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Abstract. As a step toward simulating dynamic dialogue between agents and 
humans in virtual environments, we describe learning a model of social 
behavior composed of interleaved utterances and physical actions. In our 
model, utterances are abstracted as {speech act, propositional content, referent} 
triples. After training a classifier on 100 gameplay logs from The Restaurant 
Game annotated with dialogue act triples, we have automatically classified 
utterances in an additional 5,000 logs. A quantitative evaluation of statistical 
models learned from the gameplay logs demonstrates that semi-automatically 
classified dialogue acts yield significantly more predictive power than 
automatically clustered utterances, and serve as a better common currency for 
modeling interleaved actions and utterances. 

 

Categories and Subject Descriptors 

I.2.7 [Artificial Intelligence]: Natural Language Processing – language 
parsing and understanding. 
 

 

General Terms 

Measurement, Performance, Design, Reliability, Experimentation, Human 
Factors, Languages, Verification. 

 

Keywords: Social simulation, Modeling natural language, Virtual Agents, 
Agents in games and virtual environments. 

1   Introduction 

While mature graphics hardware, rendering engines, physics simulators, and path 
planners have leveled the playing field for near-photorealistic visuals in video games 
and simulations, artificial intelligence methods for social planning, interaction, and 
communication are poised to take the lead as the differentiating feature in games of 
the future. Though much progress has been made in navigation and action selection, 
natural language communication between agents remains a difficult problem, and 
communication between agents and humans even more so. Dynamic interactive 
dialogue poses numerous technical challenges, yet also holds the key to enabling 



 

Fig. 1. Screenshot from The Restaurant Game. 

entirely new genres of games, and broadening the reach of games beyond 
entertainment into new forms of social simulation. 
Current approaches to implementing natural language dialogue systems in use in 

the video game industry are labor intensive, requiring designers to anticipate human 
input and hand-author responses. As von Ahn has demonstrated by labeling images 
with The ESP Game [20], the dramatic increase in popularity of online games 
provides an opportunity to teach machines by observing human gameplay. 
Multiplayer role-playing games and virtual worlds provide the opportunity for a 
potentially better approach to developing systems that can understand and generate  
natural language dialogue, by mining the enormous amount of data generated by 
thousands (or even millions) of human-human interactions. For example, as of 2008 
World of Warcraft had over 10 million paying subscribers, Habbo Hotel had 9.5 
million unique monthly visitors, and Second Life had 600,000 unique monthly visitors 
[4]. Clearly there is an opportunity to collect rich new forms of behavioral data from 
these players. What is less clear is how to maximize the utility of this data for agents 
to exploit at runtime, while minimizing the human labor required to structure and 
annotate corpora. 
We are working toward a long term goal of generating dialogue and behavior for 

agents based on data collected from human-human interactions. Our approach, 
influenced by Schank, is to represent context in the form of socio-cultural scripts [16]. 
Due to the technological limits of the 1970s, Schank’s scripts were hand-crafted, and 
thus subject to limitations associated with human authoring. Hand-crafted scripts are 
brittle in the face of unanticipated behavior, and are unlikely to cover appropriate 
responses for the wide range of behaviors exhibited in an open ended scenario. Today, 
we have the opportunity to do better by discovering scripts from human-human 
interaction traces of online gameplay.  
With these ideas in mind, we launched The Restaurant Game 

(http://theRestaurantGame.net) as a platform for collecting rich physical and linguistic 



 WAITRESS: "welcome to our fine restaurant" 
CUSTOMER: "thanks, it's just me tonight" 
WAITRESS: "would you like the seat by the window?" 
CUSTOMER: "sounds good" 
WAITRESS: "follow me" 
CUSTOMER SITSON chair3(Chair) 
WAITRESS: "perhaps i should start you off with some water" 
CUSTOMER: "that sounds good, can i check out a menu?" 
WAITRESS: "sure thing, coming right up" 
WAITRESS PICKSUP dyn1733(Menu) 
WAITRESS GIVES dyn1733(Menu) TO CUSTOMER 
CUSTOMER LOOKSAT dyn1733(Menu) 
WAITRESS: "water please" 
dyn1741(Water) APPEARS ON bar(Bar) 
WAITRESS PICKSUP dyn1741(Water) 
WAITRESS PUTSDOWN dyn1741(Water) ON table1(Table) 
WAITRESS: "here's your water" 
WAITRESS: "i'll give you a minute to look over the menu" 

Fig. 2. Transcript from a typical interaction in The Restaurant Game. 

