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Abstract—Electric power systems are prone to various kinds of
transient disturbances which exist only for a fraction of second
and often trigger cascading failures in. Hence it is important to
detect and prevent them from spreading in time. Conventionally
these events are prevented by deploying costly special protection
systems (SPS). Unfortunately, in many cases SPSs mis-operate
as they could not predict the stability well ahead and are
designed to operate based on past experiences and extensive
off-line simulations. This paper proposes an online transient
stability prediction scheme based on live synchrophasor data.
The novelty of the proposed method is that it accurately predicts
the transient stability based on only few (10 to 12) sample fault
data without solving computationally extensive electromechanical
dynamics. Synchrophasor data from geographically distributed
Phasor Measurement Units (PMUs) are collected, synchronized,
aggregated (if required) and analyzed on a stream computing
platform to predict the trajectories of the generators which are
then used to predict the transient stability of the grid. Perfor-
mance of the proposed scheme is evaluated on the benchmark
systems and evaluation results are presented in this paper.

Index Terms—PMU, Synchrophasors, Transient Stability,
Stream computing

I. INTRODUCTION

Modern power systems are continuously monitored by
well-trained system operators equipped with sophisticated
monitoring and control systems. Despite such precautionary
measures, large blackouts are still happening quite frequently.
Many of these blackouts originate as a single fault and the
consequences of that fault rapidly spread through the network
causing massive cascading failures due to voltage instability
or generator instability (also called transient instability). While
voltage instability is a relatively slow phenomenon (typically,
takes a few seconds), transient instability usually happen
within a fraction of second. If the unstable generators are
not isolated quickly, they will drag the nearby generators also
down and cause widespread blackouts. To prevent such large-
scale blackouts, proper emergency control actions must be
initiated as soon as the transient instability is detected.

Due to the recent advances in the areas of sensing, control,
computation and communication technologies, it is becoming
possible to take appropriate control actions based on fine-
grained measurements of the grid. For instance, the recently
developed Phasor Measurement Units (PMUs) could provide
upto 120 measurements per second having microsecond accu-
racy and the stream computing systems enable processing large
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volumes of streaming data in memory and extracting useful
information from the data in realtime. Power industry interest
in stream processing solutions arises from applications with
requirements to acquire, analyze, and respond to enormous
numbers of complex events in real-time.

Several approaches have already been proposed for transient
stability prediction. For example, Scala et al [1] proposed a
time domain simulator for transient stability prediction based
on solving nonlinear differential equations model of the power
system. Pai [2] has proposed a transient energy function for
direct stability assessment by comparing the difference be-
tween the kinetic and potential energy following a disturbance.
This method reduces computing time by avoiding time domain
solution of non-linear differential equations. A real time online
transient stability prediction method has been proposed by
Rovnyak et al [3] where decision trees constructed offline are
used to classify a transient swing as either stable or unstable
on the basis of real-time phasor measurements. Liu et al [4]
have proposed a fast transient stability prediction method using
pattern recognition. The method collects an extensive database
of rotor angle trajectories by simulating various power system
faults and rotor angle trajectory is predicted in real-time by
comparing the current trajectory with the most similar (in
terms of Euclidean distances) ones in the database. Tao et al
[5] introduced a data mining framework for transient stability
analysis where support vector machine (SVM) and bagging
algorithms are used to improve accuracy and reliability of
the stability prediction. Neural networks have been employed
by Amjady et al [6] for transient stability prediction where
computational burden of the training phase is reduced by a
hybrid intelligent system composed of a preprocessor, an array
of neural networks, and an interpreter. To counter the ineffi-
ciency of common machine learning methods in learning new
information, an incremental learning algorithm is proposed by
Chu et al [7] to train an artificial neural network for real-time
transient stability prediction.

Above mentioned transient stability prediction methods can
be broadly classified into three groups i.e. time domain, direct
and machine learning. Though time domain simulation is the
most accurate way of predicting transient stability, it is difficult
to implement in real time as it requires accurate information of
the power network topology. Direct methods are faster but are
not accurate. Machine learning methods are very fast but again
their accuracy highly depends on offline learning. Hence, there
is a need for fast and accurate transient stability prediction of
Power Systems.

