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Interpretation of Spatial Language
in a Map Navigation Task

Michael Levit and Deb Roy

Abstract— We have developed components of an automated
system that understands and follows navigational instructions.
The system has prior knowledge of the geometry and landmarks
of specific maps. This knowledge is exploited to infer complex
paths through maps based on natural language descriptions.The
approach is based on an analysis of verbal commands in terms
of elementary semantic units that are composed to generate a
probability distribution over possible spatial paths in a map. An
integration mechanism based on dynamic programming guides
this language-to-path translation process, insuring thatresulting
paths satisfy continuity and smoothness criteria. In the current
implementation, parsing of text into semantic units is performed
manually. Composition and interpretation of semantic units into
spatial paths is performed automatically. In evaluations,we show
that the system accurately predicts speakers’ intended meanings
for a range of instructions. This work provides building blocks
for a complete system that, when combined with robust parsing
technologies, could lead to a fully automatic spatial language
interpretation system.

Index Terms— navigational instructions, spatial language un-
derstanding, human-machine interaction, natural language pro-
cessing

I. I NTRODUCTION

W E present components of a system that converts verbal
descriptions of paths produced by human instruction

givers into sequence of actions that an automated agent must
take in order to successfully follow paths anticipated by the
instruction givers.

Many application areas including robotics, video games
and geo-spatial communications analysis may benefit from
automatic understanding of navigational language. In a video
game scenario, for instance, players can be enabled to guide
game characters throughout the virtual world of a game. This
may be especially powerful when there are large numbers of
computer controlled characters in which case direct control
using keyboard and mouse can become cumbersome.

A number of related systems designed to operate in robotic
and domestic environment have been described in the literature
(e.g. [1], [2], [3], [4], [5]). In contrast to this previous work
that involves sensor-derived (and thus noisy and incomplete)
knowledge of the world, we consider the interpretation of
relatively complex spatial language by assuming high level
knowledge of the entire map and all landmarks is available to
the system.

The scenario that we adopted for this work allows humans
to use speech which is unconstrained from both linguistic and
representation points of view. The MAP-TASK [6] corpus was
selected for system development and evaluation. This corpus
is a collection of transcribed human/human dialogs involving
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Fig. 1. Sample portion of a map from the Map-Task corpus. The path
indicated by the broken line only appears on the map seen by the instruction
giver. The instruction follower’s goal is to recreate this path based on spoken
dialog with the instruction giver.

cooperative path planning using maps. To collect data, pairs
of participants were given similar two-dimensional maps. One
of the participants, the instruction giver, provided navigational
instructions to the other participant, the instruction follower,
that would guide the latter along a path drawn only on instruc-
tion giver’s map. An example of a section of such a map with a
reference path is depicted in Fig. 1. There were no restrictions
whatsoever on language that could be used for navigation. An
advantage of this non-invasive “eavesdropping” scenario is that
subjects don’t attune their navigation strategies to existing or
presumed limitations of any automated understanding system
(see [7]).

Because of the very high complexity of spontaneous lan-
guage that arose from the choice of MAP-TASK, we decided to
focus on the understanding problem by initially ignoring syn-
tactic parsing issues and turning our attention to different basic
strategies people used to convey navigational information.
Similar to [3], we manually extract basic instructions (which
we namedNavigational Information Units,or NIUs), however
our units cover a much broader scope of possible instructions.
Some examples of NIUs include moving around objects,
moving in absolute directions (e.g., south, left), turning, and
verifying closeness to a specific landmark.
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One contribution of this paper is in showing that most of
these NIUs can be decomposed in a number of “orthogonal”
constituents (e.g. type of a move and its reference object),such
that the meaning of each NIU or — following a functional
approach to understanding — the realization of the path
interval it describes, can be obtained as a Cartesian product
of the meanings of all its constituents. Each of the NIUs
can be represented as a parametrized rule with a certain
degree of learned flexibility and parameter slots filled by these
constituents.

A second contribution of this work is a novel algorithm
that processes sequences of NIUs in order to produce coher-
ent paths which are empirically shown to be similar to the
reference paths instruction givers intended to communicate to
instruction followers. This integration is possible by virtue of
constraints implicated in the instructions (e.g. moving around
an object pre-supposes that we must be in its vicinity even
before the action can take place) and also by some common
knowledge (e.g. car-objects can not be crossed, while bridges
can).

II. NAVIGATIONAL INFORMATION UNITS

EXTRACTING basic instruction elements from sentences
containing navigational information and grounding them

in action primitives is a common strategy for understanding
systems. The task environment and designer’s preferences
determine the choice of elements for a particular system, but
generally the idea of splitting instructions in motions and
referential descriptions [8] is widely accepted.

In [4], describing architecture of a system that understands
verbal route instructions in a robotic environment, MacMahon
uses four basic instructions: turning at a place, moving from
one place to another, verifying view description against an
observation and terminating current action. While perception
undoubtedly plays a crucial role in human orientation and
navigation abilities, in our route planning scenario geometries
of all objects participating in a scene are known beforehand,
and so we can reformulate the instruction categories above
only in terms of this spatial knowledge, thus rendering their
procedural aspect more homogeneous.

The feasibility of an automated system that translates from
route descriptions to route depictions (and vice versa) is sug-
gested by Tversky and Lee in [9]. After studying how humans
describe and depict routes, the authors observe that both
processes can be decomposed into equivalent sets of verbal and
graphic elements respectively. The lexicon of elements used
by the authors consisted of (selecting)landmarks, (changing)
orientationsand actions(such as moves), and was borrowed
from [10].

