
 1

A Goal-Oriented Web Browser
First Author Name

Affiliation
Address

e-mail address

ABSTRACT
Many users are familiar with the interesting but limited
functionality of Data Detector interfaces like Microsoft’s
Smart Tags and Google's AutoLink. In this paper we
significantly expand the breadth and functionality of this
type of user interface through the use of large-scale
knowledge bases of semantic information. The result is a
Web browser that is able to generate personalized semantic
hypertext, providing a goal-oriented browsing experience.

We present (1) Creo, a Programming by Example system
for the Web that allows users to create a general-purpose
procedure with a single example, and (2) Miro, a Data
Detector that matches the content of a page to high-level
user goals.

An evaluation with 34 subjects found that they were more
effective using our system, and that the subjects would use
features like these if they were integrated into their Web
browser.

Author Keywords
Goal-oriented design, Programming by Example, Data
Detectors, context ware computing, software agents, Open
Mind, ConceptNet, TAP, commonsense reasoning

ACM Classification Keywords
H.5.2 User Interfaces: User-Centered Design
H.5.4 Hypertext/Hypermedia: User Issues
I.2.7 Natural Language Processing: Text Analysis
I.2.6 Learning: Concept Learning

INTRODUCTION
In this paper we describe a Programming by Example
system for the Web named Creo, and a Data Detector
named Miro. Working together, Creo and Miro provide the
user with a goal-oriented Web browsing experience. We
describe an evaluation of our software’s effectiveness based

on data from 34 users, and evaluations of our software’s
user interface during an iterative design process.

Finally, we conclude with a discussion of how large-scale
knowledge bases of semantic information can be leveraged
to improve Human Computer Interaction.

GOAL-ORIENTED DESIGN
A popular mantra in user interface design is to design for
the user’s goals, and not the user’s tasks. This is a very
important guideline to follow when designing a user
interface. For instance, digging through options dialog
boxes to configure the Bluetooth settings on a Smartphone
and on a PC to set up a wireless data transfer is not a goal, it
is a task. The user’s goal is to share a picture they took the
night before with their friends.

Goal-based design leads to highly usable interfaces.
Unfortunately, this design technique does not solve all of
the challenges facing Human Computer Interaction. This is
because there are many situations where there is no team of
interface designers in charge of shaping and molding the
user experience. For instance, consider the Web. The Web
contains billions of interfaces, some of which are usable.
However, the user experience of interacting with the Web,
as a whole, was not designed. The Web is not goal-based.

While Web browsers sit between the user and the Web, the
very thin amount of interface they do provide (Back, Next,
Stop, Refresh, Home) has little to do with the user’s higher
level goals.

Traditionally, goal-based design has only applied to the
creation of software applications with static interfaces. Any
application that attempted to provide the user with a goal-
based experience on top of the broad and changing
collections of interfaces like the Web would have to
dynamically change the interface on its own. And the
application would have to do this without the help of a
designer’s ethnographic aptitude. Creating a usable
interface has traditionally been the designer’s challenge,
and not the application’s challenge. Generating goal-based
interfaces at runtime requires software that knows a lot
more about the user than the current generation of
applications.

Teaching Computers the Stuff We All Know
Computers lack common sense. Current software
applications know literally nothing about human existence.
Because of this, the extent to which an application
understands its user is restricted to simplistic preferences
and settings that must be directly manipulated. Once
software applications are given access to Commonsense
Knowledge, hundreds of thousands of facts about the world
we live in, they can begin to employ this knowledge to
understand their users’ intentions and goals.

Open Mind
Since the fall of 2000, the MIT Media Lab has been
collecting commonsense facts from the general public
through a Web site called Open Mind [1-3]. Currently, the
Open Mind Common Sense Project has collected over
772,000 facts from over 16,000 participants. These facts
are submitted by users as natural language statements of the
form “tennis is a sport” and “playing tennis requires a
tennis racket.” While Open Mind does not contain a
complete set of all the common sense knowledge found in
the world, its knowledge base is sufficiently large enough to
be useful in real world applications.

ConceptNet
Using natural language processing, the Open Mind
knowledge base was mined to create ConceptNet [4], a
large-scale semantic network currently containing over
250,000 commonsense facts. ConceptNet consists of
machine-readable logical predicates of the form: (IsA
“tennis” “sport”) and (EventForGoalEvent
“play tennis” “have racket”). ConceptNet is
similar to WordNet [5] in that it is a large semantic network
of concepts, however ConceptNet contains everyday
knowledge about the world, while WordNet follows a more
formal and taxonomic structure. For instance, WordNet
would identify a “dog” as a type of “canine,” which is a
type of “carnivore,” which is a kind of “placental
mammal.” ConceptNet identifies a “dog” as a type of “pet”
[4].