This paper proposes an on-line transient stability prediction
method using PMU measurements. The method comprises of
four steps, the first step deals with data collection, aggregation
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and synchronization, second step predicts generator rotor angle
trajectories using short-time measurement data, third step
models the system based on the derived trajectories and the
last step predicts the transient stability. Polynomial curve
fitting technique is used to predict the generator trajectories
using 10-12 data samples after the fault inception. Based
on predicted trajectories, generators are clustered into critical
and non-critical sets. Each cluster is then converted to an
equivalent single machine and finally stability is evaluated on
equivalent machines. The method is implemented in streaming
environment and has been evaluated on the standard IEEE
benchmark data for the New England bus with 10 machines
39 bus system and one Indian practical systems and evaluation
results are presented in this paper.

II. WIDE-AREA SYNCHROPHASOR SYSTEM

A synchrophasor system (as shown in Fig 1) includes
phasor measurement units (PMUs) to collect real-time data
and a communications system (such as a private utility line,
the public switched telephone network, or the internet) to
deliver the data from many PMUs to a local data concentrator
(usually hosted by the utility that owns the PMU) called Phasor
Data Concentrator(PDC). Concentrated data are relayed on a
wide-band, high-speed communications channel to a higher-
capability data concentrator sometimes called Super Phasor
Data Concentrator (SPDC), that feeds the consolidated data
from all the PDCs into analytical applications such as a
wide-area visualization, state estimator, stability assessment,
alarming, etc. Synchrophasor applications need to ingest, pro-
cess, and analyze continuous data streams from heterogeneous
sources. The high volume of streaming data often makes it
impossible to fully store and process all the data from disk.
Fortunately, emerging stream computing paradigm not only
capable of dealing with high volume of streaming data but
also enables the extraction of new insights from data in real-
time. Further, it provides functionalities like reconfigurability,
scalability etc. to the applications which are key requirements
for these power system applications.

This paper shows how streaming synchrophasor data could
be collected, synchronized, aggregated (when required) and
analyzed for real time power system application like tran-
sient stability prediction. Monitoring and analysis of these
synchrophasor data let observers identify changes in grid
conditions, including the amount and nature of stress on the
system, to better maintain and protect grid reliability.

III. STREAM COMPUTING

Several power system applications that would need to per-
form very low latency computations on real-time streaming
data. It needs a computational framework that can scale well
with increasing large amounts of streaming data and increas-
ingly complex and numerous applications running in parallel
on this data. Similar challenges have been faced in other
fields. An example is financial engineering, where split second
investment decisions have to made based on computations
on large volumes of streaming data [8], often involving data
analytics, pattern discovery and model training tasks similar

Fig. 1. A synchrophasor network consisting of PMUs, PDCs and commu-
nication network

to the case of power system or presently known as smart grid
applications. A popular solution emerging for these scenarios
is stream computing.

Stream programming is typically done by creating a
dataflow graph [9] of operators (as shown in Fig. 2), which
performs the computation required by the application. The
inputs to the dataflow graph can be data from a variety of
sources, such as internet sockets, spreadsheets, flat files, or
relational databases, and may be consumed by one or more
input operators in the graph. A synchronization primitive is an
example of an operator which consumes data from multiple
data streams and then outputs data only when data from each
stream is read. This can be a useful operator for PMU data
which can arrive at different times from different PDCs due
to variable network delays and sampling times. Other relevant
operators would be a fast Fourier transform (FFT) operator
or a moving average operator. Each data element arriving at
the input to an operator is typically treated as an event and
the operator takes appropriate action when events occur at its
input. Operators may be pipelined to perform in a sequential
manner: output data from one operator is consumed by the next
downstream operator. Operators may also perform in parallel if
they do not have data dependencies: output from one operator
may be consumed by two or more different operators working
in parallel. There operators are typically contained within
containers called stream processing elements. For fast, parallel
execution, the processing elements are automatically parti-
tioned onto parallel processors and/or machines. The optimal
partitioning depends on factors such as the amount and type
of data streaming through different processing elements, the
resource requirements for each of them and the dependencies
between them. Hiding the details of parallel programming
from the user greatly improves productivity and efficiency
of streaming application deployment. The flexibility of input
formats, the ease of developing and connecting the operators,
and the automatic compilation onto parallel processors makes
stream processing attractive.

