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ABSTRACT
Mining data from online games provides a potential alternative to 
programming behavior and dialogue for characters in interactive 
narratives by hand. Human annotation of course-grained tasks can 
provide  explanations  that  make  the  data  more  useful  to  an  AI 
system, however human labor is expensive. We describe a semi-
automatic methodology for recognizing tasks in gameplay traces, 
including  an  annotation  tool  for  non-experts,  and  a  runtime 
algorithm.  Our  results  show that  this  methodology works  well 
with a large corpus from one game, and suggests the possibility of 
refactoring the development process for interactive narratives.

Categories and Subject Descriptors
I.2.7  [Artificial  Intelligence]:  Knowledge  Representation 
Formalisms and Methods – frames and scripts. 

General Terms
Algorithms, Experimentation.

Keywords
Story understanding, authoring tools.

1. INTRODUCTION
Current  approaches to  authoring interactive narratives  are labor 
intensive,  and  require  technical  skills  and  understanding  of  AI 
systems. Creating characters who can interact with each other, and 
possibly  with  humans,  within  the  context  of  a  narrative  often 
requires  designers  to  encode  behavior  and  dialogue  into  some 
kind  of  hierarchical  representation  [3,  22].  While  these 
representations  are  intuitive  to  engineers,  designers  do  not 
necessarily  have  an  engineering  background,  making  current 
approaches inaccessible. Meanwhile, the popularity of multiplayer 
games is skyrocketing due to the ubiquity of broadband, and the 
growing number of online communities and services like Xbox 
Live. The combination of cheap storage, fast connections, and lots 
of players opens an opportunity for a new approach to authoring 
content, by recording human-human interactions, and annotating 

these gameplay traces  such  that  characters  can  exploit  them at 
runtime. Human annotations explain to the AI system the intent 
behind recurring patterns of physical and/or linguistic behavior. 

This  paper  describes  a  methodology  for  annotating  tasks in 
gameplay traces, where a task refers to a sequence of actions or 
utterances recognizable as a coherent, intentional unit by humans.  
The methodology includes an annotation tool designed for non-
experts,  and  an  algorithm  for  automatically  recognizing  tasks 
based  on  human-annotated  examples.  Designers  use  the 
Environment for Annotating Tasks (EAT) to produce data to train 
RUN  (not  an  acronym),  a  simple  yet  effective  algorithm  for 
recognizing tasks at runtime. RUN can also be used to preprocess 
a corpus of thousands of recorded gameplay traces.

We have collected a corpus of 9,882 gameplay traces generated 
from  over  15,000  people  playing  the  roles  of  customers  and 
waitresses in a virtual restaurant. Our long-term goal is to develop 
a case-based planning system that can exploit this corpus to power  
the  behavior  of  AI-controlled  actors  who  can  interact  in  a 
convincingly human-like way. Case-based planning [10] refers to 
a system that utilizes examples from similar episodes in the past to 
plan  actions  in  the  current  situation.  We  have  previously 
described  the first  iteration  of  our  case-based planning system, 
which automatically learns to imitate humans based on recurring 
patterns  of  behavior  [17].  In  this  paper  we  describe  how 
annotating and recognizing tasks will  address issues in our first 
iteration, and improve the future iteration of the planning system.

Influenced  by Schank’s  conception  the  restaurant  script --  an 
abstract representation of typical restaurant behavior that enables 
a  machine  to  understand  stories  about  restaurants  [20]  --  we 
believe that generating convincing behavior and dialogue for AI-
controlled customers and waitresses requires a representation of 
typical restaurant behavior that gives context to observed actions 
and  utterances.  In  our  case,  this  representation  will  be  learned 
from thousands of gameplay traces, rather than hand-crafted, with 
tasks as a critical representational building block.  EAT & RUN 
provide us with the means to recognize tasks in gameplay traces, 
as a first step toward learning the restaurant script. The rest of this  
paper describes the motivation for introducing tasks, the design of 
the EAT interface, the specifics of the RUN algorithm, our task 
recognition evaluation results, and discussion of related work.

2. THE RESTAURANT GAME
The  Restaurant  Game is  an  online  game  where  humans  are 
anonymously paired to play the roles of customers and waitresses 
in  a virtual  restaurant.  Players  can chat with  open-ended typed 
text, move around the 3D environment, and manipulate 47 types 
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of  objects  through  a  point-and-click  interface.  Every  object 
provides the same interaction options: pick up,  put  down,  give, 
inspect, sit on, eat, and touch. Objects respond to these actions in 
different ways -- food diminishes bite by bite when eaten, while 
eating a chair  makes a  crunch  sound,  but  does not  change the 
shape  of  the  chair.  The  chef  and  bartender  are  hard-coded  to 
produce food items based on keywords in chat text. A game takes 
about 10-15 minutes to play,  and a typical game consists of 84 
physical actions and 40 utterances. Everything players say and do 
is  logged  in  time-coded  text  files  on  our  servers.  Player 
interactions vary greatly, ranging from dramatizations of what one 
would expect to witness in a restaurant, to games where players 
fill  the  restaurant  with  cherry  pies.  While  many  players  do 
misbehave, we have demonstrated that enough people do engage 
in common behavior that it is possible for an automatic system to 
learn  statistical  models  of  typical  behavior  and  language  that 
correlate highly with human judgment of typicality. Details about 
data  collection,  analysis,  and our  first  iteration  of the planning 
system are available in previous publications [16, 17].

