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Sepia : A Self-Organizing Electricity Pricing System
Deva P. Seetharam, Tanuja Ganu and Jayanta Basak

Abstract—The demand for electrical power is not constant.
There are certain times of the day where the demand levels
are much higher than the rest of the day. The demand can
often exceed the generation capacity and when that happens,
the utility companies can either shed loads or buy additional
electrical energy from wholesale electricity markets to close the
gap between demand and supply. These markets clear energy
at spot prices that fluctuate widely and can be much higher
when the demand is high than when the demand is low. When
the market rate for electricity rises above the approved retail
rate, utilities are caught in the middle, which can be financially
disastrous for them.

As such, utility companies, to protect themselves from widely
fluctuating costs and to reduce peak demands, are introducing
Advanced Metering Infrastructure (AMI) and considering var-
ious dynamic pricing mechanisms such as Time Of Use (TOU)
and Critical Peak Pricing (CPP). However, in these mechanisms,
there can be both a significant delay in information reaching
consumers and gaps in consumption data. These delays and gaps
can undercut the premise of how smart meter technologies will
empower consumers to make decisions about their electricity
use based on real-time prices. Moreover, these pricing schemes
are centralized, in the sense that, meters at customer premises
connect to the utility systems to obtain the current price.
Such a centralized systems are inefficient because they require
substantial communication and computation resources.

To address these shortcomings, we propose Sepia, a self-
organizing real-time electricity-pricing scheme, that computes
the price of a kilowatt-hour of electricity as a function
of consumption history, grid load and the type (hospi-
tal/commercial/industrial etc.) of the customer. In this paper,
we describe the details of this pricing scheme and demonstrate,
using a simulator, how this scheme could potentially alter the
consumption patterns.

Index Terms—Intelligent services, Energy Prices, Self-
organizing prices, Electricity Prices, Frequency, Consumption
History, Current Load, Customer Segment.

I. INTRODUCTION

THE demand for electrical power is not constant. There
are certain times of the day where the demand levels

are much higher than the rest of the day [1]. For instance,
residential demand is much higher in the morning (around 7
AM), when a large number of people leave for work and in
the evening (around 7 pm), when those workers return home.
(Obviously, these demand patterns depend on the consumer
segments and market areas.)

When the peak demand exceeds the available generation
capacity, the utility companies either resort to shedding loads
or to buying additional power from other utilities through
wholesale electricity markets such as the Indian Energy Ex-
change [2] and the New York Independent System Operator
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[3], etc.1 These markets clear energy at spot prices using
mechanisms such as Availability Based Tariff (ABT) [4] and
Locational Based Marginal Pricing (LBMP). These spot prices
fluctuate widely and can be much higher when the demand is
high than when the demand is low. For example, based on the
current grid frequency (indicates the current grid load), the
ABT prices can vary between Rs. 0 to Rs. 5.70 per KWh of
energy [4]. The utilities can’t pass on these rate fluctuations
to customers because non-commercial customers are protected
by flat-rate electric tariffs. When the market rate for electricity
rises above the approved retail rate, utilities are caught in the
middle, which can be financially disastrous [1].

To alleviate this peak demand problem, utility companies
are trying to shift the loads from peak-load periods to off-peak
periods so that the peak loads of users will be distributed over
the day instead of concurring at peak hours. Such an approach
is possible because some loads (such as washing machines,
electric vehicle charging, dishwashers etc) can be deferred and
some other loads (such as air conditioner, refrigerator, etc) can
be reduced. Such load management can be achieved through
indirect load control (manual procedures) or direct load control
(automatic procedures with the help of network-enabled smart
appliances).

Utility companies have started introducing smart meters2

and exploring various dynamic pricing mechanisms to reduce
peak loads and to even out loads during the day. Some of the
pricing mechanisms being considered are time of use (TOU),
critical peak pricing (CPP), real-time pricing (RTP) and peak
load reduction credits (PLRC). However, these schemes suffer
from certain shortcomings:

• In TOU schemes, the energy prices are static and can
change only very infrequently.

• Many of the proposed RTP schemes require the meters
(at customer premises) to connect to the utility systems
to obtain the current price. Such a centralized approach is
inefficient, as it requires substantial communication and
computation resources.

To address these issues, we propose Sepia, a decentralized
electricity-pricing scheme, that dynamically adjusts the rates
according to the current load on the grid and the past con-
sumption history.