In a discussion on the semantics of spatial expressions,
Jackendoff [11, Chapter 9] provides linguistic evidence for
a conceptual distinction betweenplaces and paths. While
paths specify trajectories of a traveler, places describe his/its
locations. The primary characteristic of a path is the change of
location. Turns can be viewed as changes in orientation. These
considerations led to four basic types of NIUs in our hierarchy:

Actions

Turns Compound referencesMovesOrientationsPositions

Auxiliary information

Navigational Information Units

Verifications

Fig. 2. Hierarchy of Navigational Informational Units (NIU’s).

moves1, turns, positionsandorientations. The distinction is not
always clear, since moving can result in change of orientation
and turning in a practical setting can imply significant shift
in position. We discovered however that even though different
procedures are used to realize moves and turns, the overall
path modeling performance doesn’t suffer from the local
ambiguity of such issues. Altogether, moves and turns can be
subsumed under the general notion ofactions, and positions
and orientations can be viewed asverifications. Fig. 2 shows
the full hierarchy of NIUs. The categorycompound reference
of type auxiliary information is a special type of NIUs that
we explain below.

Complex spatial instructions are decomposed into a set of
NIUs. For example,“Now could you go north past the house
till you are eh right by the forest”is decomposed into the
following set of NIUs:

• go north;
• go past the house;
• you are right by the forest.

At present, human labelers must manually create this de-
composition of complex utterances into corresponding NIUs,
as well as their constituents (see below). The ultimate goal
of our work is to automate this challenging process of robust
parsing and semantic analysis. We do not claim that all of
the navigational commands can be classified into the four
categories listed above. However, in experiments we have
found that most of the commands that subjects choose can
be classified or decomposed into these categories, and by
considering only such commands, we can replicate the paths
with reasonable accuracy.

III. C ONSTITUENTS OFNIUS

W E would like to understand the referential semantics
of NIUs extracted from a sequence of sentences that

instruction givers say to instruction followers, in order to
execute the instructions encoded within. The type of expected
system behavior depends on the category of a particular NIU,
and for each category this behavior must be modeled in an
appropriate machine representation. Consider the following
move-instruction: “move two inches toward the house”. Its
meaningµ can be decomposed into the following constituents:

1From now on we refrain from using the termpath in this sense in order
to avoid conflict with the notion of path as an end-to-end navigation route.
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µmove (“move two inches toward the house”) =
µpath descriptor (“move . . . toward”) ×

µreference object (“the house”) ×
µquantitative description (“two inches”)

If there is a rule for creating a“moving toward”-trajectory
with respect to a landmark, then we apply this rule to the
object which is the meaning of the“the house” expression
(its grounding) and follow along this trajectory as far as the
meaning of“two inches”. In a similar way we can represent
meanings of positions, turns and orientations.

To reiterate a point made earlier, the currently implemented
system processes NIU-constituents, not speech signal or word
transcriptions. While extracting these constituents is a separate
research issue that must be addressed in the future (see
Section VII), our present goal is to show the viability of this
intermediate representation for the understanding task.

In this section we focus on moves because they represent the
most frequent and very informative kinds of instructions, while
mentioning other NIU-types whenever a particular constituent
is relevant for them. Appendix II illustrates the annotation
process by listing all NIUs and their constituents extracted
from four consecutive (slightly modified) instruction giver
sentences taken from one of the MAP-TASK dialogs.

A. Reference Objects

The first constituent type is areference object, which
denotes an object that serves as an anchor for identifying
directions or positions [12], [13]. In our use of move de-
scriptions, the notion of reference objects is broader than
just an object with determinable location in space like the
ones in [11]. Directions treated as infinitely remote locations
encoded in expressions like“north” or “left” , can also be
used to describe end points or entire trajectories of moves.
The advantage of such an approach will become evident when
we consider path descriptor constituents below. There are
four major types of reference objects that we have observed
in the MAP-TASK corpus:absolute targets, relative targets,
landmarksandcompound references:

1) Landmarks are the most familiar class of reference
objects, they have finite size and are placed at fixed
finite locations. Due to the specifics of the MAP-TASK

problem where the objects on the map are drawings on
a sheet of paper, we further distinguish the subcategory
of page elementsreferred by expressions such as“page
center”, “lower edge”, “upper left corner” etc. as
opposed togenuine landmarks(or simply landmarks):
drawings that have pre-specified names attached to them
(such asFLAT ROCKSor SUSPENSION BRIDGE).

2) Absolute targetsare infinite points in space, that are fixed
at least for the time of interaction (for instance, by being
tied to the coordinate system of the immobile instruction
giver). In MAP-TASK this is the coordinate system of the
map which is oriented in exactly the same way for both
instruction giver and instruction follower2. Examples

2It is certainly true that the real world orientations of the two maps can
be different (instruction giver’s west will be instructionfollower’s east if they
face each other) but the crucial fact is that both participants understand each
other as long as each of them identifies herself with her map.

of expressions for absolute targets are:“southwest”,
“down” , “left” (in the sense synonymic to “west”).

3) Relative targetsare infinite spatial deictic references
whose meaning changes as the navigation session pro-
ceeds. They are used to specify directions from the
perspective of the traveler that actually moves along
the path and are attached to the traveler’s coordinate
system. For instance, in the instruction:“keep moving”
an implicit relative targetFORWARDis used which lies
in an infinitely remote point along traveler’s current
orientation. Another example is the expression“left” ,
however this time in the sense of the left side of
traveler’s current orientation.

4) compound referencesare real or imaginary objects on
the map that require an explicit specification in terms of
other reference objects; we will deal with them in detail
in Section III-E.

Even though the second and third categories of reference
objects look more like directions than “objects”, they share a
very important common aspect with the landmarks: they can
be used as anchors to bind move trajectories. Before explaining
how this can be done, we note that reference objects are
equally important for other NIU-types as well (although notall
combinations are possible), e.g. one can“turn to face north”
or “be above the house” .

