir
umstan
es, the term distributed sensor network

an meaningfully be atta
hed to a large number of systems varying widely a
ross

many distin
t parameters, su
h as physi
al layout, network topology, memory

resour
es,
omputational throughput, sensing
apabilities,
ommuni
ation band-

width, and usability. A

ordingly, what quali�es as resear
h into distributed sen-

sor networks is just as general. In su
h a general
ontext, everything from tra
ing

TCP/IP pa
ket
ow through the Internet to quantifying
olle
tive ant behav-

ior
an be
onsidered as examples of resear
h into distributed sensor networks.

Nonetheless, there are very spe
i�
 bodies of resear
h that are either tangential

or very
losely related to the work presented here.

The dire
t inspiration for this work is Butera's Paintable Computing sim-

ulation work [3℄. Paintable Computing begins with the premise that, from an

engineering standpoint, we are not very far away from being able to mix thou-

sands or millions of sand grain-sized
omputers into a bu
ket of paint,
oat

the walls with the resulting
omputationally enhan
ed paint, and expe
t a good

portion of the pro
essors to a
tually fun
tion and
ommuni
ate with their neigh-

bors. The main problem with this s
enario, a

ording to Butera, is that we don't

yet have a
ompelling programming model suitable for su
h a system. Paintable

Computing attempts to put forth just su
h a model, as well as a suite of example

appli
ations. To this end, Paintable Computing is a simulation of many (tens

of thousands) of independent
omputing nodes pseudo-randomly strewn a
ross

Le
ture Notes in Computer S
ien
e 3

a surfa
e. Ea
h node is
apable of
ommuni
ating with other nodes within a

limited radius, although no node knows a priori anything about its physi
al

lo
ation on the surfa
e. From these simple postulates, Paintable Computing

demonstrates the utility of algorithmi
 self-assembly to build up
omplex global

behavior a
ross the system as a whole from simple lo
al intera
tions among pro-

ess fragments that migrate among the pro
essing nodes. Pushpin Computing

started out as an attempt to instantiate in hardware as
losely as possible the

Paintable simulations, ea
h Pushpin
orresponding to a single pro
essing node.

This will be dis
ussed further in the
oming se
tions.

Resni
k's StarLogo programming language [4℄ provides an a

essible but ri
h

simulation environment for exploring de
entralized emergent systems. The Push-

pin programming model is in
uen
ed by StarLogo's intuitive approa
h.

Although there are surely many more examples of
omputer simulation re-

sear
h that have some bearing on distributed sensor networks, Berkeley's (now

Intel Resear
h Lab at Berkeley) SmartDust and its asso
iated TinyOS software

environment is the only known hardware platform developed in a spirit at all

similar to that of the Pushpins. The SmartDust/TinyOS platform was devel-

oped from the bottom up, shaped by the real-world energy limitations pla
ed

upon nodes in a distributed sensor network [5, 6℄. As su
h, ea
h node is rela-

tively resour
e poor in terms of bandwidth and peripherals. Furthermore, the

assumption is made that almost all
ommuni
ation within a distributed sensor

network is for the purpose of
ommuni
ating with a a
entralized base station [7℄.

In
ontrast, the Pushpin platform was built more from the top down, provides

ea
h node with a ri
h set of onboard peripherals, bandwidth, and software, and

onsumes
orrespondingly more energy per node.

3 Design Points

The primary motivator for the Pushpin Computing proje
t is to a
hieve the one

goal ina

essible to
omputer simulations of distributed sensor networks { to

sense and rea
t to the physi
al world. The goal is to devise sensor networks that

self-organize in su
h a way so as to prepro
ess and
ondense sensory data at the

lo
al sensor level before (optionally) sending it on to more
entralized systems.

This idea is somewhat analogous to the way the
ells making up the various

layers of a retina intera
t lo
ally within and a
ross layers to prepro
ess some

aspe
ts of
ontrast and movement before passing the information on to the opti

nerve and then on to the visual
ortex [8℄.