1It is important to note that since electrical energy cannot be stored
efficiently for long periods, utilities can’t use energy generated during off-
peak periods to meet peak demands.

2A smart meter is an advanced meter (usually an electrical meter) that
records consumption in intervals of an hour or less and communicates that
information at least daily via some communications network back to the utility
for monitoring and billing purposes (telemetering). Smart meters enable two-
way communication between the meter and the central system [5].
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Fig. 1: System Block Diagram

II. APPROACH AND SYSTEM OVERVIEW

Sepia is based on Frequency Sensing Meters (FSM). An
FSM is nothing more than a smart meter equipped with a
simple inexpensive frequency sensing circuitry. The frequency
sensor is used to measure the grid frequency, which is inversely
proportional to the current load on the grid. The Sepia scheme
works as follows:

• Once every sampling period (say 10 or 15 minutes), the
FSM measures the average frequency of the grid (GF )
during that sampling period.

• The FSM uses the sensed frequency, GF , to map it to
the price, on the Frequency-vs-KWH-rate curve specified
by the utility company. This curve can be specific to
customer segments as illustrated in Fig. 2; and can vary
according to seasons. The current rate, CR, can be
defined as a function with a certain slope δ, a minimum
price (corresponding to maximum frequency) and a max-
imum price (corresponding to minimum frequency).

CR = f(GF ) (1)

Fig. 2: Customer-segment Specific Electricity Rates

• The current rate (CR) can be further refined by a Penalty
Factor (PF ) as shown in the equation below.

CR = CR× (1 + PF ) (2)

The penalty factor enables the system to further amplify
the current rate based on customer-specific parameters
such as income class, past consumption history and type
of usage. These parameters are just listed for illustration
purposes. System can be configured to use a completely
different set of parameters.

• The different components of the penalty factor can be
emphasized or deemphasized or even eliminated (if the
corresponding weight is zero) using component-specific
weights. For instance, if usage U (residential/commercial
etc.), income class I (low/medium/high) and past con-
sumption history H are the Penalty Factors, they can be
modulated using different weights (like wu, wi and wh)
as given in the equation (3).

PF = wu × f(U) + wi × f(I) + wh × f(H) (3)

• It is worth noting that the Penalty Factor, using weights,
can be adjusted so that the CR specified in equation
(2) can be multiplied by a real-number factor that falls
between 1.0 and 2.0.

• Customer-specific information such as weights, past con-
sumption history, usage and income class are retrieved
from the non-volatile storage to compute penalty factor.

• Electricity consumed for the current measurement period
is obtained integrating the instant power consumed by
that particular customer during that measurement period.

• Now, the current energy charges can be computed as
product of the current rate and the amount of energy
consumed during the current sampling period.

• FSM periodically uploads electricity charges to and
downloads pricing parameters from the utility’s pricing
servers.

• The FSM also stores various factors such as frequency,
current consumption data and consumption history in
the non-volatile storage for future computations and for
auditing purposes.

The benefits of Sepia are:
• If majority of the customers are price sensitive, this

scheme can reduce the energy consumption by adjusting
the unit rates. It is important to note that the scheme can
also encourage consumption by reducing rates during off-
peak periods.

• It can support customer segment specific unit rates.
• Since it includes consumption history (assigned weights

decreasing with time) in determining the electricity
prices, customers who were consuming heavily will be
charged more than the ones who were not. This probably
will lead to fairer rates than otherwise.

• By setting the function parameters to the appropriate
values, any factor (history or current frequency) can be
emphasized or de-emphasized.

• Scheme is resilient to network or computation failures as
it functions in a decentralized fashion.

III. RELATED WORK

Several differential pricing schemes for electricity have been
proposed [7]:
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A. Time of Use Pricing (TOU)

In TOU schemes, electricity prices are set for a specific time
period on an advance or forward basis, typically not changing
more often than twice a year, based on the utility’s cost of
generating and/or purchasing such electricity at the wholesale
level for the benefit of the consumer. Prices paid for energy
consumed during these periods shall be pre-established and
known to consumers in advance of such consumption, allowing
them to vary their demand and usage in response to such prices
and manage their energy costs by shifting usage to a lower cost
period or reducing their consumption overall.