interaction [14]. To date we have collected over 9,400 game logs. The ultimate goal is 
to replace one of the players of The Restaurant Game with an automated agent that 
has knowledge of possible restaurant scripts at both a surface behavioral and linked 
deep intentional level. The agent will use this knowledge to guide its interpretation of 
the other human players’ actions, and to plan its own physical actions and utterances 
while participating in the joint activity of completing a restaurant meal. As a step 
towards this goal, we address the problem of mapping surface forms of dialogue acts 
to underlying intentions and evaluate the quality of the resulting model in its ability to 
predict human dialogue acts at the intentional level. 
Previously, we have demonstrated automating agents with data collected from The 

Restaurant Game [15]. In this first iteration of the system, dialogue between agents 
exhibited frequent non-sequiturs and incorrect responses, due to imitating human-
human dialogues relying solely on matching surface forms of utterances. The system 
had no means of recognizing utterances with unique surface forms but the same 
semantic function, or utterances with the same surface form but different 
contextually-dependent semantic functions. There was no representation of the intent 
behind the humans’ words. In contrast, players use a point-and-click interface to 
engage in physical interaction (e.g. highlight the dish and click the PickUp button on 
a pop-up menu). These interface interactions explicitly represent the player’s intent. 
While the automated system constrained the agents’ physical behavior based on 
learned patterns of these intentional actions, no analogous model existed for 
sequences of utterances. Ideally, a single model could capture patterns of interleaved 
physical actions and utterances. A precursor to learning such a model is an intentional 
representation of utterances that can be interleaved cleanly with physical actions. 
In this paper we present results of semi-automated annotation of dialogue data 

collected from The Restaurant Game. We demonstrate that classified dialogue acts 
can function effectively as a common currency for modeling interleaved actions and 
words, given a domain-specific annotation scheme which classifies both illocutionary 
force and associated propositional content. We describe a dialogue act classifier that 
we have trained on 100 log files, and leveraged to automatically annotate the 



remaining 5,100. Our results demonstrate how annotating 2% of the log files from a 
5,200 game corpus can produce statistical models of dialogue act sequences with 
predictive power that outperform models based on surface forms. Finally, we show 
that dialogue acts can be integrated cleanly into a model of physical action sequences, 
preserving the predictive power of the original model of physical actions alone. While 
our current system filters out some percentage of utterances from the interleaved 
model, this is a step toward a solution, and the percentage of included utterances will 
increase in the future as the classifier improves. 

2   The Restaurant Game 

We designed The Restaurant Game to serve as both a data collection device, and a 
target platform for simulation of social behavior generated from the human data. 
Players are anonymously paired online to play the roles of a customer and waitress in 
a 3D virtual restaurant. Players can move around the environment, type open ended 
chat text, and manipulate 47 types of interactive objects through a point-and-click 
interface. Every object provides the same interaction options: pick up, put down, give, 
inspect, sit on, eat, and touch.  
To date, 13,564 people have played The Restaurant Game, from which we have 

collected 9,433 log files of two-player games. This paper describes work with a subset 
of 5,200 game logs. A game takes about 10-15 minutes, and an average game consists 
of 84 physical actions, and 40 utterances with an average length of four words each. 
Player interactions vary greatly, ranging from games where players dramatize what 
one would expect to witness in a restaurant, to games where players fill the restaurant 
with cherry pies. While many players do misbehave, we have demonstrated that when 
immersed in a familiar environment, enough people do engage in common behavior 
that it is possible for automatic system to learn valid statistical models of typical 
behavior and language [14]. 

3   Related Work 

We are working toward learning an interleaved model of actions and utterances in an 
everyday social situation, based on a large corpus of human-human interactions. Here 
we relate our work to previous research on dialogue modeling and learning from 
human data, and highlight significant differences. 
Gorin et al [6] describe a system that learns to route calls in response to the prompt 

“How may I help you?”, by finding mutual information between routing decisions and 
n-grams in human speech. Satingh et al [18] developed a dialogue management 
system that uses reinforcement learning to learn an optimal policy for a phone-based 
information system about activities in New Jersey based on interactions with human 
callers. Huang et al [8] trained chatbots by extracting title-reply pairs from online 
discussion threads. Our work differs from these projects by collecting data from 
humans situated in a (virtual) physical environment, where players dramatize an 
everyday scenario through a combination of (typed) dialogue and physical interaction, 



contributing to learning an interleaved model of actions and utterances, representing a 
commonsense script of restaurant behavior. Huang’s work may point toward an 
interesting direction for future work; incorporating knowledge extracted from external 
sources into our model. 
McQuiggan and Lester [13] applied a similar methodology to ours (capturing 

