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Abstract—This paper describes an approach for saving energy
in commercial buildings, based on the information gathered
from pre-existing opportunistic context sources. Most energy
management systems rely on a heavy instrumentation strategy
to infer occupancies, and unfortunately ignore already available
opportunistic context sources, that can provide significant infor-
mation about occupancy. We present models to conduct a Context
Profiling with available context sources, to infer spatial occupancy
measures. Further, we model electrical loads of several types to
infer potential energy savings. Through a pilot study of a building
with 5 users for 30 days, we identify intra-building areas where
additional instrumentation of occupancy sensors is not necessary
and demonstrate potential for significant reduction in energy
consumption. We believe such Context Profiling can provide
insights to significantly reduce deployment and management costs
for future occupancy detection and energy management systems.

I. INTRODUCTION

Office energy consumption is a significant contributor
to greenhouse emissions. In particular, space conditioning
and lighting loads (L-HVAC - Light, Heat, Ventilation and
Air Conditioning) together account for 70% of all energy
consumed in a typical office building [15]. Several Building
Energy Management Schemes (BEMS) are being proposed
to reduce office energy consumption. Many of these schemes
adopt a heavy instrumentation strategy, installing many kinds
of sensors (e.g. camera, augmented PIRs, CO2 etc) to monitor
environment occupancy [8], [5], [13], and control electrical
loads.

Heavy instrumentation strategies essentially install sensors
with a strategy of optimally covering the monitored area to
achieve desired accuracy in detecting occupancy. Although
inexpensive yet accurate deeply-coupled wireless sensors have
been developed [1], [3], [10], costs for deployment and man-
agement of additional sensing infrastructure remain signifi-
cant. Such costs can be avoided if the pre-existing IT and
Security infrastructures of a building (ubiquitously present
in most office buildings today) can be used to determine
occupancy. These infrastructures include several opportunistic
context sources (we call them soft sensors). For example,
many offices have an ID badge scanning system, Wi-Fi access
points/Ethernet ports, and several additional context sources on
devices carried by users – instant messaging systems, online
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calendar, device activity status, etc, which can provide valuable
cues to an employee’s location within a building.

A central research question that drives our work is: To
what extent can opportunistic context sources available in
commercial buildings help us in achieving energy savings? We
believe this is an important question because such a hardware
sensor-less approach can be economical and is easier to adopt
as there are no additional costs for deployment, operation and
maintenance. It is important to note that this approach does not
preclude additional occupancy detection sensors. We advocate
a hybrid strategy, where a smart deployment should only
install additional sensors at spaces where current opportunistic
context sources are insufficient. Such a strategy can accelerate
commercial scale adoption of occupancy detection systems.

Our contributions are two-fold: (1) Development of a
Context Profiling and Energy Management System (dubbed
SoftGreen) that conducts a profiling of office spaces, and
detects areas where occupancy can be detected with existing
Soft Sensors. (2) Implementation of a generic model of elec-
trical loads based on detected occupancy levels that enables
us to compute energy savings. We evaluated SoftGreen by
conducting a pilot in an office building for 30 days. Our
results indicate that we do not need deep coupling and heavy
instrumentation of office buildings, at least in many parts of
it. Opportunistic Context sources seem to be sufficient for
detecting occupancy with reasonable accuracy.

II. BACKGROUND

There are high precision (accuracies of around 1-2 m) and
costly localization sensors [11] available which can be used
for indoor localization and subsequent occupancy detection.
However when used for Building Energy Management, errors
as low as 1-2 m could place a user under the coverage area
of the wrong electrical load. The tradeoff between cost vs.
accuracy forms the central reason for investigating alternative
approaches and many recent works focus on these. For ex-
ample, some modern buildings have explored installing cheap
Passive Infrared (PIR) based motion sensors to detect user
presence and control L-HVAC [4]. However, we agree with
[10] who points out - “Motion sensors are notoriously poor
occupancy sensors and have long been a source of frustration
for users of occupancy-based lighting systems, which often
turn the lights off when a room is still occupied”.978-1-4673-0298-2/12/$31.00 c© 2012 IEEE