Stanford TAP
The Stanford TAP (The Alpiri Project) knowledge base was
created to help bootstrap the Semantic Web [6-10]. Unlike
the Open Mind knowledge base, which was generated
through the contributions of knowledge from volunteers on
the Web, TAP was generated by creating 207 HTML
scrapers for 38 Web sites rich with instance data. TAP has
extracted knowledge from over 150,000 Web pages,
discovering over 1.6 million entities and asserting over 6
million triples about these entities [10]. This knowledge
covers a wide variety of topics, including: music, movies,
actors, television shows, authors, classic books, athletes,
sports, sports teams, auto models, companies, home
appliances, toys, baby products, countries, states, cities,
tourist attractions, consumer electronics, video games,
diseases, and common drugs. The instance data found in

TAP is a good complement to commonsense knowledge
bases like ConceptNet or CYC [11]. For instance, “CYC
knows a lot about what it means to be a musician. If it is
told that Yo-Yo Ma is a cellist, it can infer that he probably
owns one or more cellos, plays the cello often, etc. But it
might not know that there is a famous cellist called Yo-Yo
Ma” [8]. For this project, the TAP knowledge base has
been modified to match the formatting of ConceptNet.

A GOAL-ORIENTED WEB BROWSER
Using the knowledge in ConceptNet and TAP, we have
created a toolbar for Microsoft Internet Explorer that
matches the semantic context of a Web page to potential
user goals. For instance, imagine a user is viewing a Web
page that contains a recipe for Blueberry Pudding Cake.
The user’s browser will notice a pattern of foods on the
page, and present the user with two suggestions: order the
foods, or view their nutritional information. When the user
selects one of these buttons, all of the foods on the page
turn into hyperlinks for the selected action. For instance, by
pressing the “Order Food” button, each food in the recipe
will be converted into a hyperlink for that food at the user’s
favorite online grocery store. Alternatively, the user can
view the nutritional information for each of the foods at
their favorite Web site for nutritional information:

Figure 1: Automatically associating a user's high-level goals

with the content of a Web page

After being presented with this example, a critical reader
likely has two significant questions: (1) How does the
browser know how to interact with the user’s favorite
grocery store? And (2) How does the browser know which
of the terms in the recipe are foods? The answer to the first
question is by enabling users to train a Web browser to
interact with their favorite sites using a Programming by
Example system named Creo (Latin, “to create, make”).
The answer to the second question is by leveraging the
knowledge bases of ConceptNet and TAP to create a next
generation Data Detector named Miro (Latin, “to wonder”).
The following two sections discuss both of these topics in
detail.

 3

It is important to note that while this “recipe to grocery
store” example is used in the next two sections for the
purposes of clarity, Creo can automate interactions with any
kind of site on the Web (not just grocery stores), and Miro
can detect any type of data described in ConceptNet and
TAP (not just foods).

PROGRAMMING BY EXAMPLE
Traditional interfaces leave the user with the cognitive
burden of having to figure out what sequence of actions
available to them will accomplish their goals. Even when
they succeed in doing this for one example, the next time
the same or a similar goal arises, they are obliged to
manually repeat the sequence of interface operations. Since
over time, goals tend to re-occur, the user is faced with
having to tediously repeat procedures over and over. A
solution to this dilemma is Programming by Example [12].
A learning system records a sequence of operations in the
user interface, which can be associated with a user's high-
level goal. It can then be replayed in a new situation when
the goal arises again. However, no two situations are
exactly alike. Unlike simple macro recordings,
Programming by Example systems generalize the
procedure. They replace constants in the recording by
variables, that usually accept a particular kind of data.

Previous Research
The TrIAs (Trainable Information Assistants) by Mathias
Bauer [12, 13] is a Programming by Example system that
automates information gathering tasks on the Web. For
instance, TrIAs can aggregate information from airline,
hotel, weather, and map sites to help a user with the task of
scheduling a trip.

Turquoise, by Rob Miller and Brad Myers [14], is a
Programming by Example system that allows non-technical
users to create dynamic Web pages by demonstration. For
instance, users can use Turquoise to create a custom
newspaper by copying and pasting information, or automate
the process of aggregating multiple lunch orders into the
same order.

Similar to Turquoise, the Internet Scrapbook, by Atsushi
Sugiura and Yoshiyuki Koseki [12, 15], is a Programming
by Example system that allows users with little
programming skills to automate their daily browsing tasks.
With the Internet Scrapbook, users can copy information
from multiple pages onto a single personal page. Once this
page is created, the system will automatically update it as
the source pages change.

