
A Goal-Oriented Interface to Consumer Electronics using
Planning and Commonsense Reasoning
Henry Lieberman

MIT Media Lab
20 Ames St. E15-384A

Cambridge, MA 02139, USA
+1-617-253-0315

lieber@media.mit.edu

José Espinosa
MIT Media Lab

20 Ames St. E15-383
Cambridge, MA 02139 USA

+617-253-0315

jhe@media.mit.edu
ABSTRACT
We are reaching a crisis with design of user interfaces for
consumer electronics. Flashing 12:00 time indicators, push-and-
hold buttons, and interminable modes and menus are all
symptoms of trying to maintain a one-to-one correspondence
between functions and physical controls, which becomes hopeless
as the number of capabilities of devices grows. We propose
instead to orient interfaces around the goals that users have for the
use of devices.

We present Roadie, a user interface agent that provides intelligent
context-sensitive help and assistance for a network of consumer
devices. Roadie uses a Commonsense knowledge base to map
between user goals and functions of the devices, and an AI partial-
order planner to provide mixed-initiative assistance with
executing multi-step procedures and debugging help when things
go wrong.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Interaction styles. D.2.2 [Design Tools
and Techniques]: User Interfaces. I.2 [Artificial Intelligence].
J.7 [Computers in other systems]: Consumer products.

General Terms
Design, Human Factors.

Keywords
Commonsense Reasoning, planning, consumer electronics, goal-
oriented interfaces.

1. THE CRISIS IN CONSUMER
ELECTRONICS INTERFACES
Current consumer electronics are getting more and more
complicated, threatening to outstrip the competence that can be
reasonably expected from their intended users. For example, a
typical consumer camera, the Canon S500, has 15 buttons, two
dials, 4 x 2 mode switches, 3 menus of 5 choices in each mode,
each with two or three values, 7 on-screen mode icons, etc.

We attribute the growing complexity of consumer electronics
interface design to the desire to maintain the one-to-one
correspondence between functions and controls that worked well
for simpler devices. But as the number of functions of a device
grows, controls get overloaded, leading to heavily-moded
interfaces, push-and-hold buttons, long and deep menus, and other
confusing and error-prone interface elements. The next generation
of consumer electronics devices will incorporate processing and
networking, making things potentially more complex if we stick
to manual operation, but also opening up new possibilities for
automating co-operation between multiple devices.

We propose to re-orient the interface around the goals of the user,
rather than the functions of the device. Something, then, has to
map between the user's goals and the concrete functions of the
device. We propose to fill this gap with Roadie, an interface that
makes use of Commonsense knowledge and a partial-order
planner to give the user proactive advice, automate complex tasks,
and provide debugging help when things go wrong.

2. USERS NEED HELP WITH MANY
SCENARIOS OF USE
It is not only the “normal operation” of the device that users need
help with. There are other scenarios associated with consumer
devices that users need help with. The advent of powerful
computing and communication in devices gives us the potential of
providing help with these scenarios, as well as merely invoking
functions of the device.
• What can I do “out of the box”? When the user first acquires
the device, how do they know what it can do? How do they know
what its capabilities and limitations are? Devices should be self-
aware, self-explaining, and self-revealing. Onboard memory,
processing and networking can access and display information
like introductory tutorials, user group messages, examples of use,
etc. just when they are needed. The system should describe its
capabilities and limitations in terms that the user can understand
and comprehend.

• Oops, it doesn't work! Devices should also be self-debugging.
Devices should know what the possibilities for error are, and give
users sensible options for investigating the problem, mapping the
behavior of the device to their expectations, and plausible routes
to a solution or to seeking more assistance. Fixing problems
sometimes forces the user to introspect about the system’s internal
state – which might be hidden by the device designer. The
interface should help generate hypotheses concerning what might
have gone wrong. It should test those hypotheses automatically,
when possible. If the system cannot test a hypothesis it should
give to the user an explanation of what might be wrong, how he or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Intelligent User Interfaces, January 2006, Sydney, Australia.
Copyright 2005 ACM 1-58113-000-0/00/0004…$5.00.

she can test it, and the steps he or she should follow to correct the
problem.