Even though stream computing languages make application
development quite easy, one may need to redesign traditional
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Fig. 2. InfoSphere stream processing graph

algorithms and applications to optimally use the stream pro-
cessing flow. Reference [10] gives an overview of algorithmic
advances and challenges in implementing efficient streaming
versions of traditional algorithms. A specific example in this
context is [11], where the authors implement decision tree
learning for a streaming system. Real-time data will be avail-
able from increasingly numerous data sources across the grid.
Stream computing frameworks hold the potential to enable
scalable real-time applications that can extract information
from this data to enable more complete situational awareness
and very fast operational response and control.

Although several stream computing platforms [12], [13]
have been developed recently, we are using IBM InfoSphere
Streams [14], a stream processing middleware from IBM Re-
search that supports high-performance, reconfigurable stream
computing.

IV. TRANSIENT STABILITY PREDICTION

Transient stability of any generator is governed by its
electric power output and mechanical power input from tur-
bine. During fault, because of large inertia, turbine speed
hence mechanical input power does not change instantaneously
whereas electric power output changes abruptly. Such power
imbalance creates a transient in the system which accelerates
or decelerates generator rotor governed by electromechanical
swing equation. Mechanical motion of any generator i is
governed by the following second order swing equation:

Hi

πf0

d2δi
dt2

+Di
dδi
dt

= PMi − PEi i = 1, . . . ,m (1)

where, PMi is mechanical power input, PEi is electrical
power output, δi is ith generator rotor angle, Di is damping
coefficients, Hi is inertia constant, m is number of generators
in system.

In real time, direct analysis of grid dynamics by solving
differential equations is very difficult as it requires actual grid
topology which may not be available and involves significant
computational effort. This paper proposes a direct stability
analysis method based on short-time measurement data of
rotor angle which does not require grid topology and avoids
to solve computationally intensive differential equations. Pro-
posed method predicts the stability in three steps. In the first

step, generator rotor trajectories are predicted using short-time
streaming data, in the second step using predicted trajectories
multi-machine system is reduced to a single-machine infinite
bus system, while in third step system transient stability is
evaluated on the reduced order system. Each step of the
method is described below.

A. Trajectory Prediction

To analyze the grid dynamics in real time, generator tra-
jectories are predicted using short-time measurement data of
rotor angle. Polynomial curve fitting is used for this purpose.
In polynomial curve fitting, the rotor angle trajectory is fitted
as a nth order polynomial function as follows:

δ(t) = a0 + a1 ∗ t+ a2 ∗ t2 + ...+ an ∗ tn (2)

where, a0, a1, a2, ..., an are coefficients of polynomial. The
values of a0, a1, a2, ..., an are obtained using least squares
estimation.

B. Model Reduction

Predicted trajectories are used to model the grid as an
equivalent single-machine infinite bus system (SMIB). During
large disturbances, entire machines in a power system can
be divided into two group’s namely critical group, which
accelerates with respect to other group and the non-critical
group [15]. In our approach, predicted trajectories are used
to form two equivalent machines, one representing critical
machines and other representing non-critical machines. To
cluster the generators into critical and non-critical groups, post
fault rotor angle deviation of each generator is computed with
respect to center of inertia angle (COA) and compared with
the pre-fault largest relative angle (δpremax). Center of angle
(COA) and pre-fault δpremax are calculated as follows:

COA = (
n∑

i=1

(Hi ∗ δi))/(
n∑

i=1

Hi) (3)

δpremax = max
n∑

i=1

n∑
j=i

(|δi − δj |) (4)

where n is number of generators in power system, δi and
δj are rotor angles of ith and jth generators respectively.