B. Path Descriptors

Path descriptors specify how the trajectory of a move is
related to its reference object. In [12], Talmy demonstrated
that spatial language is schematic insofar as it reduces the
information of a scene down to a body of conceptual material
assembled on a skeleton of closed-class elements such as
prepositions that define spatial relations (“object dispositions”)
in the scene. See [12] for a detailed explanation of possible
spatial dispositions and how they are constructed using differ-
ent prepositions. As far as moves are concerned, Jackendoff
[11] distinguishes four categories:directionswith the reference
object on a trajectory extension (expressed by prepositions
“toward” and“away from” ), bounded pathswith the reference
object in an endpoint of the trajectory (e.g.“from” and“to” )
and routeswith the reference object related to some interior
point of the trajectory (e.g.“via” ). We adopt this set of
categories, but also extend it to allow each category to be
represented by a single rule that we callpath descriptor. There
are 10 path descriptors that are supported by our system (see
the upper part of Table I); the trajectory of each of them can be
modeled by a circular arc, a straight line interval or a sequence
thereof. For instance, we model a TO-move as a straight line
between the current traveler location and the closest pointfrom
this location that lies on the perimeter of the reference object.
In addition, there is one open-end class OTHER to account
for all those moves that don’t fit in any of the 10 classes.

Similarly, it is also useful to introduceposition descriptors
for position modeling. Currently our system supports three
position descriptors listed with examples in the lower partof
Table I.
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path/position descriptor example(s)

TO “reach the house”
FROM “leave the forest”
TOWARD “move up” (abs. ref. obj. NORTH)

“keep going” (rel. ref. obj. FOR-
WARD)

AWAY FROM “go from east” (to west)
PAST “pass the page center”
PAST DIRECTED “keep drawing to the left of the rocks”

“pass right on top of the shack”
THROUGH “follow over the bridge”

“go across the fields”
BETWEEN “squeeze between the ravine. . .

. . . and the bottom of the page”
AROUND “move around the mill”
FOLLOW BOUNDARY “follow the lake boundary”

POSAT “staying close to the beach”
POSAT DIRECTED “you are just below the ranch”
POSBETWEEN “being right between them”

TABLE I

Path and position descriptors; see the modeling rules in Appendix I.

C. Quantitative Aspect

Some path descriptors such as TOWARD or AROUND
under-specify trajectories in that they encode their shapebut
do not encode how far the traveler should move. In other
words, there is a need for a quantitative aspect in the NIU-
descriptions which would eventually allow a more precise
understanding of commands like“move two inches down”.
With that in place, the traveler will know exactly what to do:
select the absolute target SOUTH, extend a TOWARD-move
towards it and follow it for a distance of two inches. Even
when a move has an implicit distance specification as in the
TO-move “go to the house”, the instruction giver still may
provide it explicitly (“go one inch to the house”) in which case
the instruction follower might need to make some adjustments
to accommodate it.

The importance of the quantitative element for direction
specifications and problems that arise from it have been
addressed by many authors (see for instance [14], [15]). We
distinguish two dimensions in a space of distance specifica-
tions. First of all, a distance can relate to a length of the move
itself (as in the examples above) or to gaps between trajecto-
ries and reference objects (e.g.“pass half an inchabove the
truck” ). Furthermore, there are three distance categories that
require different knowledge to model. Modeling is the simplest
when exact units are used:“go about two centimetersto the
west”. Here one merely needs to parse the expression“two
centimeters”as a measure equal to 2cm. Such commands are
commonly observed in the MAP-TASK corpus. When relative
units are used as in“slide down half a page” or “move
forward the length of the bridge” (a specification preferred by
many authors because it catches relational aspects of distances
that define structure of the scene [16]) more situational com-
petence is required. Finally, in the commands like“keep going
for some time” and “move a bit moretowards page bottom”
the intuitive distance descriptions are used that demand sig-
nificant amount of world knowledge from the interpreter.

Quantitative aspect is also relevant for other NIU types. So,

the traveler could be“three inchesto the left of the grove”in
a position specification or he could“turn forty degreesto the
north” .

D. Coordinate Systems

Many authors have observed that spatial descriptions are
given in terms of a coordinate system in which the scene is
taking place. For example, position-NIUs“you are one inch
below the house”and “the house is one inch below you”
both have reference object “the house” and position descriptor
POSAT DIRECTED; but their meanings contrast each other
clearly, because in the first case the coordinate system is
centered in the house, and in the second case in the traveler.

From the perspective of cognitive psychology, the most
important question about coordinate systems is whether the
system is bound to the experiencer (egocentric3 coordinate sys-
tem) or is independent of her (allocentric coordinate system)
[17]. These two major categories can be further subdivided
according to where exactly the coordinate system is centered
and what it uses as a reference object. Regarding spatial deictic
references, Levelt in [13, Chapter 2] distinguishes among the
following three major cases:

1) primary deictic reference: here the speaker is the origin
of the coordinate system and also the reference object
(relatum); example:“the ball is in front of me”;

2) secondary deictic reference: speaker is the origin of the
coordinate system, but not the reference object:“the ball
is behind the tree”;

3) intrinsic reference: reference object (not speaker) is also
the origin of the coordinate system; here the reference
object must possess its own “intrinsic” orientation with
front and back:“the ball is in front of the house”(see
also [12, Page 241]).

Similar categorization suggestions can also be found in [18]
and others. By virtue of examples above we could see that
orientation is indeed important when defining a coordinate
system. As an arbitrary coordinate system is defined by a)
its origin and b) its orientation, our approach to the spatial
language in MAP-TASK is to organize all possible coordinate
systems into a two-dimensional grid presented in Table II.
Here, there are two possible origin placements and three
different orientation types for the coordinate systems in which
NIUs can be specified.