• Don't do that to me again! Devices should accept feedback
on their behavior and modify their behavior accordingly. They
should have the capability of customizing device operation for
particular situations and automating common patterns of usage.

• I should be able to… Devices should enable unanticipated,
but plausible, patterns of use. Especially when several devices are
networked together, users should be able to compose the results of
using one device with the input of another without learning arcane
procedures; converting file formats, patching cables, etc.
• I want to do … The information presented to the user, and the
information exchanged between the user and the system, should
always be in the context of the user’s goals. For this kind of
dialogue, the system needs to have a good idea of the relations
between the user’s actions and the goals he or she is trying to
accomplish.

3. INTRODUCING ROADIE
In this paper, we present Roadie, a prototype consumer electronics
interface oriented towards the needs of non-expert users. The
project name comes from the person who is in charge of setting up
the audio and video devices during music concert tours.

Roadie’s interface is currently deployed as a window on a
computer screen, but it can be ported onto a PDA, a cell phone or
a Universal Remote Control. In the long-term future, it might
indeed be advantageous to totally redesign the hardware control
interface to each device to be more goal-oriented. But for the
moment, it is not our intention to completely replace the
conventional button-and-knob interface to each device.

Figure 1. Screen shoot of Roadie’s User Interface

The Roadie interface [see Figure 1] shows dynamic dialog boxes
that

• Show steps of a procedure
• Provide controls for executing the procedure

• Provide explanation
• Display alternatives for what to do next
• Provide facilities for help and giving feedback
• Provide a box for unrestricted natural language input for

the user to state goals or ask questions.

At the top of the interface are the suggested goals. When the user
picks one of the options, the planner calculates a plan to reach the
goal. The answer is mapped to English by the device interface,
and rendered by the user interface, highlighting the action that is
going to be executed next.

The user can control the execution of the steps by using the
“Perform this action” (do all the steps at once), and the single-step
“Do next step” button. The “Tell me more” button provides more
detailed explanation of why the steps help accomplish the goal,
and the “Oops, it does not work!” button launches a debugging
dialog.

In addition, the interface has a “What do you want to do?” text
box where the user can use natural language to communicate with
the system. While we are using some natural language
understanding, as explained below, we don't rely on being able to
completely understand arbitrary English. We also are anticipating
the possibility that we could use speech input for the natural
language component.
Roadie's interface is intended to be fail-soft – provide intelligent
assistance when it is helpful, but not replace conventional push-
the-button interaction if that turns out to be more convenient in a
given case, or if Roadie does not have the knowledge or language
understanding capability to correctly understand and implement
the user's intention.

3.1 Roadie Device Requirements
Roadie is designed to operate with devices that 1) provide means
to control their functions, and 2) that can query their state by
external software. The first requirement allows Roadie to control
the devices on the user's behalf; the second allows Roadie not
only to watch the state changes of the devices and interpret them
as the user’s actions, but it also monitors the devices by looking
for direct user interaction.

Unfortunately, the devices available to us at this time do not meet
these two requirements. The devices’ manufacturers are aware of
this problem and created the UPnP [15] standard. Unfortunately,
the manufacturers have not started to build devices that fully
comply with this standard. Furthermore, they sometimes do not
fully expose to the applications programmer all the necessary
controls and states to accomplish a given task. Some
manufacturers are interested in implementing sets of branded
devices that coordinate using a proprietary protocol that prevents
systems like Roadie from fully implementing general interaction
with the device.

To overcome this problem, we created a set of simulated devices
to test Roadie. Each device is represented in the simulation by a
window containing an image of the device, and conventional
dialog box “widgets” representing the conventional hardware
controls. Where feasible, we simulate the operation of the device
(e.g. an MP3 file plays when you hit the “Play” button on the CD
player to show that a simulated CD would be playing; a
Quicktime video represents the operation of the television). We
represent actions that the user would normally have to perform
manually by a dialog box instructing the user to perform that
operation.