3. TASK HIERARCHIES & ANNOTATION
In  this  section,  we  motivate  introducing  a  task-based 
representation  into  our  planning  system,  discuss  current 
applications  of  task  hierarchies  to  interactive  narratives,  and 
explore ways to annotate tasks in recorded gameplay data.

3.1 Motivation for Task-Based Representation
Our planning system selects actions and utterances for a character  
by searching for a gameplay trace that best matches the observed 
interaction history,  and then imitating what a human did in that  
situation.  The  first  iteration  of  this  system  can  only  compare 
histories based on fine-grained surface similarities of action and 
utterance  sequences.  Without  the  courser-grained  context 
provided by tasks, we see two issues: (1) cycles (e.g. infinite loops 
of serving drinks) and (2) non-sequiturs (e.g. answering questions 
that were never asked). 

As  a  gameplay  session  progresses,  and  the  interaction  history 
grows, it becomes less likely that the system will find a gameplay 
trace that matches the history exactly. Our current solution only 
compares recent history (actions since the last  dialogue ended), 
but this eliminates long-term memory, and leads to amnesic cycles 
of  repeated  behavior.  Cycles  also  result  from imitating  games 
where players are misbehaving, and truly engaging in cycles. It is 
trivial  to  ignore  abnormal  actions  (e.g.  eating  trash.  sitting  on 
lobsters), but without some higher-level structure to give context,  
it is difficult to recognize that ordering many items from the chef 
to pile on the counter is different from ordering multiple items to 
serve to a customer. Without structure, it is difficult to recognize  
typical actions and utterances in atypical contexts.

Non-sequiturs  are  a  side-effect  of  characters  periodically 
switching which gameplay traces they are following (out of the 
corpus of thousands) in order to better match recent history. Upon 
retrieval of a new trace, the character advances a pointer to the  
action after the matched portion and blindly imitates whatever the 
human did next, which leads to non-sequiturs when the human in 
the trace was responding to something that happened prior to the 
match point. For example, in one run we observe this sequence: a 
customer asks for a menu, the waitress picks up a menu from the 

podium and brings it to the table, the customer spontaneously says 
“Florida” (responding to “where are you from?” asked before the 
match point).

Introducing a task-based representation will  allow the system to 
retrieve gameplay traces by matching at a courser-grained level,  
where it is more likely to find traces that match a much longer  
span, or even the entire history, restoring long-term memory and 
eliminating  cycles.  Tasks  will  provide  context  for  actions  and 
utterances, allowing characters to ignore actions within tasks that 
began prior to the match point, and to filter out actions occurring 
in  unusual  contexts.  Tasks  will  also  allow  characters  to 
disentangle behaviors that occur in parallel, and do not require a 
response from one another. The waitress can ignore the customer 
taking bites of his meal while she is cleaning tables because, while 
the  actions  are  interleaved  temporally,  they belong  to  separate 
tasks that overlap in time.

3.2 Task Hierarchies in Games & Narratives
A number of interactive narrative systems have been developed 
based on variants of Hierarchical Task Network (HTN) planning 
systems [3, 22]. HTNs provide an intuitive means of specifying an 
overarching  compound  task,  which  can  be  decomposed 
recursively into  sub-tasks,  until  reaching primitives  that  can be 
executed  in  the  game  engine.  A task  may coordinate  multiple 
characters  interacting  with  one  another,  and  sub-tasks  may 
execute  sequentially  or  in  parallel.  Young  has  noted  that  this 
hierarchical  structure  is  amenable  to  storytelling,  where  tasks 
represent recurring patterns of action which can be re-used within 
the narrative. Dramatic beats in Façade can also be described as 
hierarchical plans, implemented in a reactive planning language 
called ABL [13].  In  all of these systems, plans are encoded by 
hand.  Mateas  comments  that  the  authorial  burden  for  hand-
programming  plans  for  Façade  was  high,  and  future  research 
should  focus  on  ways  to  generate  story  pieces  that  decrease 
authorial  effort,  possibly  by  exploring  case-based  generation 
techniques. 