Web Macros, created by Alex Safonov, Joseph Konstan and
John Carlis [16], allows users to interactively record and
play scripts that produce pages that cannot be directly
bookmarked.

A New Approach to Generalization
Knowing how to correctly generalize is crucial to the
success of Programming by Example. Past systems have

either depended on the user to correctly supply the
generalization; or they have attempted to guess the proper
generalization using a handcrafted ontology, representing
knowledge of a particular, usually narrow, domain. Our
contribution is to solve both the problems of generalizing
procedures and proactively seeking invocation
opportunities by using large knowledge bases of semantic
information.

Creo
Creo allows users to train their Web browser to interact
with a page by demonstrating how to complete the task. If
a user decides that they are spending too much time
copying and pasting the ingredients of recipes, they can
easily train Creo to automate this action. To do so, the user
hits the Start Recording button.

Figure 2: Creo learns how to interact with a Web site by

watching the user’s demonstration

Creo turns red to indicate that it is in recording mode, and it
captures the user’s action of navigating to FreshDirect.com.

Next, the user searches FreshDirect.com for an example
food, “diet coke.” Creo detects that this was an example,
and automatically generalizes the concept to “food brand”:

Figure 3: Creo automatically generalizes the user's input

Since these are the only two steps needed for locating a
particular food at the grocery store, the user can now finish
the recording, and give it a name: “Order Food.” By

providing a single example, “diet coke,” the user has
created a general-purpose recording.

In the opening example, terms like “egg,” “whole milk” and
“blueberries” were being linked to the grocery store, even
though these are not “food brands.” The reason for this is
that Creo actually associates a range of generalizations with
the user’s input, but only displays the most general
generalization for clarity. In this particular case, “food”
was the second most general generalization of “diet coke,”
as shown in the following figure.

Figure 4: Foods in the recipe are matched to the user's

recording

While this step is not required to create functional
recordings, users can directly control the selected
generalizations for a piece of input by clicking on the Ask-
>Food brand link in Figure 3 and clicking on the Scan tab:

Figure 5: The user can control which generalizations are

active with check boxes

The contextual help for this tab reads “The Miro Toolbar
will look for words that can be used in this recording when
you click the Scan button.” By checking and un-checking
items, users can directly control Creo’s generalizations. For

the user’s example of “diet coke,” Creo automatically
selected the generalizations of “food brand, food, drink, soft
drink, soda,” and “popular soda.”

Dealing with Messy Knowledge
The knowledge in ConceptNet and TAP (to a much lesser
extent) is imprecise, however organized knowledge is not
required for successfully matching the semantic context of a
term to the generalizations of a recording’s input. This is
because a recording’s list of generalizations attempts to be
as long as possible, without being inaccurate.

Figure 6: An example of matching messy knowledge

Because Creo has access to ConceptNet and TAP, users can
create general-purpose recordings with a single example,
allowing their Web browser to automate interactions with
their favorite sites.

The topic of generalization also comes into play in invoking
recordings: if the user creates a recording that works on
certain kinds of data, seeing that data in a new situation
presents an opportunity for the Web browser to invoke the
recording.

DATA DETECTORS
The purpose of Data Detectors is to recognize meaningful
words and phrases in text, and to enable useful operations
on them [17]. Data Detectors effectively turn plain text into
a form of hypertext.

Previous Research
The majority of Data Detector research occurred in the late
1990s.

In 1997, Milind Pandit and Sameer Kalbag released the
Intel Selection Recognition Agent [17]. The Intel Selection
Recognition Agent was able to detect six types of data:
geographic names, dates, email addresses, phone numbers,
Usenet news groups, and URLs. These pieces of data were
then linked to actions created by a programmer, like

 5

opening a Web browser to the URL, or sending an email
message to an email address.

In 1998, Bonnie Nardi, James Miller and David Wright
released Apple Data Detectors [18], which increased the
types of data detected from six to thirteen. Apple Data
Detectors were able to recognize phone numbers, fax
numbers, street addresses, email addresses, email
signatures, abstracts, tables of contents, lists of references,
tables, figures, captions, meeting announcements, and
URLs. Additionally, users could supply their own lists of
terms they wanted Apple Data Detectors to recognize.
Similar to the Intel Selection Recognition Agent, creating
an action associated with data required programming.