The
ompelling ar
hite
ture arti
ulated and demonstrated in simulation by

the Paintable Computing proje
t provides a base set of design points for the

hardware, operating system, and programming environment from whi
h it is

possible to build a distributed sensor network that a
hieves the goal of self-

organization.Where pra
ti
al, the Pushpin platform follows this blueprint
losely.

To paraphrase [3℄:

4 Joshua Lifton et al.

{ Ea
h Pushpin (node) has the ability to
ommuni
ate lo
ally with its spatially

proximal neighbors, the neighborhood being de�ned by the range of the mode

of
ommuni
ation employed.

{ Ea
h Pushpin must reliably handle the fa
t that the number of addressable

neighbors in the
ommuni
ation neighborhood
an vary unpredi
tably.

{ Ea
h Pushpin must reliably handle the fa
t that messages sent to its neigh-

bors may exhibit a probabilisti
 transit times and are not expli
itly a
knowl-

edged.

{ Ea
h Pushpin must provide for a me
hanism for installing, exe
uting, and

passing on to its neighbors
ode and data re
eived over the
ommuni
ation

hannel.

In addition, the Pushpin platform is designed spe
i�
ally for ease of proto-

typing a wide range of digital and analog appli
ations, so it
an readily serve as

a testbed for pra
titioners
oming from many perspe
tives.

4 Hardware

The Pushpin proje
t embeds a 20 MIPS mixed-signal mi
ro
omputer system

into the form fa
tor of a bottle
ap with the tangible a�ordan
es of a thumb

ta
k or pushpin. The Pushpin hardware platform is designed around a balan
ed

optimization of small physi
al footprint, fun
tional modularity, expandability,

generality, and
omputational power. To this end, ea
h Pushpin
onsists of four

modules that separately handle power,
ommuni
ation, pro
essing, and appli-

ation spe
i�
 fun
tions. Ea
h module is
ontained on a printed
ir
uit board

(PCB) measuring roughly 18mm x 18mm and sta
ks together with other modules

verti
ally from bottom to top in the order listed. See Fig. 1. The total sta
ked

height of a Pushpin varies depending on the modules used, but is typi
ally on

the order of 18mm as well. A des
ription of ea
h module and the
onne
tions

between them follow.

Fig. 1. Modules of a Pushpin

Le
ture Notes in Computer S
ien
e 5

4.1 Power Module

The Pushpin moniker derives from the original power s
heme implementation

in whi
h protruding from the underside of ea
h Pushpin devi
e are a pair of

pins of unequal length that
an be easily pushed into a laminate power plane

made from two layers of aluminum foil sandwi
hed between insulating layers of

sti� polyurethane foam [9℄. One of the foil layers provides power and the other

ground. This novel setup satis�es power and usability requirements (no
hang-

ing of batteries or rewiring of power
onne
tions, simply push the Pushpin into

the substrate) and hints at the idea of both physi
ally and fun
tionally merging

sensing and
omputing networks with their surroundings. While this solution

blatantly sidesteps the important issue of power
onsumption (the powered sub-

strate is plugged into a power supply), it allows for very qui
k prototyping and

minimal maintenan
e overhead.

Fig. 2. Pushpin power s
heme

Other power sour
es
an easily take the pla
e of the pins and substrate

as long as they provide 2.7VDC to 3.3VDC. Two AAA batteries in series is

a simple, if bulky alternative. The total power
onsumed depends strongly on

the parti
ular expansion, pro
essing, and
ommuni
ation modules employed and

how they are used. For example, the pro
essing module has several di�erent

modes of operation, ea
h requiring a di�erent amount of power. Typi
al
urrent

6 Joshua Lifton et al.

onsumption of the pro
essing module running at 22MHz with all ne
essary

peripherals enabled is roughly 10mA, whereas the pro
essing module running in

a low-power mode o� of an internal 32kHz
lo
k requires roughly 10�A. With

the
lo
k shutdown, this falls to about 5�A. A

ordingly, the lifespan of a power

sour
e
an vary from hours to years depending on the parti
ular
ir
umstan
es.

