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Abstract 

We present a computational model that uses intention 
recognition as a basis for situated word learning. In an 
initial experiment, the model acquired a lexicon from 
situated natural language collected from human participants 
interacting in a virtual game environment. Similar to child 
language learning, the model learns nouns faster than verbs. 
In the model, this is due to inherent ambiguities in mapping 
verbs to inferred intentional structures. Since children must 
overcome similar ambiguities, the model provides a 
possible explanation for learning patterns in children.  

 
Introduction 

 
A growing trend in the cognitive sciences is to model how 
words are grounded in sensory-motor representations, 
providing explanations for how words map to the physical 
world (see Roy, in press; Reiter & Roy, in press, and 
references within). The social aspects of word meanings, 
however, are not addressed in these physically-grounded 
approaches.  Although researchers have emphasized the 
central role of social factors in language acquisition 
(Tomasello, 2001), virtually all computational models to 
date have ignored this perspective (Regier, 2003). 

We present a preliminary computational model of 
language acquisition that addresses aspects of social 
inference. The model highlights the role of intention 
recognition in word learning by formalizing the 
conceptual structure of intentional action.  Further, it 
suggests that children’s slower learning of verbs than 
nouns may partially be due to structural ambiguities 
inherent in intention inference. 

Much research on language acquisition has sought 
explanations for the asymmetry between noun and verb 
acquisition in the developing cognitive or linguistic 
abilities of language learners (Gentner, 1982; Snedeker 
and Gleitman, 2004).  Such work rightfully assumes that 
something in the nature of verbs makes them inherently 
more difficult to learn than nouns.  Gillette et al. (1999) 
qualify this assumption by showing that the ability of 
subjects to learn a word in a human simulation paradigm 
is highly correlated with the “concreteness” of that word, 
and further, that verbs are considered less concrete, or 

perceivable, than nouns.  This intuition of concreteness, 
however, is not well defined and, as Snedeker and 
Gleitman (2004) discuss, what makes one class of referent 
more perceivable than another is unclear.  Gleitman 
(1990) gives a number of examples showing why verbs 
may be considered less perceivable than nouns, such as 
observational equivalences between verbs (e.g. “chase 
“and “flee”) and differences in temporal persistence 
between objects and actions.   

In this work we posit two kinds of structural ambiguity 
in the perception of actions that explain the difficulty in 
learning perceptually grounded verbs.  We present a 
formalization of the conceptual structure of intentional 
action and use it to model aspects of social understanding 
in verb learning.  Rather than learn mappings directly 
from words to observations, the model posits an 
intermediate step that infers hidden intentional structures 
based on observed events. The model learns mappings 
from words to observed events and objects in these 
inferred intentional structures.  We train the model using 
data collected from pairs of human participants 
interacting in a shared virtual game environment in which 
one person uses unconstrained speech to guide the actions 
of the other.  Results indicate that the model does indeed 
learn nouns faster than verbs, and further, suggest that this 
is because, even while an intentional action can be 
interpreted in multiple ways, the objects involved in that 
action often remain stable. 
 
The Ambiguity of Intentional Action 
 
While the ambiguity associated with describing actions 
has been studied extensively (Vallecher and Wagner, 
1987; Woodward et al., 2001; Gleitman, 1990), few 
researchers have proposed computational models of 
actions that explain those ambiguities.  To motivate the 
model, consider an example of trying to learn words for 
actions taken by a player in a videogame world such as 
that shown in Figure 1.  Assume the player must respond 
to spoken requests by performing various tasks in order to 
win the game.  Further, assume that a language learner 
observes these interactions (verbal requests paired with 
the player’s actions situated in the virtual world). As a 
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language learner, one hears the novel word “grok” uttered 
and observes the player mouse-click on the leftmost door.  
Now, based only on sensory observation, a number of 
possible interpretations of the word are possible.  “Grok” 
may mean open the door, or alternatively, move to the 
door.  Or perhaps “grok” is a command to let another 
player into the room, or for the player to go find some 
needed object (such as an axe).   

Such situations demonstrate two distinct types of 
ambiguity for intentional action, which we represent as a 
lattice in Figure 2.  The leaf nodes represent physical 
observations of actions, while the root nodes represent the 
highest-level intentions behind those actions. 