Figure 7: Apple Data Detectors (1998)

Also in 1998, Anind Dey, Gregory Abowd and Andrew
Wood released CyberDesk [19]. CyberDesk detected eight
kinds of data: dates, phone numbers, addresses, names,
email addresses, GPS positions, and times. While this was
less than the types supported by Apple Data Detectors,
CyberDesk provided a more advanced framework for
actions, including the ability to chain actions together, and
to combine different pieces of data into the same action.
CyberDesk also allowed for data detection on mobile
devices. For instance, CyberDesk provided the ability to
associate a GPS position with the action of loading a URL.
Like the Intel Selection Recognition Agent and Apple Data
Detectors, the only way to create new actions with
CyberDesk was to program them.

The functionality of these Data Detectors has been
integrated into several mainstream consumer products.
Microsoft Office XP (released in 2001), provided data
detection with a feature called Smart Tags, and the Google
Toolbar 3.0 (released in 2005), added data detection to Web
browsing, with a feature called AutoLink. Microsoft’s
Smart Tags currently recognizes eight types of data,
although a developer can program additional data types and
actions. Google’s AutoLink currently recognizes three
types of data: addresses, ISBNs and Vehicle Identification
Numbers. The actions associated with these types of data
are controlled by Google.

Back to the Future
One similarity of all of the research on Data Detectors in
the late 1990s is each paper’s future work section.

Programming by Example and End-User Programming
First, all of the research mentioned the importance of
Programming by Example and end-user programming. The
creators of the Intel Selection Recognition Agent wrote

“We would like to enhance the Selection Recognition
Agent along the lines of Eager [a Programming by Example
system], allowing it to detect the repetition of action
sequences in any application and automate these
sequences” [17]. The creators of Apple Data Detectors
wrote that a “goal is to complete a prototype of an end-user
programming facility to enable end users to program
detectors and actions, opening up the full Apple Data
Detectors capability to all users” [18]. Finally, the creators
of CyberDesk wrote that they were “investigating learning-
by-example techniques to allow the CyberDesk system to
dynamically create chained suggestions based on a user’s
repeated actions” [19].

Grammex (Grammars by Example) [20], released in 1999
and created by Henry Lieberman, Bonnie Nardi and David
Wright, allowed users to create Data Detectors through
Programming by Example. Like Creo, Grammex allowed
users to define the actions to associate with data by
providing demonstrations. However, Grammex was limited
to the few Macintosh applications that were “recordable”
(sending user action events to the agent) [20]. Similar to
the Data Detectors preceding it, Grammex based its data
detection on patterns of information. For instance,
Grammex could learn how to detect email addresses if the
user showed it several examples with the format
person@host. Unfortunately, very few types of data
outside of URLs, email addresses and phone numbers
actually have a detectable structure, limiting the usefulness
of such a system. This leads to the second “future work”
topic mentioned by Data Detector researchers of the late
1990s: semantics.

Semantics
The creators of Apple Data Detectors noted that relying on
pattern detection has many limitations: “It is easy to
imagine a company might choose a syntax for its product
order numbers—a three digit department code followed by
a dash followed by a four-digit product code—that would
overlap with U.S. telephone number syntax, thus leading
Apple Data Detectors to offer both telephone number and
part-ordering actions…We can do little about these
overlapping syntaxes without performing a much deeper,
semantic interpretation of the text in which the pattern
appears” [18]. The creators of CyberDesk also discussed
the topic of semantic interpretation, writing that they were
interested in “incorporating rich forms of context into
CyberDesk, other than time, position, and meta-types” [19].

Miro
Miro expands the types of data that can be detected from
the previous range of three types (Google’s AutoLink) and
thirteen types (Apple Data Detectors), to the full breadth of
knowledge found in ConceptNet and TAP.

Earlier in the paper, Miro was shown linking foods in a
recipe to the user’s favorite grocery store. Below, Miro is
turning plain text book titles into hyperlinks to the book at

the user’s favorite bookstore. Pressing the “Order Book”
button in the Miro toolbar causes the personalized semantic
hyperlinks to appear.

Figure 8: Miro recognizes the titles of books

It is important to note that the pages Miro reads are just
normal pages on the Web. The pages do not contain any
form of semantic markup. All of the semantic information
is coming from the ConceptNet and TAP knowledge bases.

Leverage Commonsense Knowledge to Understand the
Context of Text
Miro builds on three years of research on applying large
scale knowledge bases to understanding the context of text,
and using this commonsense knowledge to improve the
usability of interactive applications [21].

Related Work
ARIA (Annotation and Retrieval Integration Agent) is a
software agent that leverages ConceptNet to suggest
relevant photos based on the semantic context of an email
message [22].

ConceptNet has also been shown to be useful for
determining the affective quality of text, allowing users to
navigate a document based on its emotional content [23].
Also in the domain of text, by using ConceptNet to
understand the semantic context of a message the user is
typing, predictive text entry can be improved on mobile
devices [24].