Figure 2. Roadie's Device simulation

4. ROADIE’S INTERNAL
ARCHITECTURE
Figure 3 shows a diagram of Roadie’s system architecture.

Figure 3. Roadie system architecture

4.1 Commonsense Knowledge and EventNet
To implement Roadie, the devices need to have knowledge about
what the motivations, desires and goals of the users are. For
getting this knowledge, we created a plan recognizer called
EventNet [3]. This plan recognizer uses knowledge mined from
the OpenMind Commonsense knowledge base [14], a knowledge
base of 770,000 English sentences describing everyday life,
contributed by volunteers on the Web. We also use ConceptNet, a
semantic network derived from parsing the sentences in
OpenMind and applying a spreading activation algorithm.
EventNet uses temporal knowledge from this corpus and
spreading activation to infer a possible set of antecedent or
subsequent actions.

ROADIE uses EventNet to infer the user’s goals from his or her
actions, and proposes specific device functions that might
accomplish the user’s goal. This is illustrated below in the
scenario.

4.2 User Interaction module, Commonsense
plan recognizer
The user interaction module maps the actions, goals and desires of
the user to a format that the device controller can understand.
This component works as a complement to the normal device’s
interface, sensing the user’s interactions with the devices. It uses
EventNet to find the implications of the user’s actions. We also
used the Web to automatically collect pairs of device actions
linked by temporal relations [Mihalcea, personal communication].

For example, if the user plugs in his or her guitar, the system
infers that it is likely that the user wants to play music. It is also
responsible for providing an explanation about the behavior and
functionality. The input nodes are calculated using templates with
English descriptions of the device's changes of state. Then the
output nodes are matched against a text description of the
available goals.

The planner is used to infer the set of actions needed to configure
the devices to satisfy the user’s goal. The planner decomposes the
desired states to single actions that the devices can execute and
creates alternative actions when something unexpected occurs.
Also, the planner keeps track of the recently performed actions
and whether they succeed or not. If it is impossible to accomplish
the goal, the system uses this information to provide the user
advice to debug and potentially correct the problem. Roadie uses
the standard Graphplan [1] implementation.

In addition, the planner’s goals serve as a model of the capabilities
of the available devices. This knowledge helps to constrain the
broad options provided by EventNet. If the user says that she or
he wants to hear some music, EventNet might retrieve that
dancing is related to music, but since no capabilities of the device
relate to dancing, those irrelevant nodes will be filtered away. The
planner is also responsible for finding the states of the devices that
are conflicting with the desired goal.

4.3 Device Interface
The device interface is the module responsible for making the
devices communicate with the rest of the system. It is responsible
for controlling and monitoring the devices, querying EventNet
and sending the goals to the planner. This module has a text string
for each change in state of the device, like “turn on the device,” “I
insert a music CD.” In addition, it has all the possible goals that
might be reached with the current devices: both natural language,
and as a planner goal with the slots and its acceptable types. For
example, it has <”play the music CD”, (play-music-cd [cd-
player-device] [speaker-device])> for playing a music CD. So, to
set up the action play-music-cd it looks for CD players and
speakers and sets those particular devices into the planner. Also,
English templates for each possible planner step are used to create
explanations in natural language. The matching between two
phrases are made using EventNet’s semantic link algorithm.

4.3.1 Debugging Information
We do not assume that action sequences will never fail. Problems
inherent to devices - malfunctions or misunderstandings between
the user and Roadie - might emerge. Debugging consists of
looking for the causes of unexpected results. For each step, we

can show why the step is important, how the user can perform the
step, what the consequences are of not doing this step, what the
results are of performing it, and the things that might go wrong
while trying to perform the step. If the user does not find this
information sufficient to solve the problem, the system can
automatically send queries to online search engines, user manuals,
user group forums, etc.

5. USER SCENARIO
5.1 Listening to a CD
The user turns on the DVD player, using its front panel switch.
Roadie queries EventNet for the set of temporally related events
for the action “turn the DVD player on.” For this action,
EventNet answers: “watch hours of worlds best nature
programs,” “hit play,” “insert your recorded cd,” “listen to
music,” “insert disk,” “insert dvd,” “leave the room,” “push
television,” and “turn on home theater projector.”
Some of the actions, like “leave the room,” are ambiguous.
Others are just true in a very narrow context, such as “watch
hours of the world’s best nature programs”. Again, the idea to
generate a broad range of possibilities, and let further constraints
from the context, other actions, and interaction with the user
narrow down the search space.