Research works have considered alternatives like CO2-
based occupancy detection [12], sonar-based methods [13],
camera networks [14], [8], [5]. These are better detectors of
long-term occupancy than PIR sensors. CO2 sensors however
are slow to detect change of events and hence perhaps suitable
for less dynamic environments (e.g. residences) than large
offices. Large-scale deployment of Camera or sonar-based
surveillance networks (costlier than PIR sensors) would incur
substantial deployment costs and maintenance overhead, also
bring up privacy issues as they detect more than what is
required. Our work is complimentary to these approaches. We
argue for selective deployment of such occupancy sensors only
in areas where opportunistic context sources are inadequate.

To reduce deployment overhead, more recent works con-
sider using wireless networks [1], [3], [6], to aggregate data
from multiple occupancy sensors. Cheap sensors can be in-
stalled in large numbers, leading to better occupancy predic-
tions. For example, Delaney et al.[3] use PIR based wireless
occupancy sensors to measure wasted energy in lighting when
there are no occupants. Erickson et al.[6] propose a more
sophisticated wireless network of cameras (which have the
aforementioned privacy and cost issues) to determine coarse-
grained floor-level occupancy detection. A different work by
the same authors consider occupancy prediction [5] in addition
to real time occupancy monitoring using cameras to save
energy while maintaining building comfort standards. A more
recent work [1], uses low cost and incrementally deployable
wireless PIR sensors with reed switches and evaluates the
accuracy of their occupancy sensor. They show that their
sensors make accurate predictions and save over 18% of the
energy in comparison with a motion sensor-based scheme.

Note that, these works do not consider any pre-existing
context sources, the devices being carried by users, and to
what extent can occupancy be detected by these. The focus
is primarily on reducing deployment and management cost of
the parallel infrastructure. Moreover, many of the sensors work
only for closed spaces (e.g. fitting sensors on doors), whereas,
many large commercial offices have open spaces (e.g. low-
wall cubicles). Our research augments this body of work by
advocating a prior context profiling, and smart identification
of areas where occupancies can be detected using existing soft
sensor data.

III. PROBLEM DETAILS AND CHALLENGES

Offices have many possible layouts, can be mixed
use/multi-function buildings as well. We focus on two key
abstractions: (1) Closed spaces: Spaces such as meeting rooms,
conference rooms, that are used on-demand; has a door for
entry/exit and dedicated L-HVAC loads. (2) Open Spaces:
Spaces with low (such as cubicles with less than 5-feet high
separators) or no enclosing walls where L-HVAC equipment
are shared between areas. Usually, a significant portion of
many large-scale commercial sites are often open spaces [7].
In fact, about 85% of our candidate office is comprised of
open spaces while the remaining area belongs to closed spaces.
Determining occupancy in open spaces (e.g. a layout of 30

Fig. 1. Situation Inferencing in Softgreen. Situation is a function of
inputs from multiple context sources.

cubicles in a large hall) is challenging as there are multiple
entries/exits and occupancy densities vary across the area.

It is non-trivial to determine occupancies of open and
closed spaces with imprecise context sources. Some of the
issues we need to handle are:

1) Unreliability of Context Sources: Many of the infras-
tructures (e.g. Instant Messaging, Calendar entries) are
meant for other purposes (e.g. chatting or maintaining
appointments) and are at best fuzzy indicators of an
employee’s state (e.g. user is away from his laptop,
user is in a meeting). Wi-Fi based fingerprints of user’s
laptops are often coarse-grained and dependent on the
base station density, which is usually enough to ensure
coverage. Installations are not streamlined to localize, in
most cases. Moreover, it is not a certain indicator of the
user’s occupancy in an area. This is because employees
often leave their laptops in their cubicles, while going
for other activities (meeting, break etc). An accurate
location state of the user needs to be derived considering
these multiple context cues.

2) Conflicts: We need to address conflicts amongst sources
providing two different location estimates for a user.
For example, imagine an employee attending a meeting
in Room X (obtained from his calendar entry), leav-
ing his laptop in his cubicle (open area). The Wi-Fi
context source would indicate occupancy in the open
area, whereas the online calendar would indicate an
occupancy in Room X.