demonstrations between humans in a game environment) to learn models of 
empathetic behavior, including gestures, posture, and utterances. Their work did not 
focus on learning open-ended natural language dialogue, and instead incorporated 
pre-recorded utterances. Gorniak and Roy [7] collected data from pairs of players 
solving puzzles in Neverwinter Nights, and constructed a plan grammar, which could 
be used to understand utterances between players. Similarly, Fleischman and Hovy  
[5] leveraged a task model of the game-based Mission Rehearsal Exercise to 
understand natural language input. In these projects, hand-constructed models of the 
situation (the plan grammar or task model) helped the system understand language. In 
contrast, we are training a classifier to understand language, and using classified 
utterances as building blocks to learn the situation model. While our data collection 
methodology is similar to previous work, we are working toward learning the 
structure of the situation from data, based on semi-automated annotation and 
automatic recurrence analysis, rather than hand-crafting a plan grammar or task 
model. Learning the structure has the potential of producing a more robust model 
through a less laborious process. 

4   Dialogue Act Classification 

Players of The Restaurant Game communicate by freely typing chat text to one 
another. While we can capture every utterance transmitted, there is no explicit 
representation of the intent behind the words of the player. In contrast, players use a 
point-and-click interface to engage in physical interaction (e.g. highlight the dish and 
click the PickUp button on a pop-up menu). These interface interactions explicitly 
represent the player’s intent. Human annotation is required to transform utterances 
into functional units that share a common currency with physical actions – atomic 
units with explicit representations of intent and semantic function. Unfortunately, 
human annotation is expensive; it is infeasible to annotate a corpus of thousands of 
game logs, let alone millions. In this section we describe our approach to semi-
automating annotation. 
We randomly selected 100 game logs from our corpus of 5,200 logs to serve as 

training data for a classifier, and we annotated these logs by hand. Each utterance is 
classified along three axes: Speech Act, Propositional Content, and Referent. Speech 
Acts categorize utterances by illocutionary force (e.g. question, directive, assertion, 
greeting, etc.), Propositional Content describes the functional purpose of the 
utterance, and Referent represents the object or concept that the utterance refers to.  
Labels in the Speech Act axis are similar in function to those found in the widely 

used DAMSL annotation scheme [2]. Devising our own annotation scheme was 
necessary in order to also incorporate propositional content and referents, which will 
be critical to an interactive agent. It is not enough to recognize that an utterance is a 



question or directive, the agent needs to understand what it is a question about (a 
problem with the bill, or the desire to see a menu) or a directive to do (prepare a steak, 
or have a seat at a table). Section 5.4 provides quantitative evidence that the inclusion 
of propositional content and referents maximizes the range of confidently recognized 
utterances while preserving an agent’s ability to predict future actions and utterances 
based on recent observations. 
Our three labels are combined into a {speech act, content, referent} triple that 

serves as an abstraction allowing utterances to be clustered semantically, rather than 
by surface forms, and greatly compresses the space of possible dialogue acts. Below 
we provide the details of our annotation scheme, feature selection, classifier 
implementation, and classification results. 

4.1   Human Annotation 

It took one of the authors 56 hours to annotate all 4,295 utterances (of average length 
four words) observed in 100 games. We developed the list of annotation-labels during 
the course of annotation. The Speech Act labels were based on Searle’s speech acts 
[17], expanded with Propositional Content and Referent labels to cover the range of 
utterances frequently observed in our corpus. 
All three axes include an OTHER label, applied to utterances that fall outside the 

scope of typical restaurant conversation, such as nonsense, gibberish, and discussion 
of the players’ personal lives. We applied a NONE label to the Propositional Content 
and/or Referent axes for utterances that did not require any content or referent 
specification. For example, the utterance “yes” is annotated as {CONFIRMATION, 
NONE, NONE}. Table 1 provides the complete lists of labels for each axis, along 
with their distributions within the 4,295 utterances observed in 100 games. Table 2 
provides a sampling of utterances from the 100 training games with their assigned 
label triples. 

4.2   Feature Selection 

Each line of dialogue is transformed into a feature vector consisting of features 
derived from the surface text, and contextual features based on the physical situation 
of the speakers. Contextual features include the social role of the speaker (waitress or 
customer), the posture of the speaker (sitting or standing), who the speaker is facing 
(one or more of: customer, waitress, bartender, chef), and the containing spatial 
region of the speaker (one or more of the possibly overlapping regions: inside-the-
restaurant, outside-the-restaurant, entrance, podium, table, counter, bar, behind bar, 
kitchen). The physical state of the players is reported explicitly in the game logs. The 
text-based features primarily consist of indicators for the presence of unigrams, 
bigrams, and trigrams of words observed to be salient for particular labels, as well as 
a smaller number of indicators for symbols and punctuation (‘?’, ‘!’, ‘$’, emoticons, 
and digits). Salience is computed based on the mutual information between n-grams 
and labels, where mutual information is a measure of statistical dependence [3]. 
Mutual information has been applied for text-based feature selection previously [6]. 