Keep in mind that we have not programmed in advance all the
possible goals that the user might have, and all the implications of
these goals, EventNet is useful in generating at least some
plausible possibilities for subsequent events, no matter what the
user’s goal and situation is, as long it could reasonably be
considered part of Common Sense knowledge.

Then, Roadie tries to match the EventNet answers with a device
description. Using text matching as a method to find the likely
goals allows flexibility to add new goals to the set of devices,
while filtering the nodes that are out of context since they do not
match any goal.
The set of suggested actions are: “watch a movie on dvd,”
“record a dvd movie,” and “listen to a music cd.” The user
wants to transfer a CD to his home system, so he picks the second
choice. This goal needs two parameters: a recorder and a DVD
player. The system keeps track of the recency of usage of the
devices and asks the planner for a set of actions to accomplish the
goal (record-movie-dvd dvd-player recorder)
The planner calculates a plan. The output of the planner is a
partially ordered set of actions. One of the advantages of using a
planner is that the system is able to find the configuration to
accomplish the goal even if it is necessary to change some settings
deeply buried on a device interface, or to set the state of a remote
device into a particular mode. Roadie uses the planner output and
a set of English templates – one for each possible planner step – to
communicate to the user the steps involved in performing this
task. The planner’s explanation is shown in the Roadie interface:

1. Turn on the recorder
2. Connect the cable of the recorder and the DVD player
3. Open the DVD player door
4. Select the DVD player output that connects to the speaker
5. Select the speaker input that connects to the DVD player
6. Insert the movie DVD
7. Close the DVD player door

Note that some of these actions can be performed directly by the
system, while others (like inserting the DVD) cannot. Roadie
shows four control buttons:

• “Perform this action” This button will perform all the steps
listed to accomplish the goal at once. If one of the actions needs
the user’s manual intervention, the system will instruct the user
about what he or she needs to do. Roadie knows if a step fails, in
which case the planner is called again to find an alternative. If
there is no alternative plan, the system will tell the user which step
of the process went wrong along with suggestions for how to
solve the problem.

• “Do next step” This button behaves like the button “Perform
this action” but instead of executing all the steps at once, it
executes them one step at a time. This permits the user to observe
physical effects of each action.

• “Tell me more” This button tells the user why each step is
important, how he can perform the step, what can happen if the
step is not finished, and how he can determine if the step has been
performed correctly.

• “Oops, it does not work!” This button queries an online
search engine for information about the step. This button can be
specialized to use the device’s user forums or vendor-provided
information. Knowledge about user goals, device states, and other
context items can be fed to the search engines directly by the
device, rather than asking the user to end their interactions with
the device and log into a conventional computer.
These facilities not only provide the user with concrete
information and things to do, but also facilitate the user's learning
more about the devices' principles of operation.

The user picks the button “Perform this action,” and Roadie starts
to execute the steps until it reaches the action “Connect the cable
of the recorder and the DVD player”. The system cannot perform
the action by itself, so it asks the user to perform this action.
Roadie shows the user a picture of the correct input and
connector. The “Tell me more” button explains to the user what a
connection is, the different jack types, and the differences
between input and output devices and other relevant information
about this step. A similar dialog is displayed when the system
needs the user to insert disk.
The user inserted a music CD and not a movie DVD as the system
is expecting. The system knows that the CD can be recorded but
not it consist on just music and not on video. The system notes
this difference to the user and starts the recording process.

After recording a couple of songs, the user types, “I want to watch
a movie” in the “What would you like to do?” dialog box. Roadie
recognizes the pattern “I want to” as a user goal, then passes it to
EventNet to figure out the desired goal. Roadie queries EventNet
and matches the user’s goal to the functions “watch a DVD
movie,” and “watch television”. The user selects the option
“watch a DVD movie”

Roadie realizes that it is not possible to use the DVD player since
it is being currently used to record the music CD, but there is also
a CD player unit that is capable of recording the CD player. At
this point the user has three possible options,

• Perform both actions,
• Play the only the movie, or
• Record the CD.