There are three possible perspectives in the MAP-TASK:
one of the instruction giver, one of the map traveler (often
identified with the instructions follower) and finally a per-
spective from some reference object on the map (landmark
or page element). However, only two of them can have an
origin associated with them, for instruction giver is not really
located “on the map” and can only define orientation. There
exists a certain redundancy in the choice of a coordinate
system and specification of reference objects: for instance,
whenever the reference object of a move is a relative target,
the coordinate system is always placed where the traveler is
and oriented according to the traveler’s orientation. Besides,

3In reality, egocentric system itself is hypothesized to be an acquired
complex coordination of several sensory-motor manifolds [17].
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TABLE II

Types of coordinate systems in which navigational information units can be

specified with NIU-examples.

the exact specification of a coordinate system or at least
of its orientation can be irrelevant for certain NIU-types.
For instance, in the position-NIU“it’s close to the barn”
orientation of the coordinate system (which is placed in “the
barn”) can not be determined and is in fact not needed for
understanding.

E. Compound References

If the language of instruction givers were constrained to
the kind of examples we have seen before, it would have
only a limited expressive capacity because it wouldn’t allow
for a very large portion of potential reference objects to be
taken into account. The set of landmarks and page elements
is too sparse and lacks the needed expressive means to allow
for high-precision navigation. Instructions such as“go to the
lake” under-specify the required action, because the lake can
occupy a large portion of a map. Instead something like“go
to the north-west corner of the lake”is needed. Similarly, if
the target of a particular TO-move is a point an inch above
the house, there’s no way to avoid an explicit specification
of this point: “move to a spot slightly above the house” or
even simpler:“move above the house” . All these are examples
for what we call compound references. Nested compound
references are also possible:“continue towards [the spot
an inch under [the bottom of the monument]]”as well as
compound references that have stretch (“you are level with
the springs”).

The description language for compound references is very
similar to the one of positions, except for one special case
where the compound reference is a part of its own reference
object as in“you should be right under the gate of the castle”,
and so (even though their semantic role is clearly different
from that of actions and verifications) we decided to include
compound references in the list of supported NIU types (see
Fig. 2). In the present version, we are not trying to estimate
positions of compound references, instead we assume they are
known and thus look them up in manual annotations.

F. Designing and Validating Rules

Up to now we have largely ignored the question of how to
model individual NIUs, concentrating mainly on the possibility
of such modeling. This section describes how we design and
use a lexicon of action and verification primitives.

The first part of the process is a manual step of designing
prototypes for each rule. Then, for each NIU type we compare
the designed prototype with actually observed instances4 in
order to estimatespatial templates[19]. Later, when path
intervals corresponding to individual NIUs are merged to-
gether to form a continuous replica of the reference path, these
spatial templates will guide this process, helping find the most
probable realization for each NIU that allows for such a merge.

We first consider position-NIUs of type
POSAT DIRECTED. There is extensive prior work
on modeling spatial language (e.g. expressions“above” ,
“to the left of” etc.) [20], [19], [21]. We chose an easily
implementable model similar to the Hybrid Model of [21]
to model these NIUs. Two metrics determine goodness of a
particular position with respect to its reference object: the
angle between the defining axis (e.g. vertical axis in case of
“above”) and the beam emanating from the reference object’s
center of mass and passing through the position; and second,
the projection of the distance from the extreme point of the
reference object in the given direction (e.g. the highest point
for “above”) to the position on the defining axis (e.g. distance
of y-coordinates for “above”). For NIUs of type POSAT
there is only one metric: absolute distance from the position
to the closest point of the reference object.

For moves and turns, creating spatial templates is sim-
ilar: first, for each actually observed move/turn we seed
its corresponding prototype into its starting point, and thus
obtain its predicted version. Then,radial and angular de-
viations between the end points of the predicted and ob-
served path intervals are computed. Prototypes and intuitive
explanations of these distances for moves of types TO and
FOLLOW BOUNDARY are shown in Fig. 3. Here, we
execute a FOLLOWBOUNDARY-move by “expanding” the
perimeter of the reference point to traverse the current traveler
position, and moving along this expanded perimeter in that
direction (of the two possible) that has the smallest angle with
the orientation that the traveler had before reaching her current
position5. For a detailed investigation of when and how people
use path descriptors of this type as opposed to path descriptors
of type PAST, see [22].

In short, radial distance is the difference in lengths of theob-
served and predicted moves, and angular deviation shows how
far from the predicted trajectory the actual trajectory deviates.
For some of the prototypes (like, for instance, TOWARD-
moves), we need to provide not only the path descriptor but
also the default distance. In our experiments this distancewas
estimated empirically.

4As we have mentioned earlier, these instances (path intervals) are part of
manual annotations that we create prior to the experiments.

5In practice, we used a computation scheme for angular and radial de-
viations for FOLLOWBOUNDARY which is slightly different from the
depicted one and approximates it instead.
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Fig. 3. Prototypes and radial and angular deviations for moves of types a)
TO b) FOLLOW BOUNDARY.

Angular and radial deviations collected for each NIU type
are compiled into a two-dimensional spatial template. This
template contains probabilities of all realizations of this NIU
type that start in the same point but deviate from the prototype
in due course. This is also why there is no need for searching
for the perfect prototype for each NIU type. Indeed, the spatial
template will compensate for potential mistakes.

To summarize, the models of individual NIUs are combi-
nations of handcrafted structures combined with data-driven
parameter adaptation that make these models flexible. Posi-
tions are 2D probability distributions for all locations, and
moves and turns are 2D probability distributions as well, but
for the end points of actions they represent (and indirectly
also for different trajectories that lead to these endpoints).
In experiments reported below, we ignore orientation-NIUs
because they occur fairly seldom in the corpus.

IV. COMBINING NIUS INTO CONTIGUOUS PATHS

NOW that we have described how NIUs are grounded in
particular action and verification primitives, we turn to

the issue of combining sequences thereof into a contiguous
path on the map. This task can be considered as the one of
route planning, where instructions are given before the actual
following of the route takes place.