The scheme is simple and fairly easy to implement. In
fact, it doesn’t even require the smart meter infrastructure.
However, since the scheme is not that ”dynamic”, the TOU
pricing variations will reflect very little of the true variations
in the wholesale energy markets.

B. Critical Peak Pricing (CPP)

In this scheme, time-of-use prices are in effect except for
certain peak load times, when prices may reflect the costs of
generating and/or purchasing electricity at the wholesale level
and as a result the prices can be unusually high for a limited
number of hours.

CPP scheme is the natural evolution of demand charges
when more sophisticated metering is available. Charges in-
crease at critical system peaks rather than at the individual
customer’s demand peak, which is much more consistent with
the true costs of consumption. CPP still has two economic
weaknesses, though they may actually be strengths in terms
of customer acceptance. First, the prices are limited and levels
are preset for the critical peak periods, therefore they can’t
be calibrated to move with the actual prices in the wholesale
market. Second, the number of critical peak hours that can be
called in a year is limited [7].

C. Real Time Pricing (RTP)

In this scheme, electricity prices are set for a specific
time period on an advanced or forward basis, reflecting the
utility’s cost of generating and/or purchasing electricity at the
wholesale level, and may change as often as hourly.

RTP does not mean that customers must buy all of their
power at the real-time price. Purchasing some power through
a long-term contract would allow customers to stabilize their
overall bill while still facing the real-time price for incremental
consumption.

Unsurprisingly, RTP can closely follow the variations in
wholesale energy prices. However, implementing RTP has a
few issues [7]:

• Customer pricing risk - many customers balk at RTP
because they fear that they could find themselves paying
astronomical prices for their consumption during any
given hour.

• Distributional impacts - one of the major concerns with
RTP is that it is not clear who will be the winners and
who will be the losers in adopting such a time-varying
price scheme.

In our scheme, customer risk is mitigated by customer-
segment-specific rate curves that impose a limit on maxi-
mum rate per unit of energy. Limiting the prices to pre-
defined maximum and minimum values allows the users to
estimate the range in advance and plan their consumption.
The distributional impacts of Sepia are still unknown. We
will try to understand that in our future research. The idea
of using real time pricing as an economic load shedding
policy to assist the direct control by the electric utility is not
new. Berger and Schweppe [8], in 1989, presented such an
approach. However, their scheme doesn’t support customer-
segment specific pricing or incorporation of consumption
history in rate calculations. We believe these two aspects are
important in implementing a fair pricing scheme.

IV. ASSESSMENT AND EVALUATION

A. Simulation Setup

We demonstrate the functioning of Sepia using a discrete
event simulator that models the users’ price sensitivity, the
proposed dynamic electricity-pricing scheme sepia and users’
response to varying electricity prices.

At every time step, the simulator computes the following
quantities:

a) Time of Use Probability: Time of Use probability
determines the chances of a customer using electricity at a
specific time of the day. We are using the residential usage
pattern as the reference for computing this probability. As
explained above, residential usage probability is a bimodal
distribution with one peak occurring in the morning and the
other in the evening. The equation for calculating this ToU
probability is given below.

TOUProbability =
e−(t−T1)

2

2σ2
1

+
e−(t−T2)

2

2σ2
2

(4)

where, t is current time, T1 and T2 are the times for the
first and second peaks respectively, and σ1 and σ2 are the
widths of first and second modes. In the simulation runs, we
assumed that the two consumption peaks occur at 6 AM and
6 PM.

b) Current Unit Rate: We are using a sample of
population of 1000 consumers that belong to different
consumer segments, comprising of a combination of three
different income classes - low, medium and high - and three
different electricity usage types - residential, commercial
and transportation. We start with a rate of 10 cents per
unit of electricity. The current rate gets modulated by a
Penalty Factor (PF) that comprises income class, usage type
and consumption history. These three factors are assigned
a weight of 0.4, 0.2 and 0.6 respectively. In other words,
consumption history dominates the penalty factor and the
income class has the least influence. History is based on the
consumption for a consecutive last ‘n’ time periods (where
‘n’ is given by History window). A history consumption
threshold is considered above which the consumer provides a
penalty.
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c) Consumption Probability: Consumption probability
determines the probability with which a particular customer
will use electricity given the current rate for a unit of elec-
tricity. We are using an illustrative price sensitivity curve,
shown in Fig. 3, as the basis for computing this quantity. The

Fig. 3: An Exemplary Price Sensitivity Curve

consumption probability (CP ) is computed as follows:

CP =
a+ e(m(k−CR))

1 + e(m(k−CR))
(5)

where, a is the minimum consumption probability, k is the
price at which the user’s consumption falls and m is the rate
of consumption with rising prices. If the current unit rate is
high, the probability that a customer will consume electricity
is low and vice-versa. Therefore consumption probability is
inversely proportional to the current unit rate and is a good
indicator of customer’s price sensitivity.
Each consumer has three types of loads: a) Base load: loads
such as lighting that are essential cannot be deferred or
reduced. b) Deferrable load: loads such as washing machines
that may not be time sensitive and can be deferred to a
convenient time. c) Reducible load: loads such as AC that
can be reduced to save energy. If the consumption probability
is low, a consumer is expected to run only the base load,
postpone a portion of deferrable loads and reduce a proportion
of reducible loads. The portions of loads that are reduced
and deferred are determined using a random number generator.

d) Current Grid Frequency: As explained above, the load
on the grid impacts the current grid frequency. Total load is
computed by summing up the electricity consumed by every
single member of the population and then grid frequency can
be computed using the equation below.

fδ =
Pg − Pc
Pg

× fo
fr

(6)

where fδ is the change in the frequency, Pg and Pc are
the generated and consumed powers respectively, fo is the
operating frequency of the grid (50 Hz or 60 Hz depending
upon the geography) and fr is a constant frequency response
(considered as 15 in the simulations).

B. Evaluation

We ran the simulation using the penalty factors for different
consumer segments as discussed in Section IV-A(b).

The simulator considers varying population size with dif-
ferent segments of consumers in terms of income class and
usage type. For our results we have considered a population
size of 1000 consumers, which is skewed for, middle-income
population.

The base (around 50-100watts), maximum typical power
requirements (2KW) and total generation capability also as-
sume real world scenarios [9] but can be set to different
values based on regions. History window shows the number
of recently used intervals considered for PF. History window
threshold determines the number of values that are higher than
threshold for providing a penalty to the consumers. Threshold
for considering high consumption is dynamic and is set to 400
units for typical power requirements of 100-5000 units. The
payoff for different consumer segments is controllable. The
simulator is run for total duration of 5700 mins (but we have
presented results for 1440 mins for purpose of brevity and
clarity).

We evaluate the following scenarios:
(a) Limits in the reduction of the peak loads for different

consumption probabilities.
(b) Evaluation of Sepia pricing scheme using a mix of

customer segments.
1) Limits of peak reduction: We study the limits of peak

reduction that can be achieved by introducing dynamic pric-
ing. In our experiments this is achieved by controlling the
consumption probability. We plot the consumption graph for
different values of the consumption probability.

Fig. 4 plots the different power usage patterns for different
values of the consumption probability. The TOU probability
follows the pattern shown in Fig. 5 with 2 peaks in the
day showing high usage patterns. The graphs clearly indicate
that by controlling the consumption probability (by different
parameters) the peak load (which exceeds the generation
capacity) can be reduced significantly. It can be clearly seen
that as the consumption probability reduces, the deferred
power and the reduced power increases, leading to lower
power usages during the peak hours.

There are two important observations from these graphs:
(I) Fig. 4(a) presents the scenario when the consumption
probability is 1 i.e. when the power usage is uncontrolled.
In this scenario, the power consumption exactly matches
the actual power need and no deferred, reduced or credit
loads (rescheduling of deferred load during off-peak time) are
observed. In Fig. 4(b) and (c), as the consumption probability
decreases, indicating more price sensitivity, it results in a
significant decrease in the peak power consumption. In this
scenario, some proportion of the actual power requirement is
deferred or reduced during the peak time. The deferred load
is completely rescheduled (as credit consumption) during non-
peak times using the greedy approach. When the consumption
probability decreases further to 0.4, as shown in Fig. 4(d), it
results in further reduction in the peak power consumption.
But, since the consumption probability is low through out the
day, some proportion of the deferred load remains unfulfilled.
(II) We expect that the deferred load to be scheduled during
non-peak times as opposed to the simulation results where
the peak load is scheduled in a greedy manner as soon as
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(a) Consumption Probability 1 : No price sensitivity (b) Consumption probability 0.8 : Low price sensitivity

(c) Consumption probability 0.6 : Medium price sensitivity (d) Consumption probability 0.4 : High price sensitivity