The contextual feature set remains constant for each axis (speech act, content, and 
referent), while the salient indicators of the text-based feature set are customized for 
each axis. For each axis, we compute the mutual information between every label and 
every unigram, bigram, and trigram. The feature set for a classification axis is the 
compilation of the top 50 unigrams, bigrams, and trigrams for each label. We 
compute the mutual information between an n-gram and a label as: 









=

)(*)(

),(
log*),(),(

ClassPwordP

ClasswordP
ClasswordPClasswordMI  

Where Class refers to a label (e.g. ASSERTION, DIRECTIVE, APPROVE, LAUGH, 
BILL, MONEY, etc.), and word refers to a unigram, bigram, or trigram of words from 
an utterance.  

Table 1.  Label distributions and classification accuracy, precision (Pr), and recall (Re).  

Speech Act Content Referent 
Dist. Pr / Re  Dist. Pr / Re  Dist. Pr / Re 

ASSERTION 338 0.6 / 0.5 APOLOGIZE 71 0.8 / 0.9 AGE 19 0.6 / 0.5 

CONFIRMATION 354 0.9 / 0.8 APPROVE 267 0.7 / 0.6 BILL 106 0.9 / 0.9 

DENIAL 90 0.7 / 0.7 BRING 413 0.8 / 0.8 CUSTOMER 5 1.0 / 0.2 

DIRECTIVE 1,217 0.8 / 0.9 COMPLAIN 88 0.4 / 0.1 DIET 8 0.0 / 0.0 

EXPRESSIVE 724 0.8 / 0.8 CONSOLE 11 0.8 / 0.3 FLOWERS 31 1.0 / 0.8 

GREETING 302 0.9 / 0.9 CORRECT 11 0.5 / 0.2 FOOD 1,394 0.9 / 0.9 

OTHER 517 0.5 / 0.4 DESIRE 363 0.8 / 0.8 GEOGRAPHY 51 0.9 / 0.3 

PROMISE 136 0.9 / 0.8 EXCUSEME 25 0.8 / 0.8 MENU 52 0.9 / 0.9 

QUESTION 617 0.8 / 0.9 FAREWELL 110 0.8 / 0.7 MONEY 75 0.8 / 0.6 

  FOLLOW 24 0.9 / 0.8 NAME 24 1.0 / 0.3 

  GIVE 170 0.8 / 0.7 OTHER 651 0.6 / 0.4 

  HELLO 167 0.9 / 0.9 RESTAURANT 20 0.8 / 0.6 

  INFORM 176 0.6 / 0.3 SPECIALS 12 0.9 / 0.6 

  LAUGH 76 0.8 / 0.9 STAFF 22 0.9 / 0.5 

  MOVE 32 0.4 / 0.2 TABLE 37 0.9 / 0.9 

  OTHER 643 0.5 / 0.7 TIME 107 0.9 / 0.7 

  PICKUP 29 0.5 / 0.3 WAITRESS 21 0.8 / 0.7 

   PREPARE 627 0.9 / 0.9   
  REPREMAND 24 0.4 / 0.3    
  SIT 74 0.9 / 0.9    
  STATUS 149 0.7 / 0.4    
  THANK 290 0.9 / 0.9    
  UNDERSTAND 25 0.8 / 0.4    
  YRWELCOME 28 0.8 / 0.8    

CORRECT: 77.3%  CORRECT: 75.3%  CORRECT: 81.1%  
BASELINE: 28.3%  BASELINE: 15.0%  BASELINE: 38.6%  

OVERALL CORRECT:  60.9% OVERALL BASELINE:  14.3%  



4.3   Classifier Implementation 

There have been numerous approaches to automatically classifying speech acts, 
including neural network classification [12], maximum entropy model classification 
[1], and Hidden Markov Model (HMM) speech act classification [21]. Our classifier 
is composed of three independent HMM classifiers, one for each axis (speech act, 
content, and referent). An HMM classifier exploits transition probabilities in the 
temporal patterns that emerge in human dialogue to boost classification recognition 
beyond that of individual utterances. We employed the SVMhmm classifier [9], which 
combines a Support Vector Machine (SVM) for observation classification with an 
HMM for learning temporal patterns of hidden states. Words and contextual features 
function as observations, and the labels themselves are the hidden states. This 
combination of an SVM and HMM has proven successful for dialogue act 
classification previously [19]. 
 

Table 2.  Example labels for utterances in corpus, sorted by classification precision (pr). 