A. Dynamic Programming Approach

The “plan-as-communication” view on plans in [23] sug-
gests that plans constrain possible space of actions and require
some interpretative effort from the agent whenever execution

of a particular action is due; in other words, it enforces con-
sidering each action in a context of the whole plan and of the
environment the plan operates in. Our approach is motivated
along similar lines. In our system, interpretation of instructions
like “turn left” or “go to the house” takes place only when
they are next to be executed, and probabilistic assessment of
geometries of their reference objects with respect to traveler’s
current position and orientation can be made. Only then “left”
and “go to” will for the first time acquire a concrete meaning
attached to them. However, this meaning is by no means final,
for instructions that follow can still change it later on. Ifwe
do have a map in front of us at the planning time, we can
mentally follow the route right away and “rehearse” execution
of all navigational instructions in the sequence one by one.If
at some point in time we realize that a mistake has been made
on previous stages because no consistent continuation of the
path is possible, we can always back-off to the point where
the mistake was made and choose other alternatives leading
from there. Moreover, we can simultaneously maintain several
alternative routes in the first place, scoring and extendingthem
in parallel as we progress and dynamically preferring one of
them over the others. This view of the task suggests a dynamic
programming approach.

Dynamic programming, however, can not operate on a
continuum ofR2, which is the case for maps in MAP-TASK,
but rather needs a set of discrete alternative states. In order to
achieve that, we impose a rectangular grid on the maps and
consider only cell centers as potential alternatives for traveler’s
locations at the end of each action.

At this point let us restrict the NIUs to moves and turns only,
and assume that the entire path is split inN intervals each of
which is covered by exactly one NIU6. Let us also assume
that our map is split inI square cellsci, i ∈ 1, I. Then,
on each stepn ∈ 0, N there will be a separate probability
distribution of ending up in cellci ∀i ∈ 1, I after this step has
been taken. Since the starting point of the path is considered
given, the initial probability distribution (n = 0) is 0.0 for all
cells except the one containing the starting point, where itis
1.0.

Assume now that we know probability distributionpn(j)
on stepn. Conditional probabilitiespγn

(i|j) of ending NIU
γn in ci given that it starts incj can be interpolated for all
j ∈ 1, I from spatial templates that have been discussed in the
previous section (see Fig. 4).

Then, the total probability of reachingci on stepn and
passing throughcj before that is:

pn+1(i, j) = pn(j) · pγn
(i|j). (1)

With the decision-oriented approach to probabilities, we
select the predecessor indexj∗:

j∗ = argmax
j

pn+1(i, j) (2)

such that cellcj∗ is the predecessor ofci on the optimal
path and declare:

6We will show later how this unrealistic assumption can be removed.
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Fig. 4. Computing probabilities of endpoints for NIU:“go north” ; for each
cell cj , probability of starting there and ending up in cellci is encoded as
the darkness of the corresponding arrow and of the cell center; it depends on
the deviation from the north direction as well as on the distance betweencj

andci.

pn+1(i) := pn+1(i, j
∗). (3)

After all N NIUs have been processed the entire optimal
path must be recovered. For that, we start in the cellcj∗ from
the last distribution and traverse backwards the sequence of the
distributions for all NIUs, following the line of predecessors
all the way up to the very first distribution.

It is important to see that in this simplified task formulation,
the “winning” cells describe not only the most probable
position after having processed the last NIU but also the
orientation of the traveler that goes along with this particular
NIU realization.

B. Natural Task Constraints

At first sight it might appear unclear why spatial templates
are needed at all. Indeed, if no constraints existed in the task,
for all n’s then’th step of the dynamic programming algorithm
would always result in selecting the realization ofγn that
possesses angular and radial deviations corresponding to the
maximum in γn’s spatial template. Fortunately, there are in
fact several constraints that come along with the choice of the
task domain that we call “natural” constraints of the task. In
general, we can say that these constraints are task dependent,
and arise from the working conditions of the system.

First, our domain expertise and intuition suggest that some
of the landmarks can not be crossed. The maps designed for
MAP-TASK comply with this consideration to a great extent.
For example, while a path can pass through the drawing of a
bridge, it will never cross a rock. This knowledge is one of the
main sources of constraints that shape possible paths. In the
same way we might want to prohibit self-crossings of a path
and restrict all the paths to the inside of the visible map. One
should keep in mind however that banning self-crossings hurts
the optimality principle of the dynamic programming saying
that solutions of partial problems never need to be recalculated
[24], and thus can lead to not finding a good path.

Second, we propose that a reasonable bias is to favor
junctions that are smooth, i.e. large changes in orientations
when finishing modelingγn−1 and startingγn should be
penalized. In particular this bias will eliminate abrupt near-
180◦ turns.

Finally, for many move types that have landmarks for
reference objects, it is reasonable to presume spatial proximity
of the starting point to the landmark. In fact, in the MAP-TASK

corpus, there are rarely instructions to move around some
landmark that is on the other end of the map, far away from
our current position. This means that only those realizations
of such an NIU that ended close to the landmark will be
considered in the next step. Indirectly, these constraintsare
modeled in spatial templates; however, we found out that
imposing explicit upper thresholds on maximum distances
between starting point of an NIU and its reference point is
helpful as well. Besides, we can require a certain degree
of consistency from action trajectories and end points. For
instance, the end point of a BETWEEN-move must indeed
lie between its reference objects, and the PASTDIRECTED
move expects the instruction follower to be on a particular
side of the reference object.

C. Integrating Positions

Another source of constraints are verification-NIUs, in
particular positions. They too restrict the working space to
a small area tied to a reference object, or (in the case of
POSAT DIRECTED) to one of its sides. Consider how
positions can be integrated in the framework we have de-
veloped so far. Recall that we update the distribution of
locations after each action. Similarly, we can update them
after each position specification as well. Here however, we can
multiply the position probabilitiespγn

(i) (interpolated from
the corresponding spatial template) with the distributionpn(i)
obtaining a new adjusted distributionpn+1(i) as:

pn+1(i) := pn(i) · pγn
(i). (4)

Even though we don’t model rare orientation-NIUs in the
experiments of this work, they can be handled in exactly the
same way as positions.