If the relative angle between δi and COA is greater than
δpremax, then machine i is identified as a critical machine. After
identification of critical and non-critical clusters, each cluster
is reduced to a single machine. Let, cm represents the critical
machine group and nm represents the non-critical machine
group. For each group, single machine equivalents of rotor
angle (δ), generator inertia (H), mechanical input power (PM )
and electrical output power (PE) are formed as follows:
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δcm/nm = H−1
cm/nm ∗

n∑
i∈cm/nm

(Hi ∗ δi) (5)

Hcm/nm =
n∑

i∈cm/nm

Hi (6)

PMcm/nm =
n∑

i∈cm/nm

PMi (7)

PEcm/nm =

n∑
i∈cm/nm

PEi (8)

The one machine infinite bus equivalent or single machine
equivalent (sme) model of the multi-machine power system
is obtained using equivalent critical and non-critical machines
as follows:

δsme = δcm − δnm (9)
Hsme = (Hcm ∗Hnm)/(Hcm +Hnm) (10)

PMsme = Hsme ∗ (PMcm/Hcm − PMnm/Hnm)(11)
PEsme = Hsme ∗ (PEcm/Hcm − PEnm/Hnm)(12)

C. Stability Evaluation

In this step, power-angle characteristics (PE = Pconst +
Pmaxsin(δ)) of the equivalent machine is derived using
machine learning. Time domain simulations were used to
generate the actual trajectories for different possible scenarios
and the generated knowledge was used to tune the model
parameters of power angle characterizes. The derived power-
angle characteristic is used to calculate accelerating (A1) and
decelerating (A2) areas as follows :

A1 =

∫ δc

δ0

(PM − Pmaxsin(δ))dδ (13)

A2 =

∫ δm

δc

(Pmaxsin(δ)− PM)dδ (14)

where, δc is rotor phase angle at fault clearance, δ0, δc are
phase angles when electrical power is equal to mechanical
power.

The system is stable if A2 is greater than A1. The difference
between A2 and A1 gives the margin of stability.

The steps of the simulation are as follows:
1: Obtain real time measurements about rotor angles and

powers of various generators using PMU.
2: Find maximum value of relative angle between any two

generators (δpremax) during pre-fault conditions.
3: Find center of inertia angle (COA) of the system at each

time stamp.
4: Obtain relative rotor angles with respect to COA at each

time stamp for all the generators.
5: Use polynomial curve fitting method to obtain relation for

relative rotor angles. Use the relation to predict the future
relative rotor angles.

6: Use the predicted rotor angles and δpremax to identify critical
and non-critical machines.

7: Form single machine equivalents of critical machines and
non-critical machines to obtain two machine system.

8: Form single machine equivalent of the system using
critical and non-critical equivalent machines.

9: Use electric power and rotor angle values of equivalent
model at different time stamps to obtain relation between
electric power and rotor angle.

10: Use Pe − δ curve and mechanical power of equivalent
model to obtain acceleration and deceleration areas.

11: Predict the stability of the system using acceleration and
deceleration areas. If the system is stable obtain the
stability margin.

12: Obtain new set of reading from PMUs and repeat the entire
process from step 3.

Fig. 3. New England 39 bus test system

V. STREAMS IMPLEMENTATION

In this paper, IBM InfoSphere Streams [14] which supports
high-performance, reconfigurable stream computing is imple-
mented. In InfoSphere Streams computing, applications can be
scaled to a large number of compute nodes and can interact at
runtime through stream importing and exporting mechanisms.
InfoSphere Streams applications take the form of dataflow
processing graphs consist of a set of processing elements
(PEs) connected by streams, where each stream has a fixed
schema and carries a series of tuples. The PEs are containers
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that host operators implementing data stream analytic, and are
distributed on compute nodes. Compute nodes are organized
as a shared-nothing cluster of workstations or as the execution
nodes in a large supercomputer such as the IBM Blue Gene.
PEs communicate with each other via their input and output
ports, connected by streams.