4.4   Classification Results 

Despite the apparent freedom, players of The Restaurant Game tend to constrain their 
dialogue to social conventions associated with the mutually understood “scripts” of 
restaurant interaction. This contributes to strong classification results given the 
challenge of correctly classifying three independent axes capable of producing 4,050 
unique triples.  
Table 1 presents our classification results, evaluated with 10 fold cross validation. 

(each fold trained on 90 game logs and tested on 10). For each of the classification 

Annotation Utterance Pr. 
{EXPRESSIVE, THANK, MONEY } “thank you for the tip” 1.0 

{ASSERTION, COMPLAIN, FOOD }  “excuse me, i didn't order the cheesecake” 1.0 

{PROMISE, BRING, MENU }  “I’ll be right back with your menu” 1.0 

{DIRECTIVE, PREPARE, FOOD } “one steak please” 0.9 

{GREETING, HELLO, NONE }  “Welcome!” 0.9 

{QUESTION, DESIRE, FOOD } “Would you like a drink to start with?” 0.9 

{CONFIRMATION, NONE, NONE }  “okey dokey” 0.9 

{PROMISE, BRING, BILL } “I'll be back with your bill in a moment.” 0.8 

{DIRECTIVE, FOLLOW, NONE } “follow me and i will have u seated” 0.8 

{ASSERTION, GIVE, NONE }  “there we r sir” 0.8 

{DIRECTIVE, SIT, NONE } “have a seat wherever you want” 0.8 

{DIRECTIVE, BRING, FOOD } “Yes I'll start off with a soup du jour” 0.8 

{EXPRESSIVE, YRWELCOME, NONE } “no problem” 0.8 

{QUESTION, DESIRE, TABLE } “table for one?” 0.8 

{EXPRESSIVE, LAUGH, NONE } “lol” 0.8 

{OTHER, OTHER, OTHER }  “i need to complete my quest” 0.5 

{OTHER, OTHER, OTHER }  “donfdgdfgdfgdfgadfg” 0.5 

{OTHER, OTHER, OTHER }  “some guy wanted to put 400 mb on floppies” 0.5 

{OTHER, OTHER, OTHER }   “what are you a vampire?” 0.5 

{EXPRESSIVE, APPROVE, FOOD }  “alrighty that was a satisfying dinner” 0.5 

{EXPRESSIVE, APPROVE, FOOD }  “yum that lobster is too good” 0.5 

{QUESTION, INFORM, SPECIALS }  “any specials today?” 0.0 

{ASSERTION, COMPLAIN, NONE }   “its cold” 0.0 



axes, we report the precision and recall of each label, followed by the percentage 
classified correctly and a comparison baseline. All of the axes perform significantly 
better than baseline, contributing to 60.9% of the utterances being classified entirely 
correctly – correct on all three axes. It is notable that a human labeled at least one axis 
as OTHER in 11.7% of the incorrectly classified utterances. If we focus on the 
utterances that the human felt were relevant to the restaurant scenario, and ignore 
these degenerate utterances, the overall percentage correct increases to 70%. 
For each label, we tabulate the number of instances in which the label was assigned 

by the classifier, the number assigned by the human annotator, and the number 
correctly classified (where the human and classifier agree). Precision is computed by 
dividing the number correctly classified by the total number assigned by the classifier. 
Similarly, recall is computed by dividing the number correctly classified by the total 
number assigned by the human. Baseline represents the percentage classified correctly 
if we always choose the most common label for each axis (DIRECTIVE, OTHER, 
and FOOD respectively). 
In addition, we evaluated inter-annotator agreement among humans. A volunteer 

not involved with the development of the classifier annotated 10 game logs (422 
utterances). We computed a kappa coefficient of {0.73, 0.70, 0.89} respectively for 
{speech act, content, referent}, with a mean kappa of 0.77. Kappa between 0.61 and 
0.80 is considered substantial agreement [10]. 
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Fig. 3. Effect of training corpus size on classification. 

Figure 3 illustrates the effect of the training corpus size. For one particular cut of 
the data, we plot the overall percent correct when the classifier is trained on between 
1 and 90 training log files, and tested on the same set of 10 logs. Given that the 
human labor involved in annotation is expensive, it appears as though annotating 
more than 30 game logs yields diminishing returns. Reviewing Table 1, we see that 
the labels with unsatisfactory results for precision or recall are most often due to 
sparse data – few examples for these labels in the training data. This suggests that 
continuing to annotate data is worthwhile, if we can focus human labor on appropriate 
selections of data. It is likely that a human-machine collaborative effort could lead to 
significant classification improvements, where the machine requests human assistance 
on assignments of low precision or recall, and efficiently classifies the rest 
independently. 