D. Dealing with Redundancy

No matter how many position specifications there are, all
of them can be subsequently treated as shown in (4). This
however is not true for actions. If several action NIUs compete
for one path interval or even describe path intervals that only
start in approximately the same location, their contributions
must be considered simultaneously. LetΓn = {γk

n}, k ∈
1, Kn be a set of NIUs competing to define next path interval.
In order to compute joint probabilitiespn+1(i, j) we average
over individual NIUs inΓn and, assuming equal priors for all
NIUs in the set, modify (1) into:

pn+1(i, j) = pn(j)
1

Kn

∑

k

pγk
n
(i|j). (5)
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After that, selection of the optimal predecessor and compu-
tation of the next distributionpn+1(i) is done as before.

In contrast to the remark at the end of Section IV-A, the
resulting orientation afterΓn is yet to be determined, since it
is a product of several NIUs at the same time. Our approach
to this problem is to select the NIU that delivers the highest
conditional probabilitypγk

n
(i|j∗) to represent the group, but to

use the orientation computed as a weighted average over all
NIUs in Γn to control smoothness of the path.

One issue we haven’t addressed yet is how to establish a
partial relation on all NIUs of a session, i.e. which NIU should
be considered when, and what are the setsΓn of competing
NIUs. For now, our system looks up this information in the
annotations, looking at the starting points of all NIUs7. This
information is usually contained in the language, and from
proximity of NIUs in dialog transcriptions we can usually
conclude at least on proximity of the intervals they describe.
For instance, the sentence:“go left to the creek”contains two
NIUs: “go left” and “go to the creek” that should be put
in the same setΓn. A more sophisticated linguistic analysis
is required if precedence must be determined as well (see
Section VII). In other situations where the instruction giver
comes back to one of the already described path intervals
reiterating or rephrasing extractions given earlier, there are
dialog context clues (e.g. instruction follower’s feedback) to
signal this fact.

We employed one general rule regarding splitting the set of
NIUs with close starting points that resulted in performance
improvement: if there are verification-NIUs, we first createa
set out of them. Then if there are action-NIUs that are reliable
in guessing directions, such as TO- and TOWARD-moves,
and turns with absolute targets or landmarks as reference
objects, we make a separate set out of them, and process this
set only after the first one. Next, a set of other moves with
such reference objects is processed. And finally, if and onlyif
no action groups could be created, actions with relative targets
as reference objects are considered.

V. EVALUATION METRICS

T HERE are two classes of evaluation metrics that are of
interest for this work. The first class ofinstruction-level

metricsconcerns modeling of individual NIUs and sheds light
on quality of path descriptor rules by assessing deviationsof
observed actions around their prototypes. The second class
of path-level metricsevaluates entire paths and judges their
overall quality by comparing them to their references on the
instruction givers’ maps.

On the instruction level, we can judge shapes and, in
particular, compactness of spatial templates (distributions of
angular and radial deviations). Visual assessment is important
for the entire paths; however, we can also use criteria such
as percentage of landmarks on a correct side of the path
and average trajectory deviations to perform their formal
evaluation. A reasonable figure of merit for the latter is the
area between the observed and predicted paths. If we augment

7Note that we don’t look up the exact positions of these starting points on
the path, but rather only the fact that they are close for two or several NIUs.

FINISH

predicted
path

START

reference
path

Fig. 5. Area between observed reference path and predicted paths can be
used to assess quality of modeling.

the predicted path, so that it ends in exactly the same point
where the reference path ends (human objects in the original
MAP-TASK experiment knew the position of the finish) then
the two paths together will form a closed contour, and we can
use standard filling techniques such asSCAN LINE algorithm
[25] to compute the cumulative area of the “mismatch”-zones
(see Fig. 5). The smaller the area the better the model.

VI. RESULTS

OUR experiments were conducted on the commercially
available HCRC MAP-TASK corpus [6]. This corpus

consists of 128 navigation sessions with audio recordings
and a number of different annotations available in XML-
format for each session. We randomly selected 25 of these
sessions for our experiments, and focused our analysis on
instruction givers’ speech. Based on a set of previously ex-
isting annotations of this speech data in terms ofmoves in
conversational games[26] we selected the subset annotated
as eitherInstructionsor Clarifications. These sentences were
then manually annotated with respect to the NIUs they contain.
We defined the NIUs reported in this paper on the basis
of analyzing only five of the 25 sessions. On average, we
obtained 85 NIUs per session. Relative frequency distributions
of categories of the extracted NIUs as well as of move types
within the move category are shown in Fig. 6. These plots
show that moves clearly dominate among all analyzed NIUs
and the TOWARD type that includes instructions such as
“draw your line towards the northeast”, “move down”, “keep
going” etc., is the most frequent type among moves. Less
than 5% of the 2133 annotated NIUs could not be identified
as one of the five NIU categories from Fig. 2 and less than
5% of the 1526 annotated moves have been labeled with the
path descriptor OTHER. The high coverage of these NIUs
for the complete set of 25 sessions suggests that this set of
NIU-models is well suited to the task, and perhaps also spatial
language for navigation tasks more generally.

Yet another reassuring confirmation comes from the follow-
ing measurements: inter-annotator agreement with respectto
the extraction of NIUs and their labeling with one of the five
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Fig. 6. Occurrence statistics of NIU-categories and move types.

supported types as well as with respect to path descriptors of
detected moves was roughly estimated for two labelers using
theF -measure. It amounted to 0.86 and 0.8 respectively, with
the absolute majority of mismatches due to ambiguities of
cases like“go above the house”which can be interpreted
either as a TO-move with a compound reference object, or
as a PASTDIRECTED-move. Nonetheless, our experiments
showed that such ambiguities don’t impair the understanding
of complete paths.