Roadie displays the dialog shown in Figure 4. In this dialog the
system explains options for changing the devices’ configuration.
If the user ignores the suggestion, the current configuration is
kept. Roadie first displays a message that says “The action
“watch a movie on dvd” cannot be performed since the device
“dvd player” is being used to “record a music cd from dvd player
to recorder.” The first button says “Move “record to a music cd”
from “dvd player” to “cd player,” then perform “watch a movie
on dvd” and a note warning the user that the current action
“Recording a music cd from dvd player to speaker” will be
disturbed. The second button says “Stop “recording a music cd
from dvd player to speaker” and do “watch a movie on dvd”

Figure 4: Roadie showing two possible ways of resolving

conflicting goals
The new desired goal is sent to the planner and the control buttons
are displayed. While this scenario is simple, it illustrates Roadie’s
capability of dealing with the problem of conflicting goals.
Conflicting goals are a common source of difficulty and problems
in operating devices. People experienced in operating audio and
video equipment often have sophisticated and successful
techniques for resolving goal conflicts.

5.2 Watch the News
The user types into the “What do you want to do?” dialog box the
phrase “I want to get the news.” This goal is sent to EventNet and
then matched with the available goals; the proposed actions are
“watch television,” and “listening to the radio.” The user selects
“watch television” and sets the devices by clicking the “Perform
this action” button.

The perform this action, the user needs to connect the cable box to
the television. But the user does not make the connection
correctly. The user realizes that something is wrong, then type in
the “What do you want to do?” box, “Why can’t I see any
image?” Roadie identifies the pattern “Why …” as if something
is wrong, then it tries to find the problem and correct it. Roadie
uses the devices sensors to look for the cause of the problem.

Also it knows that it cannot sense the states of the cables, and that
it is a frequent source of mistakes. It then shows a picture of the
correct way to connect the cables, and recommend the user to
check the connections. Furthermore, Roadie provides “Tell me
more” option where the system gives more explanation about how
to know if the connection is correct, information about the
different types of inputs, outputs, jacks, etc.

Figure 5. Picture of how to connect a television

A second user turns on the DVD player making the options
“watch movie on dvd,” “record dvd movie,” and “listen to music
cd” appear, and he selects the first option. Roadie realizes that
the television is busy watching the news, and remembers that also
“listening the radio” might satisfy the goal. This will free the
television to watch the DVD while satisfying the goal of listening
to the news. To warn the user about this conflict and a possible
solution Roadie displays a similar dialog to the one in the
previous scenario. This scenario also shows how Roadie can track
device states and user actions, and find concrete actions
compatible with multiple high-level goals.

5.3 KitchenSense
KitchenSense is an Augmented Reality Kitchen that uses the same
techniques that Roadie uses to provide the people cooking with
context aware information [6]. Whereas the first scenario dealt
with audio and video equipment, similar user interface problems
exist for kitchen appliances such as microwaves, dishwashers and
food processors.

KitchenSense uses the information from its sensors and the
EventNet plan recognizer to show device functions that might be
relevant to the user activity. For example, when the user opens the
refrigerator and gets close to the microwave, KitchenSense sends
the sentences “I open the freezer,” and “I walk to the microwave”
to EventNet, the top answers are: “I cook food,” “I eat lunch,” “I
reheat food,” “I take ice cream out,” “I read newspaper,” “I set
cup on table,” “I breathe fresh air,” and “I took food out of the
fridge.”
Then KitchenSense matches these sentences to the functions in
the electronic appliances, suggesting the functions “Cook” and
“Reheat” of the microwave.

6. EVALUATION
We performed experiments to evaluate the contribution of Roadie
to making consumer electronics interfaces more user-friendly and
effective. The scenarios we chose to test are ones in which

consumers are likely to face problems, such as (a) familiarizing
themselves with new devices, (b) performing complex multi-step
processes involving multiple devices and requiring data transfer
among devices, and (c) debugging problems when things goes
wrong.

We would have liked to test Roadie with physical devices
controlled by software, to present a more realistic scenario to the
user. As explained above, we were unable to implement Roadie
with physical devices, and so were forced to perform tests on our
simulation. However, there were some advantages to using a
simulation. Because we pushed participants out of their “comfort
zone” and familiar devices, they had to pay more attention. When
it happened that they did make mistakes that they might not have
made with a physical device, this provided an opportunity to test
our debugging capabilities.