4.2 Communi
ation Module

Anything
ontaining all the ne
essary hardware for e�e
tively transmitting from

and re
eiving to a typi
al hardware UART quali�es as a
ommuni
ation module.

That is, the
ommuni
ation board
onsists of all
ommuni
ation hardware ex
ept

the UART itself, whi
h is built into the pro
essor on the pro
essing module.

Currently, several
ommuni
ation modules are available for Pushpins, in
luding

a
apa
itive
oupling module and an infrared module whi
h both run at up to

166kbps. See Fig. 3. A radio module is under development. There is also an

interfa
e for RS232
ommuni
ation with a PC over a serial port.

Fig. 3. Pushpins equipped with IR
ommuni
ation modules (and white di�user rings)

drawing power from the laminate substrate

4.3 Pro
essing Module

The Pushpins are designed around the Cygnal C8051F016 { an 8-bit, mixed

signal, up to 25 MIPS, 8051-
ore mi
ropro
essor. The Cygnal
hip is equipped

Le
ture Notes in Computer S
ien
e 7

with 2.25-Kbytes of RAM and 32-Kbytes of in-system programable (ISP)
ash

memory. All hardware supporting the operation of the mi
ropro
essor as well

as the mi
ropro
essor itself is
ontained on the Pushpin pro
essing module. The

mi
ropro
essor runs o� of a 22.1184MHz external
rystal but also has its own

adjustable internal
lo
k for lower power modes. A simple LED indi
ates the

status of the mi
ropro
essor. Conne
tors providing a

ess to the mi
ropro
essor's

analog and digital peripherals
omprise the remainder of the pro
essing module.

See Fig. 4.

4.4 Expansion Module

The the expansion module is where most of the user hardware
ustomization

takes pla
e for any given Pushpin. The expansion module has a

ess to all the

pro
essing module's analog and digital peripherals not devoted to the
ommuni-

ation module. This in
ludes general purpose digital I/O,
omparators, analog-

to-digital
onverters,
apture
ompare
ounters, and IEEE standard JTAG pro-

gramming and debugging pins, among others. The expansion module
ontains

appli
ation spe
i�
 sensors, a
tuators, and external interrupt sour
es. Exam-

ples in
lude sonar transdu
ers, LED displays, mi
rophones, light sensors, and

supplementary mi
ro
ontrollers.

5 Programming Model

The Pushpin programming model is heavily informed by the Paintable Comput-

ing programming model [3℄ and attempts to follow it as
losely as possible. The

o

asional deviations from that model are due to somewhat limited
omputa-

tional resour
es and reasons of pra
ti
ality. In essen
e, the programming model is

based on algorithmi
 self-assembly; the idea that small algorithmi
 pro
ess frag-

ments with simple lo
al intera
tions with other pro
ess fragments
an result in

omplex global algorithmi
 behavior. In a sense, algorithmi
 self-assembly treats

algorithms in the same way thermodynami
s treats gas parti
les [10℄; when the

number of parti
les is large, pV = nRT be
omes more useful than knowing the

position and momentum of ea
h parti
le.

The Paintable Computing proje
t su

essfully demonstrated algorithmi
 self-

assembly in simulation. The goal of the Pushpin programming model is to
reate

a suitable tool for exploring algorithmi
 self-assembly as it relates to sensory data

extra
ted from the real world. To this end, an operating system, networking

proto
ol, and pro
ess fragment integrated development environment (IDE) have

been implemented.

5.1 Pro
ess Fragments

A pro
ess fragment is the atomi
 algorithmi
 unit in algorithmi
 self-assembly.