In the domain of speech recognition, this same approach
can also be used to streamline the error correction user
interfaces of speech recognition systems [25].
Additionally, ConceptNet can be used to detect the gist of
conversations, even when spontaneous speech recognition
rates fall below 35% [26].

In the domain of advising, ConceptNet has been shown to
be useful for matching a novice’s knowledge to an expert
system [27].

Both ConceptNet and TAP have also been found to be
incredibly useful in the domain of search, demonstrated by
the prototypes GOOSE (Goal-Oriented Search Engine) [28]
and ABS (Activity Based Search) [9], respectively.

Dealing with the Ambiguity of Natural Language

Figure 9: I want to buy an Apple

The most significant challenge that Miro faces in its task of
data detection is dealing with the ambiguity of natural
language. For instance, because of the way Open Mind was
created, the following two statements are in ConceptNet:

(IsA “apple” “computer”)

(IsA “apple” “fruit”)

It is important to deal with ambiguity well, because
incorrectly matching a user’s goals leads to a very poor user
experience:

Mr. Thurrott typed the word “nice.” Up popped a Smart
Tag offering to book a flight to Nice, France using
Microsoft’s Expedia website. When he typed the word
“long,” up popped a smart tag from ESPN offering more
information on Oakland Athletics centerfielder Terrence
Long. As Thurrott put it, “Folks, this is lame” [29].

Google’s AutoLink team avoided this problem entirely by
opting to only detect three kinds of data that are already
designed to be unique (addresses, ISBNs and VINs).

Miro addresses this problem through a method of patterns
and thresholds that can be modified by the user. For
instance, the term “apple” by itself is ambiguous, but if it is
surrounded by terms like Dell and Toshiba, the meaning
becomes clearer. This is, of course, far from a perfect
solution. For instance, if someone wrote a blog about how
they spilled apple juice all over their brand new apple G5,
Miro will have difficulty understanding the apples. While
Miro does occasionally make mistakes, we believe the
benefit it provides users is valuable nonetheless.

PUTTING END-USERS IN CONTROL OF THEIR DATA
AND SERVICES
Both Microsoft and Google have received a strong outcry
of criticism for their Data Detectors, Smart Tags and
AutoLink [29, 30]. The equality of the criticism is
surprising given the considerable difference between
Microsoft and Google’s current public image. Microsoft
actually pulled Smart Tags as being a feature of Internet
Explorer 6 shortly before the release of Windows XP due to
public outcry. In an article in the Wall Street Journal,
columnist Walter Mossberg wrote, “Using the browser to

 7

plant unwanted and unplanned content on these pages--
especially links to Microsoft's own sites--is the equivalent
of a printing company adding its own editorial and
advertising messages to the margins of a book it has been
hired to print. It is like a television-set maker adding its
own images and ads to any show the set is receiving” [30].

Together, Miro and Creo solve this problem, by enabling
end users to be in control of their data and services.

EVALUATION
In this section we describe two sets of evaluations: (1) a
series of evaluations done during the iterative design
process of Creo conducted with a total of 10 subjects, and
(2) a final evaluation conducted with 34 subjects to assess
the overall effectiveness of our system.

Evaluating the User Interface Design
While designing Creo and Miro, we realized that the critical
factor to their success would not be technical limitations,
since systems built on top of ConceptNet and TAP have
worked fine in the past. Instead, the critical factor to their
success would be usability. In particular, the user interface
design of Creo was vital. Programming by Example
systems often extol the virtues of enabling novice users to
train their computer, but then end up being simply GUIs for
Computer Scientists ([20]). We followed an iterative design
process during Creo's creation, formally evaluating each
iteration, before designing the next.

Figure 10: A paper prototype of Creo Version 1

The first version of Creo’s user interface was evaluated
with three users during a paper prototyping session. Users
were given a briefing of the purpose of the software
application, and were then asked to interact with the
application, thinking out loud. This evaluation led to
changes regarding how Creo provides confirmations and
feedback.

The second version of Creo’s user interface was evaluated
with four user interface designers, using a computer
prototype. Only the front end of the software was
implemented, and the scenarios were entirely simulated.
Each designer independently conducted a heuristic
evaluation of the software, and wrote a list of usability
problems they found while interacting with Creo,

categorized by severity. Changes to the interface from this
evaluation included reworking how Creo interacts with the
file system, and making visual changes to how Creo
represents its current mode.