The testing scenarios was configuring the DVD player to play a
music CD, then move the music CD to the CD player and play a
movie DVD as explained in section 5.1. And recording the piano,
this scenario involves using an amplifier whose functionality is
not shown explicitly forcing the user to play with the devices in
order to succeed with the task.

We designed the experiment using a between-subjects design with
six participants in each group. As a result we find that the users
finish the task in less time and using less steps with Roadie turn
on than off, the results are shown in Table 1. (Due the small
sample size, we do not give confidence levels).

One surprising finding during the experiment was that the users
used the explanation of the steps not as an presentation of the
system plan, but as a list of steps for the user to follow. Perhaps
that could be cured by better explanation to the user as to the
function of the list.

As the table below shows, users were able to complete the tasks
significantly faster and with fewer clicks with Roadie than
without.

Table 1. Average time and number of clicks before the user
ended the given task

 Roadie ON Roadie OFF
Avg. Time 88.33 111.50 Play a CD on the

DVD player Avg.
clicks

10.33 13.67

Avg. Time 171.33 179.83 Play a DVD and a
CD at the same time Avg.

clicks
19.00 32.83

Avg. Time 202.17 444.00 Record the piano
Avg.
clicks

23.00 59.33

7. Related Work
Our discussion of related work will fall into four categories. First,
we look at the few projects that have directly tried to tackle the
problem of simplifying consumer electronics interfaces and
making them effective for the problems we are considering, such
as planning complex actions, making device behavior context-
sensitive, and debugging. Next, we consider related work
regarding some of the particular AI interface techniques used by
Roadie, namely mixed-initiative interfaces, goal-oriented and
Commonsense interfaces, and self-explanatory interfaces.

7.1 Interfaces to Consumer Electronics
Devices
De Ruyter created a context-aware remote control where the state
can be changed in response to the input of home sensors. The
user can modify its look-and-feel and contextual rules. His work
recognizes that a new programming metaphor needs to be
developed [2].

However, de Ruyter does not propose any fundamentally new
approaches either to controlling individual devices, or to
programming behaviors for sets of devices. There is no provision
for expressing high-level goals nor any provision for planning or
debugging. It is easy to imagine expanding the current Roadie
functionality to allow correction of the rules while the system is in
use.

One popular approach is to build universal remote controls, able
to control every single device [17]. Logitech's Harmony remote
control represents the state of the art, but since it is based on IR
interfaces, it cannot read the state of the devices, such as what
channel a television is tuned to, or what FM frequency a radio is
receiving.

There are many “smart home” projects, such as MIT's House_N,
[5], Georgia Tech, Philips, the University of Texas, and others.
These houses contain appliances such as washing machines and
microwave ovens that could be targets for our approach. But these
projects emphasize sensor technology and have not focused on the
user interface for controlling and debugging sets of devices. We
have already explored kitchen applications in the section
describing our work with Jackie Lee on KitchenSense.

PRECISE is able to translate semantically tractable sentences to
SQL queries and allow users to control devices. This allows
controlling a house thermostat by saying, “Increase the
temperature 5 degrees” [16]. This requires the user and the
system to share the same vocabulary. Roadie permits more open-
ended sentences like “It is too cold here”, inferring that the user
wants to increase the temperature. When users do comply with
PRECISE’s semantic tractability requirements, Roadie could use
their approach.

7.2 Mixed-Initiative Interfaces
Collaborative or mixed-initiative interfaces are software agents
that cooperate with the user to satisfy goals. The outstanding
system within this paradigm is Collagen [12]. Collagen works by
having two avatars, one representing an agent and the other the
user. Both agents can communicate by directly manipulating a
shared user interface. Task models are used to map high-level
goals into concrete device operations. We were inspired by many
of Collagen's interaction features in the design of Roadie.