 

Figure 1: Screen shot of shared virtual environment.   
 
The first type of ambiguity shown here, which we refer 

to as a vertical ambiguity, describes the ambiguity 
between the find axe versus open door interpretations of 
“grok.”  Here the ambiguity is based on the level of 
description that the speaker intends to convey.  Thus, 
given that the speaker did intend to look for the axe, if 
questioned about their action they would answer “yes” to 
both of the questions: “Did you mean go find the axe?” 
and “Did you mean open the door?” 

The second type of ambiguity, referred to as horizontal 
ambiguity describes the difference in interpretation 
between the find axe versus let in player meanings of 
“grok.”  In this case, the high level action behind the 
sensed action is ambiguous.  Unlike with vertical 
ambiguities, only one of these actions is typically 
intended.  Thus, if the speaker were questioned about 
their action, they could answer in the affirmative to only 
one of the questions: “Did you mean let another player 
in?” and “Did you mean go find the axe?”1 

By representing intentional actions as a lattice, both 
vertical and horizontal ambiguities are captured. This 
representation serves as the foundation for incorporating 
intention recognition, an important aspect of social 
understanding, into our model of word learning. 
                                                
1 While vertical ambiguities may have a parallel in objects (e.g. 
animal-dog-poodle) (Rosch, 1976) horizontal ambiguities are 
unique to intentional actions.   

 

 
Figure 2:  Graphical representation of intentional action.  Two 
distinct ambiguities surrounding actions are represented by 
the horizontal and vertical dimensions of the lattice of 
semantic frames.   
 
Intention Recognition 
 

Intention recognition is the ability to infer the reasons 
underlying an agent’s behavior based on a sequence of 
their observed actions.  We develop a probabilistic 
context free grammar (PCFG) of behaviors that allows for 
the building of intention lattices in much the same way 
that a PCFG for syntax allows for the parsing of sentences 
(e.g., Collins, 1999).  This idea of a “grammar of 
behavior” dates back at least to Miller et al. (1960) and 
has been suggested more recently by Baldwin & Baird 
(2001).  In our formulation, the grammar consists of 
intention rules that describe how an agent’s high level 
intentional actions (e.g., find axe) can lead to sequences of 
lower level intentional actions (e.g. open door, go through 
door, open chest).  Such rules mirror syntactic rules 
where high level syntactic categories produce lower level 
categories (e.g. NP → DT N).   

Unlike syntactic rules, however, each node of an 
intention lattice encodes a semantic frame that contains 
the participants of the action and their thematic roles 
(actor, patient, object, etc.).  For example, in Figure 2 (see 
insert), the node labeled find axe, comprises a frame with 
a FIND action, a PLAYER agent, and an AXE patient.  In 
this initial work, the intention rules are created by hand 
(see below). We acknowledge that learning such rules 
automatically must be a focus of future work in order to 
scale our modeling approach. 

By formalizing the grammar of behavior as a PCFG, we 
can treat intention recognition as a parsing problem over 
observed actions (as in work on plan recognition, e.g. 
Pynadath, 1999). We borrow established algorithms used 
for syntactic parsing in computational linguistics (Stolke, 
1994).  However, instead of parsing words in a sentence, 
we parse observed actions of an agent in an environment.   
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Figure 3. a) Parallel sequences of speech and actions are recorded from subjects as the expert guides the novice through a virtual 
environment.  b) An intentional tree is inferred over the novice’s sequence of observed actions using a probabilistic context free 
grammar of behaviors.  This most likely parse given the PCFG resolves the horizontal ambiguity inherent in intentional action.  
Each node in the tree is a different level of intentional action and is encoded by a semantic frame.  c) The vertical path from a leaf 
node in the tree (i.e. observed action) to the root (i.e. highest order intentional action) contains multiple possible levels of intention 
to which an utterance may refer.  Linguistic mapping uses d) the Expectation Maximization algorithm to estimate the conditional 
probabilities of words given roles to resolve this vertical ambiguity.  

 
Thus, as each action is observed, the parsing algorithm 

infers a lattice that describes all of the possible higher 
order intentional actions that could have produced it.  As 
more and more actions are observed, the algorithm 
focuses in on a single most likely sequence of higher 
order intentional actions.  For any sequence of actions that 
composes a completed game, the algorithm finds the 
single most likely intentional tree that has the most likely 
higher order intentional action as the root node and has 
each observed action as a leaf node (see Figure 3b).  By 
finding the most likely intentional tree, the algorithm 
resolves the horizontal ambiguity surrounding a sequence 
of observed actions. 