The third version of Creo’s user interface was evaluated in
a usability test with three novice users, using a fully
functional prototype running as part of Internet Explorer.
Changes to Creo’s interface from this evaluation included
removing controls not relevant to the current mode to
reduce visual complexity, and a re-evaluation of which
controls were absolutely necessary. Additionally, Creo’s
generalization interface was entirely redesigned.

The fourth version of Creo’s user interface was evaluated as
part of a larger scale user study to determine the software’s
overall effectiveness.

Figure 11: The evolution of Creo's design, Versions 2, 3 and 4

Determining the Software’s Overall Effectiveness
The purpose of the fourth user evaluation was to (1)
conclude if the overall system made users more effective at
completing a task, and (2) to conclude if users understood
the utility of the software, and if they would use software
applications like Creo and Miro if they were included in
their Web browser.

The evaluation was run with a total of 34 subjects, 17 male
and 17 female. In Part 1 of the evaluation, 17 people were
in the experimental group and 17 people were in the control
group. The average age of the subjects was 29.3, with a
range of 19 to 58. 26% of subjects had no programming
experience, and all subjects were familiar with using the
Web. Subjects were compensated $10.

Part 1: Evaluating the Effectiveness of Miro
In the first part of the experiment, subjects were asked to
order 11 ingredients in a recipe for Blueberry Pudding
Cake. The experimental group of subjects had access to the

Miro toolbar, which could recognize common foods and
automatically link them to the subject’s grocery store. The
control group of subjects completed the same task, but used
Internet Explorer with Miro turned off. Subjects in the
control group were allowed to complete the task however
they naturally would. All of the subjects were instructed to
complete the task at a natural pace, and not to treat the
experiment like a race. We hypothesized that the
experimental group would be able to complete the task
significantly faster than the control group.

Part 2: Evaluating the Effectiveness of Creo
In the second part of the experiment, all of the subjects
were asked to create a recording with Creo that could order
any type of food at a grocery store. Subjects completed this
task after being shown an example of how Creo works. We
showed the subjects a single demonstration of how to use
Creo to look up a movie at IMDB. We chose to do this
because unlike the three preceding usability studies, for this
evaluation we were interested in capturing the average time
it took a slightly experienced subject to create a simple
recording. We hypothesized that subjects would be able to
successfully complete this task in a trivial amount of time.

Quantitative Results
The experimental group completed the task in Part 1 in an
average time of 68 seconds, with a standard deviation of 20
seconds. The control group completed the task in an
average time of 139 seconds with a standard deviation of 58
seconds. These results are statistically significant (p<.001).
These results are also consistent with the study conducted
by the Intel Selection Recognition Agent authors, finding
that interface “saved both time and effort, in some cases
over 50%” [17].

The range of results from the control group in Part 1 is due
to the fact that subjects were asked to complete the task
however they naturally would. There was a large amount
of variability in the way subjects transferred information
between the recipe and the grocery store site. Some
subjects relied heavily on keyboard shortcuts, using alt-tab
to switch windows and tab to switch which control on the
grocery store page had the focus. Some subjects double
clicked to select a word, and triple clicked to select a full
line. Other subjects retyped every ingredient instead of
copying and pasting. Since they would often hold three to
four ingredients in their own memory at a time, this usually
turned out to be faster.

In Part 2, subjects completed the task in 26 seconds, with a
standard deviation of 5 seconds. This means that even for
interacting with a list of 11 items, it would be faster to train
Creo first, and then use Miro to turn the information into
hyperlinks. In the following chart, the time for Part 2 is
represented as an overhead cost for the experimental
group’s time for Part 1.

Figure 12: The time it took the control and experimental

groups to complete the task

Debriefing Questionnaire
The debriefing questionnaire contained several Likert scale
questions asking the subject’s impressions of the software’s
usability (shown below), and if they would actually use the
software.

Figure 13: Did the subjects find Miro easy to use

Figure 14: Did the subjects find Creo easy to use

 9

Asked if they would use the software, 85% of subjects
responded they would use Creo, and 100% of subjects
responded they would use Miro. We have implemented a
way for users to easily share the functionality of recordings
they create with Creo without sharing any of their personal
information, (which Creo automatically detects and stores
separately). So it is technically possible for a subset of
users to use Creo, and for everyone to use Miro.

To analyze how Creo and Miro make users more effective
compared to using a conventional Web browser, this
evaluation focused on a single example of using Creo and
Miro. We did not study the breadth tasks that Creo and
Miro can perform for two reasons, (1) the ConceptNet and
TAP knowledge bases are rapidly growing, and (2) the
respective teams at MIT and Stanford responsible for the
creation of these knowledge bases have already performed
evaluations of their breadth [1-4, 7-10].