Hence, intelligent learning models need to be designed to
fuse different context source outputs, to infer an employee’s
location state and derive occupancy of areas. In order to
detect occupancy from soft sensor data, we model the context
of an user as a situation, which in turn is a function of
the context cues coming from these sources (detailed later).
Figure 1 illustrates a figurative example of how data from
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Fig. 2. SoftGreen: Context Profiling and Energy Management
System.

multiple context sources (including the Wi-Fi fingerprint from
the user’s laptop) vary during an employee’s daily routine (Y
axis) and the corresponding situations s/he is in (Time axis).
The two curves in Wi-Fi fingerprint show that Wi-Fi is unable
to differentiate between two close meeting rooms (e.g, Room
1A and Room 1B), if the user is attending a meeting in one
of the two rooms.

In the next section, we describe different models that we
employ in SoftGreen to conduct the context (and energy)
profiling.

IV. SOFTGREEN SYSTEM AND MODELS

As shown in Figure 2, the SoftGreen system consists
of two tightly coupled modules. The Situation Inference
Module accepts context cues and determines relevant user
situations. The Energy Management Module accepts inferred
user situations as a time series, determines occupancy levels in
areas belonging to electrical loads. There after, it determines
ideal operating conditions of loads (e.g. switch ON/OFF,
dim/brighten) based on load type and constructs an energy
savings profile for the area. Next we describe the two modules
in detail.

A. Situation Inference Module

Discrete Values of Context Cues: Every soft-sensor reports
a set of discrete context cues. For example, IM status could
take one of the values : {Available, Busy, Away, No Info}.
Similarly, possible sets for other context sources are shown in
Table I.

Situation Definition: Situation is the fundamental unit in
our model and is a higher level abstraction of the user location
and activity. We define situation S = S1, . . . , SM as a function
of data observed from N context sources C = C1, . . . , CN . i.e.
S = f(C).

For each user, we consider three situations that help to infer
area occupancy: (1) User is in her cubicle (available(useri,
cubiclej)); (2) She is in a meeting room(meeting(useri,
roomj)); (3) She is outside (outside(useri)). Situation (3)
essentially indicates when User is not in any location of
interest. For example, she could have gone to lunch.

As shown in Figure 1, context source values change cor-
responding to user situations (shown along x-axis), leading to

Soft-Sensor Discrete values set
WiFi {Cubicle, Meeting Room 1A, Meeting

Room 1B, ..., Outside}
Calendar {No Meeting, Meeting in room 1A, ...., Call

in number}
System Monitoring {Active, Inactive}

TABLE I
DIFFERENT DISCRETE VALUES OF SOFT-SENSORS

a multi-dimensional (one dimension per source) synchronized
time series of readings coming from N context sources.

Observation vector: For N context sources, given a set of
context observations C = [C1t, C2t . . . CNt] at time t, where
Cit represents the value observed from the context source Ci,
we want to infer the user situation St at that instant. An
example of a set of observations from the context sources
could be {WiFi => Cubicle, Calendar => No Meeting, IM
Status => Available, and System Activity => Active}.

Now we explain two supervised learning approaches to
infer user situation from these observations. Both these ap-
proaches utilize the training data that correlates situations
(‘Cubicle’, ‘Meeting’, ‘Outside’) with context cues from dif-
ferent sources.

1) Maximum Likelihood Model: This model is expressed
as:

St = argmax
j
L(Sj |C1t, C2t . . . CNt) (1)

where L(S|C) is the likelihood of the situation S given
observed values in C (from context sources). Since the values
from context sources are correlated (for example, a user might
set her IM status to ‘Busy’ while in a meeting or when she
is in a meeting, the WiFi location could point to one of the
meeting rooms), equation 1 can be expanded as

P (S|C1t, C2t . . . CNt) = P (S|C1t).P (C1t|C2t . . . CNt)
P (C1t|C2t . . . CNt) =

P (C1t|C2t).P (C2t|C3t) . . . P (C(N−1)t|CNt)

The conditional probabilities on the right side of the
equations are computed using the training data. This approach
worked reasonably well for many office spaces. However, we
observed that it suffers from over estimation if a dominant lo-
cation fingerprint is present in the training data1. For instance,
during the training phase, if a user mostly left her laptop in
her cubicle while attending meetings or during breaks, such a
training data would bias the situation estimation to ‘cubicle’
during the operational phase. Considering the limitation, we
propose a regression-based model.