The Collagen architecture has been applied to consumer
electronics [13], in a system called DiamondHelp. DiamondHelp
is a help system that explains procedures that accomplish high-
level tasks, and also provides a virtual on-screen device interface.
Roadie's use of the Commonsense knowledge base and natural
language input allow it to handle a wider range of goals and allow
the user to communicate intent more flexibly. DiamondHelp
generally treats procedure one step at a time rather than producing
the overview that Roadie offers, and it is more oriented toward the
normal operation of the device rather than debugging scenarios.

7.3 Goal-oriented and Commonsense
Interfaces
Our group at the MIT Media Lab has been working on a wide
variety of interfaces using Commonsense computing, surveyed in
[7]. Many of these interfaces share Roadie’s approach of using
Commonsense to infer goals from concrete actions. An early
example is Hugo Liu’s Goose, a goal-oriented search engine.
This search engine goes beyond keyword matching of current
search engines by reformulating user’s queries to satisfy their
goal. It is able to reformulate the query “my cat is sick” to
“veterinarians” [10].

7.4 Self-explanatory Interfaces
The ability of systems to introspect their state and change it is
called reflection, a necessary capability for systems that provide
explanation and debugging help. The most significant system is
EXPECT, a knowledge acquisition and reasoning tool. This
system has the ability to infer which pieces of knowledge are
required, which are necessary to perform certain reasoning, and
provide an explanation of why [4].

Woodstein is a debugging interface for web processes like
purchases. It provides reflection by allowing the user to go back
to the webpage where an action occurred and introspect if the data
shows it is correct or not, also it allows to ask why and how
something happened, and it can tag the data as successful or
unsuccessful [8].
Roadie provides introspection since it is able to change the
configuration of its devices to satisfy the user’s goals. In addition,
it adds introspection to its internal beliefs by providing an
explanation of why a certain action is suggested.

8. Expanding Roadie's Capabilities
8.1 Learning from User’s Habits
Learning from user’s habits can be done in two ways. First, we
can raise the weight of the links when goals are chosen and lower
them when they are not chosen. Also, since Roadie can show the
output of EventNet's temporal traces, the user should be able to
mark the output links that are incorrect. A learning facility would
also allow us to streamline the interface in the case that the user
wants to perform simple tasks that they already know how to do
and the system behaves as expected.

8.2 Allowing the User to set Custom Goals
Roadie's goal recognition depends on having either pre-
programmed goals or being able to deduce the goal from
EventNet. We would like to include the possibility for the user to
program new goals themselves. This could be accomplished by
adding Programming by Example [9] techniques.

9. DISCUSSION
9.1 Implications of Goal-oriented Interfaces
Raskin [11] argues we should rethink the computer interfaces as a
small set of always accessible core operations and then build more
complex operations around this small set. His approach, while
appealing, has two fundamental limitations. First, there is no one-
size-fits-all method for selecting those small core operations. So
the user ends having a huge set of core capabilities, and then
wondering which capability he wants and how to access it.
Second, it is easy to map a simple goal to simple actions –
Control-B transforms the selected text to bold – but the task of

mapping from the goal “emphasize these ideas” to “make the text
bold” is still left to the user. With a goal-oriented interface, like
Roadie, this distinction gets blurred. Since the system can map
high-level goals to low level actions, there is no need to keep the
core functions small.

9.2 A Plan Recognizer with Commonsense vs.
other Plan Recognizing Approaches
Statistical or logical plan recognizers can be easily used to mimic
the basic EventNet operations. Statistical plan recognizers can be
trained on a corpus of associations between sequences of actions
and statements of goals, and build up correlations incrementally.
Logical plan recognizers deduce correspondences between actions
and goals from first-principles axiomatizations of specific
knowledge domains.

The first advantage of using EventNet is that the systems built on
top of it are able to provide the user with the reason for the
suggestion, unlike statistical approaches, and allow the user to
correct the system's knowledge base. Second, EventNet can work
with more open-ended scenarios than is typically the case with
logical recognizers.

10. CONCLUSIONS
In this paper we show an interaction schema for consumer
electronics. This schema uses a plan recognizer from the
Openmind Commonsense corpus to find what are the users
intentions and propose relevant devices actions. In addition, it us
a planner to control and manipulate the devices avoiding the users
the trouble of dealing with low level configuration and helping
them to debug the devices when something does not goes as
planned.