FUTURE WORK

When Things Go Wrong
While the ConceptNet and TAP knowledge bases are very
large, they are certainly not complete. To assist the user
with situations where Miro fails to detect a specific piece of
information, we have developed a Training Wizard. This
wizard consists of a three-step process: (1) ask the user
what information should have been detected, (2) ask the
user what the information is (by having them fill out a
sentence), and (3) ask the user which recording from Creo
should have been activated. In most cases, Miro can
provide intelligent defaults for at least two of these three
steps, creating a collaborative learning interface between
Miro and the user. In the first step, Miro performs
predictive text entry on what the user types, based on the
terms on the current Web page. In the second step, Miro
attempts to describe the concept itself. In some cases Miro
will know what the concept is, but not how it relates to the
current set of recordings created by Creo. In the third step,
Miro attempts to check which recordings should have been
activated based on the information in the previous step.
This is useful when providing new pieces of information.
For instance, once the user tells Miro that “Eastern Standard
Tribe” is a book, Miro knows what to do with books.

For the situations where a recording breaks due to a change
with a Web site, we have a developed a debugging mode.

Learning from the Web
We are exploring using natural language processing to
enable Miro to learn new pieces of information by reading
Web pages. Miro takes the text of the page the user is on
and (1) performs sentence boundary detection, (2) isolates
the nouns and words used for pattern matching, (3)
lemmatizes the text and, (4) matches the text against 11
different patterns. For instance, the sentence “The Killers is
a really great band” can be easily parsed to (IsA “the
killers” “band”). When Miro finds a new piece of
information that matches the current set of recordings, it

displays the activated recording (as if the knowledge came
out of ConceptNet or TAP), and then watches to see if the
user clicks on it. We believe an approach like this could be
used to quickly grow broad knowledge bases, if a system
like Miro were to be used by a large number of users.

Improving Mobile Browsing
We are also researching ways to use the recordings created
with Creo to improve mobile browsing. Users don’t want
to browse on mobile devices, they want to complete
actions. Adeo is a mobile application we have developed
that allows users to invoke the recordings they have created
with Creo. Adeo reduces complex procedures to the
minimal amount of required input and output.

Figure 15: Adeo streamlines mobile browsing

CONCLUSION
One ethnographic observation from our user studies is
notable: subjects with programming experience had more
difficulty using Creo than subjects without any
programming experience. While at first this seems
counterintuitive, we believe it has to do with the subject’s
expectations. Specifically, technical subjects had more
difficulty believing that Creo could generalize their single
example. This is because subjects with a programming
background were familiar with how computers function.
They had never seen a computer behave this intelligently
before.

Creo and Miro, like many other interactive applications
[21-28], would not be able to generalize information and
anticipate their users goals without access to the knowledge
stored in ConceptNet and TAP. This paper has
demonstrated the effect these knowledge bases can have on
the research areas of Programming by Example and Data
Detection. However, we believe many other types of
interactive applications can benefit from access to this
knowledge as well.

Usability is improved by making it easier for humans to
understand computers. However the reverse is true as well.
ConceptNet and TAP improve usability by making it easier
for computers to understand humans.

ACKNOWLEDGEMENTS
The authors would like to thank many people.
Unfortunately, since this is a blind review, we can’t thank
them yet. They were very helpful though.

REFERENCES
1. Singh, P. The Public Acquisition of Commonsense

Knowledge. Proceedings of AAAI Spring Symposium
on Acquiring (and Using) Linguistic (and World)
Knowledge for Information Access. Palo Alto,
California. (2002).

2. Singh, P., Barry, B., Liu, H. Teaching Machines about
Everyday Life. BT Technology Journal. (2004).

3. Singh, P., Lin, T., Mueller, E., Lim, G., Perkins, T., Zhu,
W.L. Open Mind Common Sense: Knowledge
Acquisition from the General Public. Proceedings of the
First International Conference on Ontologies, Databases,
and Applications of Semantics for Large Scale
Information Systems. Irvine, California. (2002).

4. Liu, H., Singh, P. ConceptNet: a Practical
Commonsense Reasoning Toolkit. BT Technology
Journal. (2004).

5. Fellbaum, C. WordNet: An Electronic Lexical Database.
MIT Press. Cambridge, Massachusetts. (1998).

6. TAP: Building the Semantic Web.
http://tap.stanford.edu/.

7. Guha, R., McCool, R. TAP: a Semantic Web Platform.
Computer Networks: The International Journal of
Computer and Telecommunications Networking.
Volume 42, Issue 5. (2003).

8. Guha, R., McCool, R. A System for Integrating Web
Services into a Global Knowledge Base.
http://tap.stanford.edu/sw002.html.