5   Predictive Model Evaluation 

The fact that we can correctly classify a large proportion of utterances does not 
guarantee that these dialogue acts are useful for modeling social interaction. In this 
section, we demonstrate quantitatively that dialogue acts are useful building blocks 
for learning patterns of interleaved utterances and physical actions. Our long term 
goal is to generate social behavior for agents based on models learned by observing 
human-human interactions. These models will guide agents to conform to expected 
social conventions, and predict future actions (physical and linguistic) of other agents 
based on recent observations. As a first exploration in this direction, we experimented 
with simple n-gram statistical models [11] applied to both the surface word level and 
the speech act “intentional level.” In our experiments, we replay the interactions 
observed between two humans up to some point in a particular game log, and then 
stop the simulation and predict the next human utterance or action. For each game log 
in the test set, we slide a window of size n over the entire log and count correct 
predictions of the next utterance or action. These predictions indicate what an agent 
would do, if guided by these models. In section 5.1 we only predict the next utterance 
based on recent utterances; in section 5.3 we predict the next action or utterance 
based on an interleaved model. 
We evaluate our dialogue act classification quantitatively by learning three 

separate dialogue models – based on (1) classified utterances, (2) automatically 
clustered utterances, and (3) raw utterances – and comparing the predictive power 
provided by these models. We first evaluate models of utterance sequences alone. 
Next, we evaluate interleaved models of physical actions and utterances, in order to 
evaluate how well these utterance abstractions function as a common currency with 
physical actions.  

5.1   Comparison of Utterance Abstractions 

Our original corpus of 5,200 game logs was divided into 100 logs for annotating and 
training the dialogue act classifier, 4,800 logs for training n-gram models, and 300 
logs for evaluating prediction accuracy. After training the dialogue act classifier on 
100 logs, we automatically classified all utterances in the remaining 5,100 games in 
the corpus. There were 312 unique dialogue act triples observed in the 100 annotated 
logs, with 183 observed in more than one log. 
There are 112,650 unique raw utterances observed in the corpus. We clustered 

these utterances automatically using the k-means algorithm, based on the Euclidean 
distance between feature vectors of unigrams, bigrams, and trigrams observed within 
the utterances. We chose k=300, as this number of clusters provides a fair comparison 
with the 312 unique dialogue act triples. 
Figure 4 illustrates that dialogue acts are more predictive than raw utterances or 

clusters. Prediction accuracy is computed by counting the number of correct 
predictions of the next observed utterance, cluster, or dialogue act in a bigram, 
trigram, or 4-gram. The baseline prediction accuracy is computed by counting the 
number of correct predictions if we always choose the most likely utterance, cluster, 
or dialogue act found in the training corpus. Raw utterances yield poor prediction 
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Fig. 4. Prediction accuracy for utterances. 
 
accuracy for n-gram models for all values of n, only achieving above 0.1 for bigrams. 
While clusters do achieve about a 30% increase in prediction accuracy over raw 
utterances, they fall below that of dialogue acts by over 50%. 

5.2   Filtering to Improve Prediction 

There is value in knowing what we don’t know. Our classifier assigns labels with 
60% accuracy. Ideally, we would train the n-gram model with only correctly labeled 
dialogue acts, rather than introducing noise with those classified incorrectly. Based on 
the statistics computed in section 4.4, we can interpret precision as our confidence 
that the classifier has assigned the correct label to an utterance, and exploit this to 
determine which labels to include in our model, and which to omit. Like a human 
traveler in a foreign country with limited understanding of the language, the system 
can grasp onto well understood utterances and exploit them to understand the gist of 
the interaction. There is no notion of confidence in automatically generated clusters,  
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Fig. 5.  Prediction accuracy for filtered utterances. 

 



thus clusters cannot be filtered in the same meaningful way. For the sake of 
comparison, the best we can do is filter clusters by their observation frequency in the 
training corpus. 
If we train an n-gram model based only on dialogue acts with precision of at least 

80%, trigram prediction accuracy increases from 0.25 to 0.44. With 90% precision, 
accuracy increases to 0.64. There are 56 unique dialogue act triples with at least 80% 
precision covering 51.7% of the training data, and 33 triples with 90% precision 
covering 28.4% of the training data. See Table 2 for examples of high precision 
dialogue acts for the restaurant domain – utterances related to ordering food, paying 
bills, getting seated, and bringing menus. It is not surprising to see an increase in 
prediction accuracy when we decrease the number of unique labels, and number of 
utterances labeled. However, Figure 5 illustrates that filtering clusters in a similar way 
does not yield the same dramatic increase that we observe with dialogue acts. We 
compare prediction accuracy of the 56 most likely clusters to the 56 dialogue acts 
with 80% precision, and the 33 most likely clusters to the 33 dialogue acts with 90% 
precision. 