For a language learner observing such a sequence, the 
inferred tree can be seen as the conceptual scaffolding 
onto which utterances describing those events are 
mapped.  In these initial experiments, the temporal 
alignment between a spoken utterance and the observed 
action to which it corresponds is hand annotated (a focus 
of future work is the relaxation of this assumption).  Even 
given this annotation, and the most likely intentional tree 
for a sequence, there still remains the question of what 
level of description the speaker had in mind for their 
utterance, i.e. the vertical ambiguity.   

We represent this ambiguity using the vertical path 
from the root of the most likely tree to the leaf node 
temporally aligned to the target utterance.  The vertical 
ambiguity is thus represented by the multiple nodes that 

the given utterance could refer to along this vertical path 
(see Figure 3c).  To resolve this ambiguity we turn to the 
linguistic mapping procedure described below. 
 
Linguistic Mapping 
 
As described in the previous section, each node in an 
inferred intention lattice consists of a semantic frame.  
Our linguistic mapping algorithm attempts to learn the 
associations between words in utterances and the role 
fillers in these frames.  We represent these mappings as 
the conditional probabilities of words given role fillers 
[i.e. p(word | role filler)].  By formalizing mappings in 
this way, we can equate the problem of learning word 
meanings to one of finding the maximum likelihood 
estimate of a conditional probability distribution. 

The Expectation Maximization (EM) algorithm has 
been used to estimate such distributions in many 
applications (e.g. Brown et al., 1993).  EM takes a set of 
parallel inputs and finds a locally optimal conditional 
probability distribution by iterating between an 
Estimation (E) step and a Maximization (M) step.  In our 
model, input consists of a sequence of utterances, each 
paired with a set of semantic frames (the nodes from the 
corresponding vertical path).   

To understand our use of EM, let us first assume that 
we know which node in the vertical path is associated 
with an utterance (i.e., no vertical ambiguity). In the E 
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step, an initial conditional probability distribution is used 
to collect expected counts of how often a word in an 
utterance appears with a role filler in its paired semantic 
frame (see Figure 3d).  In the M step, these expected 
counts are used to calculate a new conditional probability 
distribution.  By making the one-to-many assumption that 
each word in an utterance is generated by only one role 
filler in the parallel frame (but that each role filler can 
generate multiple words) the algorithm is guaranteed to 
converge to the maximum likelihood estimation of the 
conditional distribution after multiple iterations of the E 
and M steps.  Following Brown et al. (1993), we add a 
NULL role filler to each semantic frame which acts as a 
“garbage collector,” generating common words that don’t 
easily map to objects or actions (e.g., “the,” “now,” “ok,” 
etc.). 

The above procedure describes an ideal situation in 
which one knows which semantic frame from the 
associated vertical path should be paired with a given 
utterance.  As described above, this is not the case for 
language learners who, even knowing the intention behind 
an action, are faced with a vertical ambiguity as to what 
level of description an utterance was meant to refer 
(shown in Figure 3c).   

We extend the EM algorithm to account for this vertical 
ambiguity by creating an outer loop that iterates over all 
possible pairings of utterances and semantic frames along 
the vertical path.  For each of these possible pairings, 
standard EM is run and a conditional probability 
distribution is estimated.  After all pairings have been 
examined, their estimated distributions are merged 
together, each one weighted by their likelihood.  This 
procedure (detailed in Figure ˙4) continues until a 
stopping criterion based on cross-validation performance 
is reached.  The utterance/frame pair with the highest 
likelihood is thus the most probable resolution of the 
vertical ambiguity.   

Figure 4. Extended EM used in to resolve vertical ambiguities. 
 