11. ACKNOWLEDGMENTS
Our thanks to all the Media Lab sponsors for their support of this
project, and to Rada Mihalcea of the University of North Texas
for help us to mine the data from the Web.

12. REFERENCES
[1] Avrim Blum, Merrick Furst. Fast Planning Through Planning

Graph Analysis. Proc. Of the 14th International Joint
Conference on Artificial Intelligence (IJCAI 1997),
Montreal, Canada, pages 1636-1642, 1997.

[2] Boris de Ruyter, Richard van de Sluis. Challenges for End-
User Development in Intelligent Environments. In Henry
Lieberman, Fabio Paterno, Volker Wulf, eds, End-User
Development, Kluwer Academic Publisher, (to appear).

[3] Jose Espinosa, Henry Lieberman. EventNet: Inferring
Temporal Relations Between Commonsense Events. Proc.
Fourth Mexican International Conference on Artificial
Intelligence, Springer Publisher. November 14-18, 2005.
Monterrey, Nuevo Leon, MEXICO (to appear)

[4] Yolanda Gil. Knowledge Refinement in a Reflective
Architecture. Proceedings of the Twelfth National
Conference of Artificial Intelligence (AAAI-94), volume 1,
pages 520-526, AAAI, 1994.

[5] Stephen S. Intille, K. Larson, J.S. Beaudin, J. Nawyn, E.
Munguia Tapia, P. Kaushik. A living laboratory for the
design and evaluation of ubiquitous computing technologies.
Extended Abstracts of the 2005 Conference on Human

Factors in Computing Systems, New York, NY: ACM Press,
2004.

[6] Chia-Hsun Jackie Lee, Leonardo Bonanni, Jose Espinosa,
Henry Lieberman, Ted Selker. KitchenSense: Augmenting
Kitchen Appliances with Shared Context using Knowledge
about Daily Events. Conference on Intelligent user interfaces
(in submission)

[7] Henry Lieberman, Hugo Liu, Push Singh, and Barbara Barry.
Beating Common Sense into Interactive Applications. AI
Magazine 25(4): Winter 2005, 63-76.

[8] Henry Lieberman, Earl Wagner: End-User Debugging for
Electronic Commerce, Proceedings of the 8th international
Conference on Intelligent user interfaces, ACM Press, 2003.

[9] Henry Lieberman (Ed.). Your Wish is My Command:
Programming By Example. The Morgan Kaufmann Series in
Interactive Technologies, 2001

[10] Hugo Liu, Henry Lieberman, Ted Selker. Goose: A Goal-
Oriented Search Engine with Commonsense. Proceedings of
the second international conference on Adaptive Hypermedia
and Adaptive Web-Based Systems, pages 253-263, ACM
Press, 2002.

[11] Jef Raskin. The Humane Interface: New Directions for
Designing Interactive Systems. Addison-Wesley
Professional, First Edition, 2000

[12] Charles Rich, Candy Sidner. Collagen: A Collaboration
Manager Software Interface Agents. Journal of User
Modeling and User-Adapted Interaction, pages 315-350,
8(3/4), 1998

[13] Charles Rich, Candy Sidner, Neal Lesh, Andrew Garland,
Shane Booth, Markus Chimani. DiamonHelp: A Graphical
User Interface Framework for Human-Computer
Collaboration. IEEE International Conference on Distributed
Computing Systems Workshops, pages 514-519, June 2005.

[14] Push Singh. The public acquisition of Commonsense
knowledge. Proc. AAAI Spring Symposium on Acquiring
(and Using) Linguistic (and World) Knowledge for
Information Access, 2002.

[15] Universal Plug and Play Device Architecture. 2000.
Available:
http://www.upnp.org/download/UPnPDA10_20000613.htm

[16] Alexander Yates, Oren Etzioni, Daniel Weld. A reliable
natural language interface to household appliances.
Proceedings of the 8th international Conference on
Intelligent user interfaces, pages 189-196, ACM Press, 2003.

[17] Gottfried Zimmermann, Gregg Vanderheiden, Al Gilman.
Prototype Implementations for a Universal Remote Console
Specification. ACM Special Interest Group on Computer-
Human Interaction, pages 510-511, ACM Press, 2002.