2) Regression-based Model: In this model, we consider
relative contributions of each context cues to each of the
situations and combine them as follows:

w1.C1t + w2.C2t + . . . + wN .CNt = Sj (2)

where [w1, w2 . . . wN ] are the unknown weights assigned
to observations [C1t, C2t . . . CNt] for situation Sj . Before we
solve W.C = S using standard techniques to get W , we need

1We validated this through experiments, though we do not present the
results in this paper due to shortage of space.



Fig. 3. Conversion of situation vector to numeric values

to assign numeric values to the observation vector C and the
situation vector S.

Assigning numeric values to observation vector C :
We assign P (Cit|Sj) ∗ idf(Cit) as the numeric value to
corresponding elements in the C vector (i = 1 . . . N ), where
P (Cit|Sj) is computed from the training data as the Proba-
bility Mass Function (PMF) of the observations from context
source Ci, for the situation Sj ; idf(Cit) is Inverse Document
Frequency (IDF) measure of Cit. The IDF measure enables
us to de-emphasize same context cue that occur in multiple
situations.

Assigning numeric values to situation vector S : For S,
we transform each Si to a Cartesian point in (x, y) (say S′

i)
plane, as shown in Figure 3, such that for any other situation
Sj , |Si−Sj | ≥ ∆. S′

i sets target point for situation Si during
test time and the value of ∆ defines the distance between two
target points. We associate a threshold value τ around each S′

i

(radius of each circle) to classify between an ‘inferred ’and
a ‘not inferred’state. Essentially, as τ increases more states
could be inferred, but, at the cost of precision.

Finally, at test time, given an input observation C(t′)
(context values at time t′), and the W vector (precomputed
using training data), we assign a situation S′

i, if Euclidean
distance(S′

i, C) ≤ τ (i.e. a point lies within one of the three
circles). For the rest, we mark them not inferred.

Learning approaches : The ground truth is essential for
any learning and validation. However, it is arduous for employ-
ees and often the data collected is not sufficient for learning
in supervised approaches. We are currently investigating un-
supervised techniques such as Latent Dirichlet Allocation [2],
to reduce the burden of human tagging to identify situations.

B. Energy Management Module

For the design of the Energy Management Module, we
consider 3 layers : electrical load, area and user, where we
use area as a key midlevel abstraction for combining multiple
context sources.

For an electrical load, L, the state of operation (ON/OFF)
is modeled using a binary function f (L) ∈ {0, 1}, such that
the load L at time t

L =

{
ON if f (L) = 1 at time t
OFF if f (L) = 0 for time period Θt = t′ → t

(3)

This model currently follows a lazy strategy to switch off loads
if no occupancy has been detected in the associated area for
a certain time Θt, and a fast trigger (switch ON) if presence
of any user is detected.

An area associated with a load L is defined as a collection
of n objects covered (spatially) by that load (where the object
could be a meeting room or a cubicle). For loads like lights
inside a cubicle n = 1, while n > 1, for loads like AC, lights
that are common to many cubicles. The output of the binary
function f (L) is determined by the object/objects of the area
associated with that load and is modeled as follows:

f(L) =

 1 if
n∑

i=1

Ai,L ≥ 1

0 if Ai,L = 0, i = 1...n
(4)

where Ai,L ∈ {0, 1}. Ai,L is the ith object of the
associated electrical load L and the value depends on the
‘inferred situation’ of the user(s) associated with Ai,L. We
define Zi,Ai,L

to be the set of all employees associated with the
ith associated object of load L. Zi,Ai,L

has a cardinality one
if Zi,Ai,L

has only one user associated with it (for example,
cubicle), whereas for objects like ‘meeting rooms’ there are
multiple users associated with each object.