Representing linguistic mappings as conditional 
probabilities not only allows us to apply efficient 
algorithms to the task of word learning, but also leads to a 
Bayesian formulation of language understanding in which 
understanding an utterance is equivalent to finding the 
most likely meaning (i.e. semantic frame) given that 
utterance (Epstein, 1996):  

 

!)|( utterancemeaningp               (1) 

         )()|( meaningpmeaningutterancep •  

 

These posterior and prior probabilities have natural 
analogues to our representations of linguistic mapping 
and intention recognition.  Specifically, the posterior 
p(utterance | meaning) can be estimated by the 
probability of the most likely alignment of words to role 
fillers (using the probabilities described in this section).  
Further, the prior p(meaning) can be estimated by the 
probability of the most likely inferred intentional tree (i.e. 
the probability given by the by the PCFG parser, as 
described previously).  

 
Model Evaluation 

 
Data Collection  

 
We developed a virtual environment based on the multi-
user videogame Neverwinter Nights (Figure 2).2  This 
software includes an authoring tool enabling creation of 
new games within the virtual environment.  A game was 
designed in which a human player must navigate their 
way through a cavernous world, collecting specific 
objects, in order to escape.  Subjects were paired such that 
one, the novice, would control the virtual character, while 
the other, the expert, guided her through the world via 
spoken instructions.  While the expert could say anything 
in order to tell the novice where to go and what to do, the 
novice was instructed not to speak, but only to follow the 
commands of the expert.  The purpose behind these 
restrictions was to elicit free and spontaneous speech that 
is only constrained by the nature of the task.   

The subjects in the data collection were university 
graduate and undergraduate students (8 male, 4 female).  
Subjects were staggered such that the novice in one trial 
became the expert in the next.  The game was 
instrumented so that all the experts’ speech and all of the 
novices’ actions were recorded during game play.  Figure 
3a shows example screen shots of a game in progress 
along with the two associated parallel sequences of data: 
the expert’s speech and novice’s actions.   

The expert’s speech is automatically segmented into 
utterances based on pause structure and then manually 
transcribed. The novice’s action sequences are parsed 
using a hand built behavior grammar to infer a tree 
representation of the novice’s intentions (see Figure 3b).  
In the current experiments, the entire sequence of actions 
composing a game trial is parsed at once and linguistic 
mapping is performed using the most likely tree from that 
parse.  This batch processing allows for much more 
reliable intentional trees (since all of the actions in a game 
have been observed), but must be relaxed in future work 
to more accurately simulate a human learner’s limited 
temporal window into the world. 

In hand building the behavior grammar, two sets of 
rules were created: one to describe agents’ possible paths 
of movement and one to describe non-motion actions.  

                                                
2 http://nwn.bioware.com/ 

1) set uniform likelihoods for all utterance/frame 
pairings 

2) for each pair, run standard EM 
3) merge output distributions of EM (weighting each by 

the likelihood of the pairing) 
4) use merged distribution to recalculate likelihoods of 

all utterance/frame pairings 
5) goto step 2 
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The movement rules were built semi-automatically, by 
enumerating all possible paths between target rooms in 
the game.  The action rules were designed based on the 
rules of the game in order to match the actions that 
players must take to win (e.g. opening doors, taking 
objects, interacting with non-player characters, etc.).  
Rules were built and refined in an iterative manner, in 
order to insure that all subject trials could be parsed.  
Because of limited data, generalization of the rules to 
held-out data was not examined.  Probabilities were set 
using the frequency of occurrence of the rules on the 
training data.  A major focus of future work will be the 
automation of this process, which would bring together 
the inter-related problems of language acquisition and 
task learning.  
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Figure 5: Comparison of noun and verb learning.  Accuracy 
of the model for nouns vs. verbs is as a function of the 
number of trials used in training.   

 
Having collected the utterances and parsed the actions, 

the two streams are fed into the extended EM algorithm, 
where the semantic roles from the novice’s intention tree 
are mapped to the words in the expert’s utterances.  By 
iterating through all possible mappings, the algorithm 
eventually converges to a probability distribution that 
maximizes the likelihood of the data (see Figure 3c-d).  
 
Experiments 
 
To evaluate the model, the linguistic mapping algorithms 
are trained on the first four trials of game play for each 
subject pair and tested on the final trial.  This gives on 
average 130 utterances of training data and 30 utterances 
of testing data per pair.  For each pair, the number of 
iterations, beam search, and other initialization parameters 
(see Moore, 2003) are optimized using data from all other 
subjects.   