Carrying the thermodynami
s analogy further, a pro
ess fragment
orresponds

to a single gas parti
le. A pro
ess fragment (`pfrag') is de�ned as the
oupling of

8 Joshua Lifton et al.

Expansion Module

 - user-defined sensors, actuators, and JTAG interface

Processing Module

 - Cygnal C8051F016, status LED, 22.1184MHz crystal

Communication Module

 - infrared, capacitive coupling, serial port, radio, etc.

Power Module

 - pushpins, batteries, wired, etc.

power & ground

7 multiplexed 10-bit 200ksps ADC channels

12-bit digital-to-analog converter

2 comparators

4 JTAG programming pins

8 digital I/O pins capable of becoming:

 comparator outputs, system clock, external interrupts,

 programmable counters (PWM, capture/compare, etc.)

UART transmit & receive

12-bit digital-to-analog converter

10-bit 200ksps ADC channel

6 digital I/O pins w/ 4 external interrupts

power

ground

power

ground

Fig. 4. The Pushpin hardware spe
i�
ation. The shaded boxes represent di�erent hard-

ware modules. The arrows represent resour
es that the module at the tail of the arrow

provides to the module at the head of the arrow

state information (`state') and exe
utable
ode (`
ode'). A pfrag's
ode a
ts on or

a

ording to the pfrag's state and has the ability to modify it. A pro
ess fragment

is entirely
ontained and exe
uted within a single Pushpin, but may transfer or

opy itself to neighboring Pushpins and begin exe
ution there. In order to ensure

interoperation between pro
ess fragments and the Pushpin operating system

(Bertha), pro
ess fragments must
onform to the following
onstraints:

{ Implement an install fun
tion to be
alled by Bertha when the pro
ess

fragment is �rst exe
uted in a given Pushpin.

{ Implement a deinstall fun
tion to be
alled by Bertha when the pro
ess

fragment is to be removed from a given Pushpin.

{ Implement an update method to be repeatedly
alled by Bertha as long as

the pro
ess fragment resides within a Pushpin. There is no guarantee how

often the update fun
tion will be
alled, only that it will be
alled. This is

where most of the fun
tionality of a pro
ess fragment resides.

{ Total pro
ess fragment
ode size limit of 2-Kbytes.

Le
ture Notes in Computer S
ien
e 9

Pushpin Memory Organization

Native RAM

(256-bytes)

Extended RAM

(2-Kbytes)

ISP Flash Memory

(32-Kbytes)
8051 Special Function

Registers (128-bytes)

PFrag #11 Code

OS Scratch

Neighborhood

Watch (NW)

PFrag Bulletin

Board System

(BBS)

PFrag State

Table

Stack

Current PFrag

State Pointer

Neighborhood

Watch

Bertha OS Code

Random Seed

PFrag #1 Code

PFrag #2 Code

Fig. 5. A Pushpin's memory,
arefully divided between pro
ess fragments and the

operating system

{ Total pro
ess fragment state size limit of 256-bytes.

Aside from the required fun
tions, pro
ess fragments may also
ontain as

mu
h private
ode as the 2-Kbyte limit allows.

5.2 Bertha: The Pushpin OS

Underlying system operation is handled by Bertha { a small, lightweight oper-

ating system developed espe
ially for the Pushpins. Ea
h Pushpin has its own

instan
e of Bertha to manage pro
essor startup, memory, a

ess to hardware pe-

ripherals and system servi
es,
ommuni
ation with neighboring Pushpins, and,

its primary
harge, resident pro
ess fragments.

Bertha
an a

ommodate up to 14 pro
ess fragments at any given time. Pro-

ess fragments enter a Pushpin through the
ommuni
ation port either wirelessly

via a neighboring Pushpin or from a devi
e pretending to be a Pushpin. The pro-

ess fragment is written to memory (
ode to
ash memory and state to RAM),

he
ked for errors by means of a simple
he
ksum, added to the list of resident

pro
ess fragments (assuming the
he
ksum passes), and initialized by
alling its

install fun
tion. Bertha exe
utes the update fun
tion of resident pro
ess frag-

ments using a simple round-robin s
heme. Ea
h pro
ess fragment is allowed to

run its update fun
tion to
ompletion ea
h time it is
alled. Bertha provides

various utility system fun
tions to pro
ess fragments, su
h as those that return

the
urrent system time or a pseudo-random number.