We then produced discrete versions of the reference paths,
representing them as sequences of many “stops” placed
densely along the original curve. Each NIU was annotated
with a path interval (delimited by the first and last stops on
the path) that it, in labelers’ view, accounts to. Based on these
annotations, we estimated spatial templates for each of the
move types, position types and turns expressing them in terms
of radial and angular deviations from manually designed pro-
totype rules. As expected, the main source of deviations came
from the under-determined quantitative aspect of NIUs; for
example, in Fig. 7 we see that while estimated angular devia-
tions statistics possess rather compact distributions (meaning
that the rules we designed to represent these move types are
in fact consistent with annotations), radial deviations ofthe
moves (variations of their stretches) along the given trajectory
are flatter for those move types that intuitively require explicit
stretch specification (such as TOWARD-moves).

Next, we show how the dynamic programming approach
can be used to integrate models of individual NIUs in a joined
consistent and smooth path. A snapshot of one of the replicated

TO
TOWARD

TO
TOWARD

FOLLOW−BOUNDARY

FOLLOW−BOUNDARY
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Fig. 7. Angular and radial deviations statistics estimatedfor moves of types
FOLLOW BOUNDARY, TOWARD and TO.

paths (in progress) is shown in Fig. 8. Several aspects of this
path are noteworthy. First, the snapshot sheds light on the
way the drawing is discretized. For each landmark we marked
its perimeter that can not be crossed unless there is no other
way to proceed with the path. This otherwise exceptional case
happened to occur here at the beginning, where the instruction
giver insisted on going down and the spatial template for a
TOWARD move prohibits angular deviations of more than 50
degrees. Also, the rectangular grid of cells for which a new
distribution is estimated after each processed group of NIUs
can be seen here: the darker the cell the higher the probability
of ending up there; the cell with the highest probability is
chosen to determine the most probable path so far (sequence
of circles and lines and arcs between them). The distribution
in this snapshot takes place after one NIU that sends the
traveler a specified distance towards southwest and anotherone
that commands to go on along the same direction. From this
distribution it can be seen that self-crossings are prohibited,
and that perplexity of such a distribution can get very high.
One of the possibilities to reduce the perplexity is to issuea
verification-NIU. In the presented session, the next instruction
was indeed position-NIU“near to the abandoned cottage”,
and the new distribution with lower perplexity resulting from it
is shown in the excerpt of the map in Fig. 9. It is more compact
with the only allowed cells located around the landmark.

As far as the quality of the predicted path, it can be seen
that it lies reasonably close to its reference path. In orderto
formalize the visual assessment, we computed areas of the
“mismatch”-zones for each pair of reference/predicted paths
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Fig. 8. Snapshot of a modeled path after processing several groups of NIUs.
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(see Section V) and normalized them by the length of the cor-
responding reference paths. This criterion can be interpreted
as the average diameter of an “error tube” of deviations that
we enwrap the reference paths into. The smaller the error
tube diameter, the more precise the modeling mechanism.
Evaluation of predicted paths for all 25 sessions resulted in an
average diameter of 19.5 pixels (one fortieth of the height of
the maps) with a sample deviation of 5 pixels. For comparison,
the baseline strategy of connecting start and finish landmarks
with a straight line resulted in an average error tube diameter
of 280 pixels. We take this as a clear sign of success for
our modeling algorithm. Unfortunately, the original corpus
contained no paths drawn by instruction followers on their
maps. This kind of information would have provided another
important baseline for our experiments.

In order to investigate the importance of the natural con-
straints and verifications for a successful path modeling (Sec-
tion IV-A), we conducted one replicating experiment without
any restrictions on landmark- and self-crossing and another
one where all the position-NIUs were ignored8. For the first
experimental set-up we obtained an average diameter of the
error tube of 23 pixels (sample deviation 5.5 pixels). For the
second one, one session couldn’t be completed at all, and for
those that could be completed, we obtained an average diame-
ter of 21 pixels (sample deviation 5 pixels) which amounts toa
relative precision loss of 18% and 7% respectively. In termsof
a number of landmarks passed on the wrong side, removing
all position-NIUs increased their proportion by almost 50%
relative. All of the above experiments were conducted using
Leave One Outstrategy, i.e. in order to replicate each session,
we trained the spatial templates on the remaining 24.

These results demonstrate the importance of natural con-
straints and verifications in navigational tasks. Fig. 10 shows
error tube diameters for all sessions for all these experiments
where sessions are arranged in such an order that the diameter
increases for our final system with no landmark- and self-
crossings allowed and with position-NIUs accounted for.

Yet another promising result comes from ignoring stretch
specifications for moves. In the previous experiments, if the
quantitative constituent of a move was specified, we would
temporarily shift a corresponding spatial template to peakin
this stretch. However, looking up the meaning of expressions
like “a little bit” isn’t quite fair, because it requires serious
semantic analysis and a great deal of world knowledge. As it
turns out, we can ignore such explicit specifications altogether,
and the integration procedure will still deliver accurate models.
In our experiments the average error tube diameter remained
under 20 pixel.

VII. D ISCUSSION

W E have reported first steps towards automatic under-
standing of unconstrained navigational instructions in

the MAP-TASK domain. Clearly, substantial aspects of the
problem remain unmodeled and pose significant challenges
for future research. For example, we still need to extract

8The remaining moves still had a number of constraining elements (like
PAST DIRECTED or TO moves), so that the modeling didn’t break apart.

Fig. 9. Excerpt of the same path after the next instruction (position-NIU
“near to the abandoned cottage”).
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Fig. 10. Error tube diameters for all sessions computed for cases where: all
available information is used; no landmark- and self-crossing restrictions are
imposed; only move- and turn-NIUs are considered.