Fig. 4 shows SPADE (stream processing application declar-
ative language) application graph for transient stability predic-
tion. The application graph consists of 7 blocks and each block
does a part of the analysis and adds the derived features to
the forwarded streams. Transient stability application requires
only generators data, hence will subscribe generator data
from each phasor data concentrator (PDC). The application
reads the generator data from PDCs using Source operator
in block 1 of SPADE graph in Fig. 4. Source operator
supports universal resource locators (URIs) like file, UDP
datagram-based socket, and TCP socket connection and creates
stream from data flowing from the external sources. Source
operator has the flexibility to read selected attributes in a
tuple. As this application needs generator rotor angle (δ) and
electric power output (PE) data, source operator will select
only these two attributes along with the time stamp. Each
PMU at generating stations feeds at a rate of 100 Hz and
hence, needs synchronization among different samples. In this
application Barrier operator as shown in block 2 is used
for synchronization purpose. Barrier consumes tuples from
multiple streams, outputting a tuple only when a tuple from
each of the input streams has arrived. Synchronized generator
data are then used in block 3 for rotor trajectory prediction
using Functor operators. Functor operator could be used
for performing tuple-level manipulations such as filtering,
projection, mapping, attribute creation and transformation. In
trajectory prediction block, first Functor is used to find the
fault initiation and clearance times, maximum angle difference
δpremax between any two generators and center of angle COA
for the generators. Then first column of Functor operators is
used to isolate the individual generator for parallel processing.
Second column of Functor operators is utilized to predict
the individual rotor angle trajectories concurrently. For any
generator, trajectory is predicted using current sample and past
few samples. InfoSphere stream could access any attribute x
of past tuple n using the notation ˆ n.x. In block 4, predicted
trajectories of the generators are combined using Barrier
operator and clustered into critical and non-critical machines
using Functor and Join operators. Equivalent critical and
non-critical machines are then reduced to single machine
infinite bus system in block 5. Finally, in block 6 transient
stability is evaluated on the equivalent system within the
Functor operator. Output results are then sent to components
that are outside of a InfoSphere Streams system. The Sink
operator is used to perform this externalization that can write
to files, sockets and other external devices.

VI. SYSTEM EVALUATION

Application was tested on the standard IEEE benchmark
New England 10 machine 39 bus test system as shown in
Fig. 3 and 390 bus NREB (Northern Region Electricity Board)

system having 754 transmission lines, 205 transformers, 323
generators, 1 Static VAR Compensator (SVC) and 1 HVDC
link. It was assumed that each bus or substation has a PMU
sensor and reports to the local phasor data concentrator. These
PDCs in turn forward the measurements to a central super
PDC (SPDC) that hosts the transient stability application.
To generate the PMU data a time domain transient stability
analysis simulator was used where system was assumed to
operate at 50Hz and sampling frequency was chosen as 100Hz.
Random faults were simulated and generated time series data
are ingested by InfoSphere streams to run the application. As
in general any fault is cleared within 6-7 cycles (2 cycle for
relay operation and 4-5 cycles for circuit breaker operation), in
all test cases we have used 6 cycle (=6*20ms=12 samples) data
for predicting the rotor angle trajectories of the generators.

In order to choose the right order of the polynomial curve
fitting, several test cases were analyzed for different test
systems. Figures 5, 6, 7 and 8 show the predicted trajectories
of rotor angles (of most and least affected generators) using
different orders of polynomial curve fitting for a dead short-
circuit at bus 16 in 39 bus system. To verify the accuracy,
predicted trajectories are compared with the actual trajectories
obtained using time domain solution of the differential equa-
tions involve in the transient. From the simulation results, it
is clear that performance does not necessarily improves with
the increase in order of the polynomial. For example, Fig 8
shows that 6th order polynomial curve fitting cannot predict
trajectories as good as 4th or 5th order can predict. For 6th
order polynomial, the coefficients obtained using the small
measurement period of 120 ms sample set fail to capture the
trajectories. However, higher order polynomial may perform
well by increasing the measurement period but this will lead
to decrease in time available for emergency control actions
before the system loses stability.

Performances of different trajectory prediction methods are
also compared. Fig. 9 and Fig. 10 show the trajectory predic-
tions for New England system and NREB system respectively.
For new England system temporary fault was simulated at bus
9 whereas for NREB system fault was simulated at bus 1228.
In each case, trajectory of only the most affected generator
is presented. From Fig. 9 and Fig. 10 it is clear that 4th and
5th order polynomial curve fittings predict the trajectory more
accurately than other methods. However, 4th order polynomial
is preferable as it predicts the trajectories most accurately and
requires less number of co-efficient calculation which saves
computational time.