10 Joshua Lifton et al.

Bertha also negotiates all
ommuni
ation on the behalf of pro
ess fragments.

Spe
i�
ally, it provides for
ommuni
ation between pro
ess fragments in the

same Pushpin by means of a bulletin board system (BBS). By making system

alls to Bertha, pro
ess fragments
an post arbitrary messages of limited size

to the BBS and read messages posted by other pro
ess fragments. A Pushpin's

BBS
an be posted to and read from only by pro
ess fragments within that

Pushpin. Bertha does, however, maintain a Neighborhood Wat
h { a list of

neighboring Pushpins (those within
ommuni
ation range) and brief synopses

of their BBSs. The information
ontained in ea
h neighbor synopsis is
ulled

from that neighbor's own BBS. Due to memory
onstraints, it is not possible

to mirror the entirety of all neighboring Pushpins' BBSs. Instead, whenever a

pro
ess fragment posts to the lo
al BBS, it has the option of marking that

post to be in
luded in the synopsis sent out to neighboring Pushpins. Bertha

is responsible for arbitrating whi
h of these posts get in
luded in the synopsis

in the
ase of the synopsis �lling up. Currently, Bertha gives priority to newer

posts, although this does not have to be the
ase and pro
ess fragments should

not assume any parti
ular method for
hoosing what is in
luded in the synopsis.

Pro
ess fragments
an make a request to Bertha to transfer them to one

of the Pushpins listed in the Neighborhood Wat
h. When su
h a request is

made, Bertha adds the request to the queue, waits until all resident pro
ess

fragments have been updated, and then negotiates ea
h transfer request with the

appropriate neighbor. No guarantee is made that the transfer will be granted.

At a low level, Bertha manages the Pushpin's half-duplex
ommuni
ation

hannel with its neighbors using a simple exponential ba
k-o� proto
ol for
olli-

sion avoidan
e. Bertha attempts to dete
t
ollisions with a simple
he
ksum. To

help alleviate the hidden node problem, Bertha is able to listen for transmissions

from neighbors at a variable threshold (at least when using the infrared or
a-

pa
itive
oupling
ommuni
ation module). Bertha listens at a very low threshold

before transmitting and a very high threshold when re
eiving.

An analog-to-digital
onverter (ADC)
hannel in
onjun
tion with a simple

voltage divider allows the Pushpin operating system to dete
t whi
h
ommuni-

ation and expansion modules make up the Pushpin (as ea
h type of module

produ
es a
hara
teristi
 voltage read by the ADC), making for plug-and-play

fun
tionality. On
e Bertha knows what kind of hardware it is dealing with, it

provides mediated a

ess of those resour
es to resident pro
ess fragments. Thus,

a pro
ess fragment
an request to be informed during its next update
y
le of

a given interrupt being triggered or of a
ertain
ondition o

urring. Pro
ess

fragments
an also take
ontrol of
ertain hardware peripherals, su
h as general

purpose I/O pins,
omparators, and analog-to-digital
onverter
hannels.

Sin
e even some of the simplest algorithms already mentioned (e.g. exponen-

tial ba
k-o�) require randomness, Bertha maintains a 1024-bit seed for use in a

pseudo-random number generator. (The size of this seed is unne
essarily large

due to an artifa
t of the hardware organization of the
ash memory). This seed

an be
hanged during runtime.

Le
ture Notes in Computer S
ien
e 11

See Fig. 5 for a s
hemati
 view of the memory layout of a Pushpin and its

operating system.