NIUs from instruction transcripts, impose a partial precedence
relation on them, and understanding of meaning of distances
and angles depends on manual interpretation as well. As
far as the latter is concerned, we showed in the previous
section that the quantitative aspect of NIUs can be ignored
without significant loss in performance if we consider them
in context of other NIUs. Extracting NIUs from text is a task
similar in spirit to the task of named entity extraction and
may be achieved using well-established tagging algorithms
[27]. Our preliminary experiments in this direction produced
promising results (not reported in this paper). Determining
partial order of NIUs would remain a challenge. For instance,
the instructions“at the corner go left” and“go left till you are
at the corner” both contain one position describing being at
the corner and one move describing going to the left, but in the
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Fig. 11. Automatic path replication; system diagram.

first case the position precedes the move and in the second it’s
the inverse. Ultimately, more robust syntactic processingmust
be brought to bear on the problem. We believe our approach
of propagating spatial constraints based on NIUs in a dynamic
programming framework provide an extensible framework for
such future investigations.

To put the work completed thus far into context from a prac-
tical perspective, we sketch how the implemented components
might play a role in a larger end-to-end language understand-
ing system. Extraction of NIUs from text or speech transcripts
is the only transition that hasn’t been completely automated
yet; it is identified by the thick gray arrow in Fig. 11. Given
a sequence of extracted groups of competing NIUs whose
spatial templates are learned from a training corpus, we then
use the DP-based algorithm from Section IV-A to produce a
contiguous path, while also taking into account scene geometry
and the scenario’s natural constraints. In a video game scenario
mentioned in the beginning of this paper, for instance, our
system can reside inside of an action interpreter that reads
multi-step natural language path descriptions submitted by the
players via keyboard or microphone and sends virtual game
characters to follow the complex trajectories that arise from
them.

VIII. C ONCLUSION

W E have described a system that infers paths on maps
by processing natural language instructions represented

as Navigational Information Units (NIUs). This translation
process from linguistically-derived symbolic representations
to geometric spatial representations is an example of language
grounding (see [28], [29]). Our focus in this effort was to
automate the translation of NIUs into probability distributions
over possible paths on maps. We defined four categories of
NIUs: moves, turns, positions and orientations and developed
an approach for composing NIUs in order to interpret the
semantics of complex natural utterances that are analyzed
as comprising multiple NIUs. In evaluations this approach

successfully produced semantically correct interpretations for
a wide range of utterances.

APPENDIX I
DEFINITIONS OFPATH AND POSITION DESCRIPTORS

This section explains path and position descriptors that can
be used to classify moves and positions, as well as turns:

1) TO:
in a straight line approach the closest point of a reference
object;

2) FROM:
keeping previous direction, make sure the move goes
away from a reference object;

3) TOWARD:
move in the direction of center mass of a reference
object;

4) AWAY FROM:
move in the direction opposite to center mass of a
reference object;

5) PAST:
keeping previous direction proceed in a straight line up
to the point where the farthest point of a reference object
projects on this direction;

6) THROUGH:
in a straight line proceed through the center mass of
a reference object and up to its farthest point in this
direction;

7) PAST DIRECTED:
this path descriptor can have one of the following 4 sub-
categories (sides): “above”, “below”, “to the left of” and
“to the right of” a reference object. It consists of one or
two straight line intervals. If the traveler is not already
on the required side of a reference object, he has to take
the shortest path to get there (possible directions: north,
south, west, east). The second step leads from there past
projection of the center mass of a reference object on
the required side to a projection of the farthest point of
the reference object on it;

8) AROUND:
in a circular arc move around the center mass of a
reference object; among two possible initial directions
select the one closest to the previous direction;

9) FOLLOW BOUNDARY:
“expand” the perimeter of a reference object to pass
through the starting point of the move. Follow this ex-
panded perimeter; among two possible initial directions
select the one closest to the previous direction;

10) BETWEEN:
this move requires two reference objects. Compute in-
tervals of view angles not crossing any of the reference
objects and consider two directions in their middles.
Select the one closest to the previous direction and
proceed in a straight line up to the projection of the
farthest point of both reference objects on this direction;

11) TURN:
turns are modeled similar to the AROUND-moves with
a small radius arc. Traveler follows the arc till needed
orientation is achieved;
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12) POSAT:
this position descriptor generates score that depends on
traveler’s distance to the closest point of a reference
object;

13) POSAT DIRECTED:
similar to PASTDIRECTED, there are four possible
sides for this position descriptor (“above”, “below”, “to
the left of” and “to the right of”), each one determining
its active direction (e.g. north for “above”). The score de-
pends on traveler’s distance along the active direction to
the reference point’s extreme in this direction, and also
on angle that a beam from the reference point’s center
mass to the traveler creates with the active direction;

14) POSBETWEEN:
here the score is generated based on a difference between
distances from the traveler to the closest points of first
and second reference objects.

APPENDIX II
ANNOTATION EXAMPLES

Consider following four (slightly modified) instructions
from one of the MAP-TASK dialogs (see also Fig. 8):

• “Continue up north slightly.”
• “. . . to the tip of the lake.”
• “. . . and then we’re going to turn down above the trig

point.”
• “. . . and we’re going to turn immediately to your right.”

For these sentences the following NIUs have been annotated:

1) MOVE with path descriptor TOWARD (“continue” ),
absolute reference object NORTH (“up north” ) and
intuitive stretch from start (“slightly” );

2) COMPOUND REFERENCEof the typePART-OF (“the tip
of” );

3) MOVE with path descriptor TO (“to” ) and the above
compound reference as a reference object;

4) TURN with absolute reference object SOUTHEAST
(“down” , southeast direction observed on the map);

5) POSITION with position descriptor
POS AT DIRECTED (“above” ) and coordinate
system with a center in the reference object TRIGPOINT

(“trig point” ) and absolute orientation;
6) TURN with relative reference object RIGHT (“your

right” );
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