For each utterance in the test data, the likelihood that it 
was generated by each possible frame is calculated.  We 
select the maximum likelihood frame as the system’s 
hypothesized meaning for the test utterance, and examine 
how often the system maps each word of that utterance to 
the correct semantic role.  Word mapping accuracies are 

separated by word class (i.e. nouns and verbs) and 
compared.  Further, the amount of training data is varied 
to simulate the effect of experience on language learning. 
 
Results 
 
Figure 5 shows the performance of the model as a 
function of the number of trials used for training.  The 
figure shows the model’s understanding accuracy for both 
nouns and verbs, and indicates that, although initially the 
verb classes are learned with similarly poor accuracy, by 
the second trial there is a large jump in performance on 
nouns over verbs.  Table 1 shows the model’s accuracy on 
the 10 most frequent nouns and verbs from the test data, 
along with the frequency of those words in the training 
and test data.  The Table shows that the model’s accuracy 
for nouns is significantly (p<0.01) greater than its 
accuracy for verbs, even though fewer nouns than verbs 
were present in training.  Further, the Table shows a 
greater amount of variation in the performance on verbs. 
 
Discussion 
 
Results show that the model follows the trend in human 
learners to favor noun learning in the early stages of 
development.  The model of course makes vast 
simplifications compared to actual human language 
acquisition.  We believe, however, that the causes 
underlying the model’s different learning rates for nouns 
and verbs provide useful insights into human learning.  
These results cannot be explained by frequency 
differences in the training data, in which more verbs 
appeared than nouns.  Rather, the results follow directly 
from the model’s formalization of the conceptual 
structure of intentional action and the inherent ambiguity 
of those actions.  

To see this, we can decompose the notion of perception 
into sensation plus interpretation.  The model does not 
give any preference to objects over actions in terms of 
sensation.  To the model, objects and actions are both just 
role fillers in semantic frames.  There is a difference, 
however, when considering interpretation. 

As described above, the interpretation of action 
sequences introduces two distinct kinds of ambiguity.  
Such interpretations are represented in the model as 
different nodes in an intention tree, where each node 
represents a different semantic frame to which an 
utterance may map.  The key to our noun/verb 
asymmetric result lies in the fact that, while each node of 
an intentional tree (i.e. semantic frame) has a different 
action role, often the object roles in different levels are 
the same.   

For example, in Figure 2, the actions FIND, OPEN, and 
MOVE occur only once along the vertical path from root 
to leaf.  However, the object DOOR occurs multiple times 
along that same path.  In a word learning scenario, this 
means that even if the model misinterprets what level of 
intention an utterance describes, because object roles are 
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repeated at multiple levels, it still has a good chance of 
mapping the nouns in the utterance to their correct roles.  
However, because action roles are more specific to their 
level of description, if the model misinterprets the level, 
linguistic mapping for the verb cannot succeed. 

This pattern is consistent in the data used for training, 
where, for each vertical path in an intention tree, the same 
action role is seen on average 1.05 times, while the same 
object role is seen 2.05 times.  Thus, it is the ambiguity of 
actions and the recurrence of objects in a vertical path, 
which causes the model to learn verbs slower than nouns.3 
 

Table 1: Word level results of model.   The testing 
accuracy, and frequency in training, for the ten most 
frequent nouns and verbs in the test set are presented. 

 VERBS   NOUNS  
Frequency Accuracy Frequency Accuracy 

Word Train Test Test (%) Word Train Test Test (%) 
Go 342 69 73.9 door 249 47 85.1 
Get 96 16 6.3 chest 89 22 54.5 

Open 65 17 23.5 portal 49 10 80.0 
take 59 14 50.0 key 33 9 100 
bash 47 12 66.7 axe 29 11 54.5 

follow 31 6 33.3 password 28 7 100 
talk 28 7 0.0 lockpick 26 6 100 
Turn 22 6 0.0 diamond 25 7 71.4 
Ask 19 7 42.9 lever 24 7 85.7 

Teleport 10 4 0.0 archway 23 5 100 
ALL 719 158 44.0 ALL 575 130 65.2 

 
Conclusion 

 
The primary contribution of our model is the use of 
situational context to support intention recognition in 
word learning.  This work is one of the first steps we are 
aware of that introduces social considerations into a 
computational model of word learning (also see Yu et al., 
2003). The experimental results we present, while very 
preliminary in nature, mirror the noun/verb asymmetry 
seen in human language development.  Further, the model 
provides an explanation of the phenomenon by means of 
its formalization of the conceptual structure of intentional 
action. 