5.3 Pushpin IDE

Users
an
reate
ustom pro
ess fragments using the Pushpin integrated devel-

opment environment (IDE). The Pushpin IDE is a Java program that runs on

a desktop PC. Pro
ess fragment sour
e
ode is authored within the IDE using

a subset of ANSI C supplemented by the system fun
tions provided to pro
ess

fragments by Bertha, prepro
essor ma
ro substitutions, and IDE pre-formatting.

The IDE
oordinates the formatting of sour
e
ode,
ompilation of sour
e
ode

into obje
t �les, linking of obje
t �les, and transmission of
omplete pro
ess

fragments over a serial port to an expe
tant Pushpin with Bertha installed and

running. The IDE also enfor
es the pro
ess fragment stru
ture requirements

outlined in x5.1.

Currently, the Pushpin IDE
alls upon a free evaluation version of the Keil

C51
ompiler and Keil BL51 linker [11℄ to
ompile and link pro
ess fragments.

Bertha is initially installed on a Pushpin by way of an IEEE standard JTAG

interfa
e. Note that Bertha need not be
ompiled with any spe
i�
 knowledge of

the pro
ess fragments to be used; arbitrary pro
ess fragments
an be introdu
ed

to Pushpins during runtime.

Of
ourse, Pushpins
an be programmed dire
tly as a regular 8051-
ore mi-

ropro
essor without using either Bertha or the Pushpin IDE. One of the many

advantages of Bertha and Pushpin IDE, however, is that the details of the anti-

quated Intel 8051 ar
hite
ture are hidden from the user.

5.4 Se
urity

One of the �rst observations that
an be made about the Pushpin programming

model is that it is in
redibly inse
ure by almost any de�nition of inse
ure {

Bertha runs any well-formed pro
ess fragment as raw byte
ode without any su-

pervision. The only attempt at se
urity is lo
king the
ash memory
ontaining

the Bertha
ode so that it
an't be overwritten by a pro
ess fragment. Every-

thing else is fair game. Furthermore, there is no built-in prote
tion against rogue

pro
ess fragments with mali
ious intent. While se
urity is
ertainly a valid
on-

ern for any system deployed in the world outside of a testbed running in a

resear
h lab, it is assumed for now that everyone authoring pro
ess fragments

re
eived the \plays well with others" stamp of approval. Although se
urity for

sensor networks is essentially ignored here, some work has been done on the

subje
t [12℄. That said, the Pushpin platform
ould be used in its own right to

explore se
urity issues.

6 Example: Network Gradient

To
larify the idea of pro
ess fragments and Pushpin platform operation, we

present here a very simple example. The following
ode fragment simply
opies

12 Joshua Lifton et al.

itself to all its neighbors, keeping tra
k of how many hops away it is from its

Pushpin of origin. Its install routine does almost all the work. Its update routine

opies the pro
ess fragment to neighboring Pushpins. All other required routines

are implemented with default routines provided by the Pushpin IDE. The Push-

pin IDE also registers this pro
ess fragment as GRADIENT with a lo
al pro
ess

fragment registry it keeps. What follows is the pro
ess fragment sour
e
ode as

it would appear in the IDE.

state {unsigned
har hopsFromOrigin; unsigned
har origin;}

globalID {GRADIENT;}

// Continually attempt to migrate to neighboring Pushpins.

//

unsigned int update(unsigned int eventCode, unsigned int eventValue) {

return requestTransfer(TO_ALL_NEIGHBORS);

}

// Upon waking up in a Pushpin,
he
k to see if there are any

//
opies of this PFrag. If so,
ompare hops from origin,

// keep lowest hop
ount, and delete yourself. If not,
he
k

// if you are the seed of the gradient and set hop
ount

// a

ordingly.