5.3   Integrating Utterances with Physical Acts 

We followed the methodology described previously [14] for generating a lexicon of 
unique physical actions from a corpus of thousands of game logs. By observing the 
state changes that occur each time a player takes a physical action in each game log, 
we learn a lexicon of context-sensitive, role-dependent actions (e.g. waitress picks up 
pie from counter). In our 5,200 logs, we have observed 7,086 unique actions. Based 
on the learned lexicon, log files are transformed into a sequence of action lexicon 
indices interleaved with utterances, where utterances may be represented as either 
clusters or dialogue act triples.  
In Figure 6, we illustrate the effect on prediction accuracy of integrating utterances 

into a trigram model of physical interaction. Based on recent observations of 
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Fig. 6.  Effect of interleaving physical acts with utterances. 

 



interleaved actions and utterances, the integrated model predicts the next action or 
utterance. This is a difficult problem, given that we are polluting the lexicon of 7,086 
directly observable actions with 112,650 unique utterances, which we can classify 
with 60% accuracy. We find that interleaving physical actions with dialogue acts 
gives better prediction accuracy than with raw utterances or clusters, and if we filter 
to only include dialogue acts with at least 90% confidence we can achieve a 
prediction accuracy negligibly lower than that of physical acts alone (0.41 vs. 0.42), 
demonstrating that dialogue acts function well as a common currency with physical 
acts. While 90% confidence only covers 28.4% of the utterances, these are highly 
salient utterances for the restaurant domain, and coverage should increase as more 
data is annotated and the classifier improves. This is a first step toward discovering a 
higher-level structure of the restaurant scenario, composed of interleaved sequences 
of actions and utterances. 
Ideally integrating dialogue acts with physical actions would yield a higher 

prediction accuracy than either alone. The current representation of physical 
interaction clusters similar objects, and abstracts away timing information. In other 
words, the model does not differentiate between picking up steak or salmon (both 
clustered as food), and does not need to predict when the waitress will depart from the 
table to pick up food from the kitchen (perhaps after a three utterance exchange, 
concluding with “I’ll be right back with that”). Cleary these details will be important 
to an automated agent. We are working toward an agent guided by a model of 
physical interaction that retains these details, and we expect better prediction from the 
interleaved model of actions and words than from a model of either alone. 

5.4   Speech Acts vs. Dialogue Act Triples 

Recall that our classification scheme classifies the propositional content and referent 
in addition to the illocutionary force of each utterance. In this section, we demonstrate 
that this difference makes a significant impact on our ability to integrate a maximal 
number and variety of utterances into the predictive model of physical interaction, 
while preserving predictive power. We compare the predictive power of dialogue act 
triples to that of speech acts alone, while scrutinizing the percentage of utterances 
covered as we filter by confidence (aka precision). 
Initially, integrating speech acts into the model of physical interaction yields a 

slightly higher prediction accuracy than integrating dialogue act triples (0.34 vs. 
0.30). As we filter out lower confidence speech acts and dialogue acts, the prediction 
accuracy of both comes closer to that of the physical interaction alone (0.42), and the 
difference between predictive power of speech acts and dialogue acts becomes 
negligible. However, as we raise the confidence threshold, the percentage of 
utterances covered decreases dramatically for the coarser grained speech acts, as seen 
in Figure 7. We preserve 28.4% of the dialogue acts with 90% confidence, and only 
6.5% of speech acts. As seen in Table 1, only GREETING speech acts have above 
90% precision, compared to 33 unique dialogue act triples with 90% precision, which 
employ the full range of speech act labels (see Table 2 for a subset). At 80% 
confidence, a higher percentage of speech acts are preserved than dialogue acts 
(63.4% vs. 51.7%), but this comes at the cost of a 5% decrease in predictive power  
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from physical interactions alone. Annotating with finer grained dialogue act triples 
provides a means of recognizing a maximal number and range of salient utterances for 
the restaurant domain, while preserving predictive power. 

6   Conclusion 

Behavioral models generated by observing players of online games and virtual worlds 
have the potential to produce interactive socially intelligent agents more robust than 
can be hand-crafted by human designers. While it is possible to automatically learn 
statistically recurring patterns in surface level behavior, our results demonstrate that 
we can generate models with stronger predictive power by leveraging a minimal 
amount of human interpretation to provide annotation of the underlying intentions, in 
the form of dialogue act triples. The significant increase in predictive power with 
dialogue acts is evidence of progress towards discovering the socio-cultural scripts 
that guide social interaction in a restaurant. 
It is likely that our dialogue act classifier could be improved by providing more 

training data guided by an active learning process, however intention of utterances 
can never be fully recognized without understanding their role in the higher level 
structure – the sub-goals of the restaurant scenario composed of interleaved physical 
and dialogue actions. Our evaluation of integrating physical actions with dialogue 
models demonstrates the potential for dialogue acts to function as building blocks of 
sub-goals. Discovering this higher level structure remains a goal for future work. 
Human annotation will be required to identify intentional sub-goals spanning multiple 
physical actions and/or dialogue acts, and based on our experience with semi-
automated dialogue act annotation, we are optimistic that semi-automation of sub-
goal annotation will be possible as well. 