For the object Ai,L, let Sk,Ai,L
be the inferred situation of

the kth user, where k ∈ Zi,Ai,L
. Then, Ai,L = 1, if Sk,Ai,L

=
1 for any user k ∈ Zi,Ai,L

. Further, we have the flexibility
to model open spaces as well, apart from closed spaces, and
provide a formalism to connect the inferred user situations
with the appropriate loads. Note that extending L to be n-
ary to represent tunable loads can be done by considering the
relation of the load levels with the occupancy numbers.

V. IMPLEMENTATION AND EXPERIMENTS

We implemented a monitoring agent in SoftGreen using
Visual Basic, that continuously recorded context sources ob-
servations from a user’s laptop. We considered the following
available context sources in the candidate office: Online Calen-
dar, Wi-Fi Access Points seen by the user’s laptop, Chat Client,
activity status of the user’s laptop. This multi-dimensional time
series data was transferred to a back-end server periodically
for running SoftGreen analytics. The analytics platform was
built using Python and Matlab. HORUS [16] – a Wi-Fi
based location estimation mechanism was used to compute
significant locations traversed by users, based on an offline
collection of radio maps of the candidate areas. In our office
set-up, we obtained a fuzzy location granularity approximately
of 6-10 meters.

Data Collection: Data was collected from 5 office users,
in a corporate office building for 30 working days2. The users
were chosen from multiple different teams having different
mobility behaviors. Users sat in open spaces (in their cubicles)
and performed several activities (attending meetings, phone
calls, lunch, breaks etc). Each floor typically consisted of a
large open space and a few closed spaces (meeting rooms).

2Though we ran the campaign with ≈ 15 users, only 5 users had reasonable
ground truth logged for any fair learning and validation.



Figure 4 shows the floor map of the building; the red circles
indicate the meeting rooms and the blue squares indicate the
cubicles for some monitored users. Finally data of electrical
load positions were collected to run SoftGreen profiling.
Further, we collected ground truth of activity logs from

Fig. 4. Floor map of one of the floors that were monitored showing
monitored open areas and closed areas.

monitored users. Each user logged entries for the following
situations, at the start of the situation (1) User in his cubicle
(available(useri, cubiclej)); (2) User is in a meeting room
(meeting(useri, roomj)); (3) User is outside (outside(useri)).

At the preprocessing stage, we discard all data chunks
for which complete set of observations from all the sources
were not recorded (could be due to several reasons, including
failure of the agent before it recovered again). For learning
of situation models, we considered a document size of 30
minutes on the processed data, starting from each user tag
(i.e. data from tag time:t → t+30). This is because due to the
onerous nature of tagging, users often forget to tag exactly at
the start time of each situation. Our model learns the Wi vector
for each user i, and uses a user-specific threshold τi to infer
situations. Not all situations are present with all users. For
example, one user never attended meetings (network team).
Next, we present results on (1) SoftGreen’s Context Profile
and Occupancy prediction; (2) Insights on Energy Savings.

A. Spatial Context Profile and Occupancy Measures

For testing, we compute SoftGreen Situation Inference
on each unique observation from the context sources (e.g.
C1t, C2t, C3t) for the complete time series of each user for 30
days, using a 10-fold cross-validation approach. The inferred
situations give us occupancy statistics for users in cubicles and
meeting rooms in our candidate office. Occupancy measures
for loads spanning across multiple users (e.g. an overhead light
or an AC vent) is a trivial addition of the measures obtained
for each user in that area at time t.

Let correct(Si, Uj) = Num. of correctly predicted
entries of Si for user Uj across the observation period. Let
ground truth(Si, Uj) = Total Num. of log entries of Si

from Uj . We measure accuracy for situation Si for user Uj

as accuracy(Si, Uj) =
correct(Si,Uj)

ground truth(Si,Uj)
.