//

unsigned int install() {

BBSPost post;

getBBSPost(GRADIENT, &post);

if (isValidBBSPost(&post)) {

if (post.lo
alID != getLo
alID()) {

if ((post.message[0℄ > state.hopsFromOrigin + 1)

&& (post.message[1℄ == state.origin)) {

post.message[0℄ = state.hopsFromOrigin + 1;

updateBBSPost(&post);

}

die();

}

}

else {

post.message[0℄ = state.hopsFromOrigin + 1;

if (!isValidMessage(getNeighborMessagePostedBy(GRADIENT))) {

post.message[1℄ = getPushpinID();

}

else {

post.message[1℄ = state.origin;

}

postToBBS(&post, 2);

}

return 1;

}

Le
ture Notes in Computer S
ien
e 13

Note that, for the sake of brevity, this pro
ess fragment is implemented in

quite an ineÆ
ient manner in terms of bandwidth usage and
ould be improved

upon with some e�ort.

7 Con
lusions & Future Work

This paper des
ribes the basi
 elements of the Pushpin Computing platform, the

�rst hardware instantiation of an environment spe
i�
ally designed to support

algorithmi
 self-assembly for use in dense sensor networks. In parti
ular, we

have introdu
ed the underlying Pushpin hardware and Bertha, a fully fun
tional

embedded operating system that supports mobile pro
ess fragments.

The work presented is more of a look at things to
ome than a
ulmination

or
on
lusion of things that were. In the immediate future, there are plans to

implement a Logo virtual ma
hine on the Pushpins, improve error
orre
tion

and dete
tion, and build several
omplete networking and sensing appli
ations

using on the order of 100 Pushpin nodes. Longer term goals in
lude exploring

the potential of Pushpins as a tangible interfa
e,
hara
terizing basi
 algorith-

mi
 elements vital to algorithmi
 self-assembly in the
ontext of dense sensor

networks, and providing a theoreti
al foundation to des
ribe self-assembly as a

general phenomenon.

Detailed information about the Pushpin Computing proje
t
an be found at

http://www.media.mit.edu/�lifton/Pushpin/.

Referen
es

1. Morris, E.: Fast, Cheap & Out of Control, Sony Pi
tures Classi
s, 1997.

2. Paradiso, J.; Hsiao K.;, Stri
kon J.; Lifton, J.; Adler A.: Sensor Systems for Inter-

a
tive Surfa
es, IBM Systems Journal, Volume 39, Nos. 3 & 4, pp. 892-914, O
tober

2000.

3. Butera, W.: Programming a Paintable Computer, MIT Media Laboratory, do
toral

dissertation, 2002.

4. Resni
k, M.: Turtles, Termites, and TraÆ
 Jams: Explorations in Massively Parallel

Mi
roworlds, The MIT Press, 1994.

5. Culler, D; Hill, J; Buonadonna, P.; Szew
zyk, R.; Woo, A.: A Network-Centri

Approa
h to Embedded Software for Tiny Devi
es, to appear in DARPA workshop

on Embedded Software.

6. Hill, J; Szew
zyk, R; Woo, A.; Hollar, S.; Culler, D. Pister, K: System Ar
hite
ture

Dire
tions for Networked Sensors, 27 April 2000.

7. Woo, A.; Culler, D.: A Transmission Control S
heme for Media A

ess in Sensor

Networks, Mobi
om 2001.

8. Dowling, J.: Neurons and Networks: An Introdu
tion to Neuros
ien
e, Chapter 14,

Harvard University Press, 1992.

9. Dipline power panel. Donated by Steel
ase, In
.

http://www.lightandmotion.vienna.at/eng-dipline.html

10. Reif, F.: Fundamentals of Statisti
al and Thermal Physi
s, M
Graw-Hill, 1965.

11. Keil Software, In
. http://www.keil.
om/demo/

12. Perrig, A.; Szew
zyk, R.; Wen, V.; Culler, D.; Tygar, J.: SPINS: Se
urity Proto
ols

for Sensor Networks, Mobi
om 2001.