9. Guha, R., McCool, R., Miller, E. Semantic Search.
Proceedings of the 12th International Conference on
World Wide Web. Budapest, Hungary. (2003).

10. McCool, R., Guha, R., Fikes, R. Contexts for the
Semantic Web. http://tap.stanford.edu/contexts.pdf.

11. Lenat, D. CYC: a Large-Scale Investment in Knowledge
Infrastructure. Communications of the ACM. Volume
38, Issue 11. (1995).

12. Lieberman, H. Your Wish is My Command:
Programming by Example. Morgan Kaufmann. San
Francisco, California. (2001).

13. Bauer, M., Dengler, D., Paul, G. Instructible
Information Agents for Web Mining. Proceedings of the
5th International Conference on Intelligent User
Interfaces. New Orleans, Louisiana. (2000).

14. Miller, R., Myers, B. Creating Dynamic World Wide
Web Pages by Demonstration. Technical Report CMU-
CS-97-131 (and CMU-HCII-97-101), CMU School of
Computer Science. (1997).

15. Sugiura, A., Koseki, Y. Internet Scrapbook: Automating
Web Browsing Tasks by Demonstration. Proceedings of
the 11th Annual ACM Symposium on User Interface
Software and Technology. San Francisco, California.
(1998).

16. Safonov, A. Web Macros by Example: Users Managing
the WWW of Applications. Proceedings of the
Conference on Human Factors in Computing Systems
(CHI 99). Pittsburgh, Pennsylvania. (1999).

17. Pandit, M., Kalbag, S. The Selection Recognition Agent:
Instant Access to Relevant Information and Operations.
Proceedings of the 2nd International Conference on
Intelligent User Interfaces. (1997).

18. Nardi, B., Miller, J., Wright, D. Collaborative,
Programmable Intelligent Agents. Communications of
the ACM, Vol. 41, No. 3. (1998).

19. Dey, A., Abowd, G., Wood, A. CyberDesk: A
Framework for Providing Self-Integrating Context-
Aware Services. Proceedings of the 3rd International
Conference on Intelligent User Interfaces. San
Francisco, California. (1998).

20. Lieberman, H., Nardi, B., Wright, D. Grammex:
Defining Grammars by Example. Proceedings of the
Conference on Human Factors in Computing Systems
(CHI 98). Los Angeles, California. (1998).

21. Lieberman, H., Liu, H., Singh, P., Barry, B. Beating
Some Common Sense into Interactive Applications. AI
Magazine, Winter 2004. (2004).

22. Lieberman, H., Liu, H. Adaptive Linking between Text
and Photos Using Common Sense Reasoning.
Proceedings of the Adaptive Hypermedia and Adaptive
Web-Based Systems, Second International Conference,
AH 2002. Malaga, Spain. (2002).

23. Liu, H., Selker, T., Lieberman, H. Visualizing the
Affective Structure of a Text Document. Proceedings of
the Conference on Human Factors in Computing
Systems (CHI 03). Ft. Lauderdale, Florida. (2003).

24. Stocky, T., Faaborg, A., Lieberman, H. A Commonsense
Approach to Predictive Text Entry. Proceedings of the
Conference on Human Factors in Computing Systems
(CHI 04). Vienna, Austria. (2004).

25. Lieberman, H., Faaborg, A., Daher, W., Espinosa, J.
How to Wreck a Nice Beach You Sing Calm Incense.
Proceedings of the International Conference on
Intelligent User Interfaces (IUI 2005). San Diego,
California. (2005).

26. Eagle, N., Singh, P. Context Sensing Using Speech and
Common Sense. Proceedings of the NAACL/HLT 2004
workshop on Higher-Level Linguistic and Other
Knowledge for Automatic Speech Processing. (2004).

27. Kumar, A., Sundararajan, S., Lieberman, H. Common
Sense Investing: Bridging the Gap Between Expert and
Novice. Proceedings of the Conference on Human
Factors in Computing Systems (CHI 04). Vienna,
Austria. (2004).

28. Liu, H., Lieberman, H., Selker, T. GOOSE: A Goal-
Oriented Search Engine With Commonsense.
Proceedings of the Adaptive Hypermedia and Adaptive
Web-Based Systems, Second International Conference,
AH 2002. Malaga, Spain. (2002).

29. Kaminski, C. Much Ado About Smart Tags.
http://www.alistapart.com/articles/smarttags/.

30. Mossberg, W. Microsoft Will Abandon Controversial
Smart Tags. http://ptech.wsj.com/archive/ptech-
20010628.html.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