Figure 5 demonstrates the spatial distribution of accuracy
measures obtained for open areas (spanning cubicles of these
users) and closed areas (meeting rooms).
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Fig. 5. Spatial Distribution of the average Softgreen accuracy for
some spaces in our candidate office. X-axis indicates different areas.

From these results, we observe that SoftGreen predictions
have a strong spatial correlation. For example, average accu-
racies in many open spaces are quite high, while one closed
space is also well detected. This implies that these areas
can elegantly use the existing Soft Sensor infrastructure for
occupancy detection. Further, we can also infer which spaces
need additional instrumentation (e.g. MR B, Cube A where
accuracies are below 80%). Considering that it is challenging
to instrument open spaces, we believe our results show strong
motivation for BEMS to adopt such profiling strategies.

Figure 6 shows a sample experiment comparing Soft-
Green’s occupancy prediction, with that of a commercial
motion-sensor. In this experiment, we placed the sensor in
one of the user’s cubicles for a day. It was surrounded by
other cubicles and meeting rooms. The typical sensitivity was
5 meters. We observe user-centric learning (by SoftGreen)
performs well to infer occupancy and avoids many false
positives (and negatives) possible in such environments.

Fig. 6. A sample experiment comparing SoftGreen’s occupancy pre-
diction w.r.t. a motion sensor placed in an open cubicle. ‘1’indicates
’occupied’ and ‘0 ’indicates ’unoccupied’ in the Y-axis.

The richness of profiling would depend in turn on the
number of context sources available, dynamicity of the user,
which vary for offices. As our models and computing strategies
are independent of the number and nature of sources, we
believe it is applicable for heterogeneous building scenarios.

B. Insights on Energy Savings

Next, we zoom into the energy savings insights from areas
having high occupancy detection accuracies (open spaces).
In this paper, we evaluate loads that have 1-1 relation with
area and users (e.g. cubicle lights having n = 1). Every user
cubicle considered in our experiment has one 98-Watts light.
We follow a dynamic policy switching off a load L if the
cubicle remains unoccupied for a threshold Θt = 5minutes



(Ref. Equation 3). Light is turned on the moment occupancy
is detected. This policy is followed by most PIR-based motion
sensors in industrial settings too. We compared the usage
statistics with the static schedule followed in the office (switch
ON lights during working hours and switch OFF at night).
We use Average Percentage Energy Savings as a metric for
comparison with the static schedule.

For a policy P, if E(P, T ) = Energy that is saved by
Policy P between T = t2 − t1 (due to loads being OFF);
E(Static, T ) = Energy Consumed by Static schedule between
t1 → t2, then APES(P, t1, t2|Static) = E(P,T )

E(Static,T ) . Figure
7 plots observed APES against the time of the day, and
presents deviations observed across the observation period of
30 days. The energy consumed in running the Softgreen code
is accounted for using Joulemeter [9] in our calculations.

Fig. 7. Temporal distribution of APES between hours 1000 and 1700
for our candidate office, showing the 25th and 75th percentile box
plots with the highlighted band indicating median.

We observe that daily variations in savings during the office
hours are captured. For example, savings are lower during the
early office hours (around 9AM) , as the number of meetings
are lower at these times, and is the highest at around 13:00
HRS, which is when majority of the employees leave for lunch,
leaving their cubicles empty. Deviations are contributed by ex-
pected variations in schedules amongst monitored users across
30 days. Most importantly, we observe significant potential for
savings in these areas (20% to 50% mean savings), without
the use of additional instrumented sensor infrastructure. As a
policy, we do not profile energy savings of areas (e.g. some
meeting rooms) where SoftGreen Context profiling reports
poor accuracies. As a work in progress, we are currently
modeling the energy savings potential for other electrical
loads with 1 : n relations with users (overhead lights, ACs),
which also brings in detection of stray occupants (someone
temporarily occupying an user’s cubicle).