References 

1. Carvalho, V.R., and Cohen, W.W.: On the Collective Classification of Email Speech Acts. 
In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and 
Development in Information Retrieval, Salvador, Brazil (2005) 



2. Core, M., and Allen, J.: Coding Dialogs with the DAMSL Annotation Scheme, In 
Proceedings of the AAAI Fall Symposium on Communicative Action in Humans and 
Machines, Boston, MA (1997) 

3. Cover, T.M., and Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Inc. 
(1991) 

4. Edery, D., and Mollick, E.: Changing the Game: How Video Games are Transforming the 
Future of Business. FT Press, Upper Saddle River, New Jersey (2008) 

5. Fleischman, M. and Hovy, E.: Taking Advantage of the Situation: Non-Linguistic Context 
for Natural Language Interfaces to Interactive Virtual Environments. Intelligent User 
Interfaces (2006) 

6. Gorin, A., Riccardi, G., and Wright, J.: How may I help you? Speech Communication, 
Volume 23, 113-127, Elsevier Science (1997) 

7. Gorniak, P. and Roy, D.: Speaking with your sidekick: Understanding situated speech in 
computer role playing games. In Proceedings of Artificial Intelligence and Digital 
Entertainment (2005) 

8. Huang, J., Zhou, M., and Yang, D.: Extracting chatbot knowledge from online discussion 
forums. In Proceedings of IJCAI (2007) 

9. Joachims, T.: SVMhmm: Sequence Tagging with Structural Support Vector Machines. 
http://www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html (2008) 

10. Landis, J.R., and Koch, G.G.: The measurement of observer agreement for categorical data. 
Biometrics, 33:159-174 (1977)  

11. Manning, C.D., and Schütze, H.: Foundations of Statistical Natural Language Processing. 
MIT Press, Cambridge, Massachusetts (1999) 

12. Marineau, J., Wiemer-Hastings, P., Harter, D., Olde, B., Chipman, P., Karnavat, A., 
Pomeroy, V., Graesser, A., and the Tutoring Research Group: Classification of speech acts 
in tutorial dialog. In Proceedings of the workshop on modeling human teaching tactics and 
strategies at the Intelligent Tutoring Systems 2000 conference, pp. 65–71 (2000) 

13. McQuiggan, S., and Lester, J.: Learning empathy: A data-driven framework for modeling 
empathetic companion agents. In Proceedings of the 5th International Joint Conference on 
Autonomous Agents and Multi-Agent Systems. Hakodate, Japan (2006) 

14. Orkin, J., and Roy, D.: The Restaurant Game: Learning social behavior and language from 
thousands of players online. Journal of Game Development, 3(1), 39-60 (2007) 

15. Orkin, J. and Roy, D.: Automatic Learning and Generation of Social Behavior from 
Collective Human Gameplay. In Proceedings of the 8th International Conference on 
Autonomous Agents and Multiagent Systems, Budapest, Hungary (2009) 

16. Schank, R.C., and Abelson, R.P.: Scripts, Plans, Goals, and Understanding: An Inquiry into 
Human Knowledge Structures. Lawrence Erlbaum Associates (1977) 

17. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge University 
Press, Cambridge, United Kingdom (1969) 

18. Satingh, S., Litman, D., Kearns, M., and Walker, M.: Optimizing Dialogue Management 
With Reinforcement Learning: Experiments with the NJFun System. In Journal of Artificial 
Intelligence Research (2002) 

19. Surendran, D., and Levow, G.: Dialog Act Tagging with Support Vector Machines and 
Hidden Markov Models, In Proceedings of Interspeech (2006) 

20. von Ahn, L., and Dabbish, L.: Labeling images with a computer game. In Proceedings of 
the SIGCHI Conference on Human Factors in Computing Systems, 319-326, Vienna, 
Austria (2004) 

21. Woszczyna, M., and Waibel, A.: Inferring linguistic structure in spoken language. In 
Proceedings of the International Conference on Spoken Language Processing, Yokohama, 

Japan (1994) 
 


	5.2   Filtering to Improve Prediction