A comparative study of the range of rotor angle prediction
was made considering a tolerable limit of 20. Prediction ranges
of Taylor series expansion, Ohura et al’s method [16], autore-
gression method and polynomial curve fitting (CF) method for
both the test systems are presented in Table I. From Table I
it is clear that 4th order polynomial curve fitting outperforms
others.

To identify critical and non-critical set of generators for the
given fault, predicted rotor angle trajectories with respect to
center on angle of all the generators of New England System
are plotted in Fig. 11. Fig. 11 shows that in this case two
generators (6 and 7) swing fast with respect to the rest of the
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Fig. 4. Application graph for transient stability prediction

TABLE I
RANGE OF PREDICTION WITH ERROR LESS THAN 20

Method Range of Prediction ( milliseconds)
39 bus system NREB system

Taylor series expansion 80 125
Method by Ohura et al 165 195
Autoregression Method 210 200

3rd order polynomial CF 195 180
4th order polynomial CF 285 260
5th order polynomial CF 270 260

generators. Hence, generators 6 and 7 are grouped as critical
machines and others are treated as non-critical machines. To
evaluate the validity of this grouping actual trajectories with
respect to COA are presented in Fig. 12 which clearly shows
predicted trajectories with respect to COA are highly accurate.
These trajectories are used to model the grid as a single
machine infinite bus system and grid stability is evaluated on
this reduced grid model as discussed in Section V. Stability
prediction method gives an indication of whether grid is going
to stable or not along with a stability margin. Sliding window
is used for stability prediction. When a new tuple comes
in, old tuple is dropped and stability is evaluated. Fig. 13
shows a case study where fault exists 9 cycles in the system
and system becomes unstable. Fig. 13 predicts that transient
stability margin of the system will be reduced to zero at 0.48
second. This monotonic reduction in stability margin could be
a useful indication of grid collapse and as the proposed method
predicts such grid behavior well ahead (around 300ms) of time,
it could be very useful to take emergency action in real time.

An execution time comparison was made between stream
computing based transient stability prediction method and time
domain simulation on a single node Linux machine. While
time domain simulation method takes 1670 ms to predict the
stability of New England system, stream computing based
method takes only 1 ms for stability prediction. As transient
instability typically happens in 500-600ms after fault initiation,
and proposed method can predict the stability within 200 ms

(typically 75ms for communication delay+120 ms fault data
collection+1 ms computation) after fault initiation, 300-400
ms could be very crucial for triggering the emergency control.
This huge computational improvement makes the proposed
method applicable for real time implementation. In-built dis-
tributed computational capability of InfoSphere streams could
be easily exploited to increase the scalability for real time
application.

VII. CONCLUSIONS

This paper described a synchrophasor based online transient
stability prediction using the stream computing paradigm.
Simulation results presented in this paper show that the
proposed method predicts transient stability well ahead of
time. The key benefits of this method are that it does not
require power system models and can accurately predict the
stability in real time based on streaming sensor data. As the
method could predict the grid stability well ahead of time, it
provides sufficient time to take emergency control actions to
prevent cascaded outage leading to system blackout. Because
of inherent scalability of stream computing, the application
could be easily deployed to handle any real life power network.

Fig. 13. Transient stability margin prediction for 39 bus system
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Fig. 5. Predicted rotor angle trajectories for 39 bus system using 3rd order
polynomial curve fitting

Fig. 6. Predicted rotor angle trajectories for 39 bus system using 4th order
polynomial curve fitting

Fig. 7. Predicted rotor angle trajectories for 39 bus system using 5th order
polynomial curve fitting

Fig. 8. Predicted rotor angle trajectories for 39 bus system using 6th order
polynomial curve fitting

Fig. 9. Predicted rotor angle trajectories for 39 bus system using 4th order
polynomial curve fitting

Fig. 10. Predicted rotor angle trajectories for NREB bus system using the
model by Ohura et al

Fig. 11. Predicted rotor angle trajectories for 39 bus system with respect to
COA

Fig. 12. Actual rotor angle trajectories for 39 bus system with respect to COA
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