VI. CONCLUSIONS AND FUTURE WORK

This paper presented an approach of exploiting existing
opportunistic context sources to profile occupancy measures
of office buildings. Our results on a candidate office over a
survey of 1 month indicates that significant areas (specially
open spaces like cubicles) can be monitored for occupancy
using existing, ubiquitous, commercially installed Soft Sen-
sors. SoftGreen Context and Energy profiling can provide
valuable insights on which parts of buildings can be avoided

while instrumenting additional occupancy detection sensors.
Hence, it identifies opportunities for reducing deployment
and management cost of the new infrastructure. Our models
for computation are carefully designed to be generic and
applicable across multitude of office environments and loads.

Apart from modeling multi-use electrical loads, we are
currently investigating unsupervised techniques to reduce the
burden of human tagging to identify situations. We believe our
work compliments the literature around energy management
of green buildings and recommends novel ways to optimize
occupancy sensor deployment and management.

REFERENCES

[1] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, and T. Weng.
Occupancy-driven energy management for smart building automation. In
Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems
for Energy-Efficiency in Building, BuildSys ’10, NY, USA, 2010. ACM.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J.
Mach. Learn. Res., 3:993–1022, Mar. 2003.

[3] D. T. Delaney, G. M. P. O’Hare, and A. G. Ruzzelli. Evaluation
of energy-efficiency in lighting systems using sensor networks. In
Proceedings of the First ACM Workshop on Embedded Sensing Systems
for Energy-Efficiency in Buildings, BuildSys ’09, NY, USA, 2009. ACM.

[4] Dwyer Instruments.
http://www.dwyer-inst.com.au/.

[5] V. L. Erickson and A. E. Cerpa. Occupancy based demand response
hvac control strategy. In Proceedings of the 2nd ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency in Building, BuildSys
’10, pages 7–12, New York, NY, USA, 2010. ACM.

[6] V. L. Erickson, Y. Lin, A. Kamthe, B. Rohini, A. Surana, A. E.
Cerpa, M. D. Sohn, and S. Narayanan. Energy efficient building
environment control strategies using real-time occupancy measurements.
In Proceedings of the First ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings, BuildSys ’09, pages 19–24,
New York, NY, USA, 2009. ACM.

[7] Y. Hua, V. loftness, R. Kraut, and K. M. Powell. Workplace collabo-
rative space layout typology and occupant perception of collaboration
environment. In Environment and Planning B: Planning and Design,
volume 37, pages 429–448, 2010.

[8] A. Kamthe, L. Jiang, M. Dudys, and A. Cerpa. Scopes: Smart cameras
object position estimation system. In Proceedings of the 6th European
Conference on Wireless Sensor Networks, EWSN ’09, pages 279–295,
Berlin, Heidelberg, 2009. Springer-Verlag.

[9] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya. Virtual
machine power metering and provisioning. In Proceedings of the 1st
ACM symposium on Cloud computing, SoCC ’10, pages 39–50, New
York, NY, USA, 2010. ACM.

[10] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic,
E. Field, and K. Whitehouse. The smart thermostat: using occupancy
sensors to save energy in homes. In Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems, SenSys ’10, pages
211–224, New York, NY, USA, 2010. ACM.

[11] Real time location system, Ubisense.
http://ubisense.net.

[12] State-of-the-art review of CO2 demand controlled ventilation technology
and application. U.S. Dept. of Commerce, National Institute of Standards
and Technology. Gaithersburg, Md. : 2001.

[13] S. P. Tarzia, R. P. Dick, P. A. Dinda, and G. Memik. Sonar-based
measurement of user presence and attention. In Proceedings of the 11th
international conference on Ubiquitous computing, Ubicomp ’09, pages
89–92, NY, USA, 2009. ACM.

[14] T. Teixeira and A. Savvides. Lightweight people counting and localizing
for easily deployable indoors wsns. Selected Topics in Signal Processing,
IEEE Journal of, 2(4):493 –502, aug. 2008.

[15] US Whole Building Design Guide Sustainable Committee.
http://www.wbdg.org.

[16] M. Youssef and A. Agrawala. The horus wlan location determination
system. In Proceedings of the 3rd international conference on Mobile
systems, applications, and services, MobiSys ’05, pages 205–218, New
York, NY, USA, 2005. ACM.