In future work, the model will be extended to address 
the role of syntax in word learning, focusing particularly 
on how a formalization of syntactic bootstrapping 
(Snedeker & Gleitman, 2004) relates to the vertical and 
horizontal ambiguities of intentional action.  Further, we 
will examine how behavior grammars can be 
automatically learned as language is acquired.  Finally, 
experiments will be conducted in which the model is 

                                                
3 While formalizing object ambiguity may dilute this effect.   
Research on “basic level” descriptions (Rosch, 1976) suggests 
that ambiguity for objects may be different than for actions. 

compared to human subjects performing comparable 
language learning tasks. 

Acknowledgments 
 

Peter Gorniak developed the software to capture data 
from the videogame used in our experiments. 

References 
 

Baldwin, D. & J. Baird (2001). Discerning Intentions in 
Dynamic Human Action. TICS. 5(4). 

Brown, P. F. Della Pietra, V. J. Della Pietra S. A. & 
Mercer., R. L. (1993) The Mathematics of Statistical 
Machine Translation: Parameter Estimation, 
Computational Linguistics 19(2). 

Collins, M. (1999), Head-Driven Statistical Models for 
Natural Language Parsing. PhD Dissertation, 
University of Pennsylvania.  

Epstein, M.  (1996) Statistical Source Channel Models for 
Natural Language Understanding Ph. D. thesis, New 
York University. 

Gentner. Why nouns are learned before verbs: Linguistic 
relativity versus natural partitioning. In S. Kuczaj, 
editor, Language development: Vol. 2. Language, 
cognition, and culture. Erlbaum, Hillsdale, NJ, 1982. 

Gillette, J., Gleitman, H., Gleitman, L., Lederer, A. (1999). 
Human simulation of vocabulary learning. Cognition, 73. 

Gleitman, L. (1990) The structural sources of verb 
meanings. Language Acquisition, 1(1)  

Miller, G. A., Galanter, E. and Pribram K. H. (1960). 
Plans and the Structure of Behavior. New York: Halt. 

Moore, Robert C. 2004. Improving IBM Word Alignment 
Model 1.  in Proc. of 42nd ACL, Barcelona, Spain. 

Pynadath, D, (1999). Probabilistic Grammars for Plan 
Recognition. Ph.D. Thesis, University of Michigan.  

Regier, T.. (2003) Emergent constraints on word-learning: 
A computational review. TICS, 7, 263-268.  

Rosch, E., C.B. Mervis, W. Gray, D. Johnson, and P. 
Boyes-Braem.(1976) Basic objects in natural 
categories. Cogn. Psychol., 8. 

Reiter, E. and Roy. D. (in press). Connecting Language to 
the World. Special issue of Artificial Intelligence. 

Roy, D.. (in press). "Grounding Words in Perception and 
Action: Insights from Computational Models".  TICS. 

Snedeker, J. & Gleitman, L. (2004). Why it is hard to 
label our concepts. To appear in Hall & Waxman (eds.), 
Weaving a Lexicon. Cambridge, MA: MIT Press 

Stolcke., A. (1994) Bayesian Learning of Probabilistic 
Language Models. Ph.d., UC Berkeley. 

Tomasello, M. (2001). Perceiving intentions and learning 
words in the second year of life. In M. Bowerman & S. 
Levinson (Eds.), Language Acquisition and Conceptual 
Development. Cambridge University Press. 

Vallacher, R. R., & Wegner, D. M. (1987). What do 
people think they're doing? Action identification and 
human behavior. Psychological Review, 94, 3-15. 

Woodward, A., J. Sommerville and J. Guajardo (2001), 
How infants make sense of intentional action. In Malle, 
Moses, Baldwin Intention and Intentionality. MIT Press. 



Proceedings of the 27th Annual Meeting of the Cognitive Science Society 
 

Chen Yu, Dana H. Ballard and Richard N. Aslin (2003), 
“The Role of Embodied Intention in Early Lexical 
Acquisition”, Proceedings of the Twenty-Fifth Annual 
Meeting of Cognitive Science Society. Boston, MA. 