Fig. 4: Load variations as a function of consumption probability

the next slot is available. The deferred loads are clustered
immediately after the peak loads. It should be noted that
the simulation chooses to schedule the load over the next
available slot when the extra power is available thereby leading
to minimal diffusion of power usage over time when the
consumption probability is low. In Fig. 4(b) for consumption
probability of 0.8 (low price sensitivity), the deferred load
at time 360 minutes is scheduled between 420- 480 minutes
approximately. This is due to the fact that individual power
consumption is upper-bounded at 1.5 KW in our experiments
and therefore when the consumption falls below this, the de-
ferred load is scheduled. This approach is greedy and therefore
significant benefits are obtained only when the consumption
is tightly controlled (probability is 0.6 or 0.4, where the
loads are deferred repeatedly) or the consumption probability
varies during a day as shown in Fig. 5(c). This leads to
an important aspect that scheduling algorithms (which we
have not simulated in our work) should be designed to take
input from the grid about the availability of the power and
intelligently schedule the load rather than taking a greedy
approach.

2) Evaluation of Sepia pricing scheme: We study sepia
pricing scheme by considering a mix of customer segments
Fig. 5(a) presents the change in average unit rate with the
change in current grid frequency. Note that the unit rate is
computed at 10-minute time interval based on the average
grid frequency during that time period and the consumer
specific penalty factors. Hence, it shows a squared form. The

average unit rate is high when the grid frequency is low (i.e.
during peak times) and vice versa. Fig. 5(b) shows the time
of use probability and the average consumption probability
for the given mix of customer segments. As the average unit
rate increases, the average consumption probability decreases
and vice versa. Fig. 5(c) shows the effect of sepia pricing
scheme on the actual power consumption. It is observed that
a significant proportion of actual electricity requirement is
deferred or reduced during peak time, when the unit rates are
high and the consumption probability is low, thereby resulting
in a significant reduction in peak power consumption.

Metric Sepia Fixed price
PAR 1.7931 ± 0.001 2.2573 ± 0.001

% Over-utilization 27.33 ± 1.12 39.63 ± 2.31
% Under-utilization 18.05 ± 0.76 24.11 ± 1.24

TABLE I: Summary of simulations for different pricing
schemes based on three metrics: peak-to-average ratio (PAR),
%Over-utilization and %Under-utilization.

Table I presents the summary of simulations based on three
metrics: peak-to-average ratio (PAR) [11], %Over-utilization
(proportion of the consumption above the generation capacity)
and %Under-utilization (proportion of the consumption below
the generation capacity). It is observed that sepia scheme
helps to reduce peak-to-average ratio, and decreases %over-
utilization and %under-utilization as compared to the fixed
pricing scheme.
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(a) Variation in Unit Rate as a function of Grid Frequency (b) Time of Use Probability and Average Consumption Probability for the
simulated population

(c) Peak Load Reduction

Fig. 5: Evaluation of Sepia dynamic pricing scheme using a mix of different customer segments

V. DISCUSSIONS AND FUTURE WORK

In this work, we proposed a dynamic energy pricing that
could sensitize customers to current load on the grid. In fact,
Newell and Faruqui [10] argue that the wholesale market
benefits that could be expected if all retail customers were pro-
vided dynamic price signals, similar to those price signals now
available to participants in New York’s wholesale electricity
markets. The authors predict the dynamic pricing, if adopted
by the New York State, could reduce cost and demand while
improving social welfare.

As discussed in the evaluation section, the pricing scheme
can reduce consumption. However, if this pricing system were
to be deployed widely, it must incorporate provisions for
not charging the customers when the frequency falls due
to power system faults. Further, if the utilities artificially
impose frequency regulations in order to maintain the grid
frequency within a small fixed range, the voltage signal can
be used (by doing careful analysis) instead of grid frequency
for calculating unit rate. Though sepia protects the privacy
of consumer’s electricity consumption data and other param-
eters by using a one-way unit rate calculation function, the
meters must be made tamper proof so that the meters from
the customer segments with lower rates are not moved to
customers with higher rates. For instances, it must be ensured
the meters installed in hospitals are not moved to commercial
establishments. The scheme also requires learning capabilities

so that it can adjust the pricing parameters to adapt itself well
to new electricity markets such that the electricity demand and
supply are matched without overburdening the customers or
the electricity retailers.
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