Aside from the authorial burden, there is the issue of coverage. It 
would be simple enough to hand-craft  a plan to specify typical 
restaurant  behavior,  where  a  customer  sits,  looks  at  a  menu, 
orders,  eats,  pays,  and  leaves.  In  our  gameplay traces,  we  see 
many variations from the norm, such as customers who order an 
appetizer before looking at the menu, get food to-go without ever 
sitting  down,  dine  &  dash  (without  paying),  or  steal  the  cash 
register.  Schank  describes  the  early  days  of  Legal  Sea  Foods, 
where people had to pay for their food before eating [20]. There 
are also nuances due to cultural differences. It is unlikely that a 
designer  will  account  for  every possible  variation  when  hand-
crafting  a  plan,  leading  to  failure  when  the  system encounters 
deviations  from the  norm.  Generating  a  hierarchical  plan  from 
thousands of human examples has the potential to provide better 
coverage.

3.3 Annotating Tasks in Gameplay Traces
An  alternative  to  authoring  a  hierarchical  plan  by  hand  is  to 
extract  it  from  an  annotated  gameplay  trace,  as  Ram  and 
colleagues  have  demonstrated  in  the  domain  of  case-based 
planning for strategy games [19]. After each gameplay session, a 
human annotates a log file by labeling each action with the task



the  player  was  trying  to  accomplish.  For  example,  an  Attack 
action might be annotated with KillUnit and WinGame. Applying 
Allen’s temporal reasoning framework [1], tasks are determined to 
occur in sequence, in parallel, or as sub-tasks of one another. If 
one task occurs during another,  it  is assumed to be a sub-task, 
otherwise if tasks partially overlap temporally they are assumed to 
be pursued in parallel. Ultimately,  all tasks are sub-tasks of the 
overarching WinGame task. These temporal relations inform the 
extraction of a hierarchical plan for playing the game. Annotating 
just  a few games has been  shown  to produce  an AI-controlled 
player capable of beating the game’s built-in AI.

3.4 Annotating Tasks in Interactive Narratives
Our  annotation  scheme  is  similar  to  Ram’s  with  respect  to 
supporting tasks that occur in parallel temporally, but we do not 
assume  anything  about  hierarchical  structure  from  the 
annotations.  In  scrutinizing  our  data,  we  find  that  the 
characteristics  of  social  interaction  between  two  players  in  a 
restaurant are quite different from the behavior of a strategy game 
player. Dramatic improvisation between humans in an open-ended 
scenario is highly varied and fluid, exhibits many instances where 
one task occurs during another but is not a sub-task, and may not 
all contribute to a single overarching task -- there is no notion of 
winning in  The Restaurant Game. Gervás has noted that stories 
rarely have one single end point where the goal of the story can be 
said to be achieved, and many stories have no identifiable goal at 
all [6].

In  one  game  we  observe  a  waitress  taking  an  order  from  a 
customer while cleaning a table. Taking an order is not a sub-task 
of  cleaning  the  table.  In  another  game we observe  a  customer 
asking the waitress where she is from, while he continues eating 
his  meal.  This  behavior  contributes  to  a  higher-level  task  of 
socializing, and is not a sub-task of eating. Eating and socializing 
are in different  realms of thought [15], and do not belong to the 
same hierarchy.  Trying  to  fit  all  of  these  tasks  into  one  over-
arching  task  is  awkward.  In  addition,  characters’  goals  may 
conflict – cleaning the table and taking an order may be sub-tasks 
of the waitress rushing the customer out, to make more money by 
seating  someone  else,  however  the  customer’s  temporally 
overlapping  behavior  of  drinking  wine  may  be  a  sub-task  of 
enjoying a leisurely meal.

This is not to say that hierarchies are not useful for representing 
interactive narratives for a case-based planning system. Grouping 
tasks into courser-grained tasks (e.g. subsuming tasks for greeting, 
seating,  and  giving  the  customer  a  menu  into  a  task  for 
commencing  dining)  will  help  retrieve  a  maximal  number  of 
matching gameplay traces by abstracting away subtle variations, 
and  will  give context  to  screen out  unusual  behavior.  We take 
three  positions  with  regard  to  task  hierarchies  for  interactive 
narratives: (1) Task hierarchies should not be forced to collapse 
into a single overarching task. Multiple hierarchies may co-exist. 
(2) Task hierarchies should not be assumed based on annotations 
at the lowest level. Instead, tasks produced at one level can serve 
as input for task annotation of the next level of the hierarchy. (3)  
The  flexibility  of  the  hierarchy  depends  on  the  number  of 
annotated gameplay traces, the more the better.

4. ANNOTATING TASKS WITH EAT
The Environment for Annotating Tasks (EAT) is a browser-based 
tool (developed in Adobe FLEX and Action Script 3) designed to 
allow non-experts to intuitively and efficiently annotate tasks in 
gameplay traces. The interface displays a game as a horizontally 
scrolling  timeline,  where  each  node  represents  an  action  or 
utterance.  We  omit  actions  for  physical  movement  from  the 
timeline -- it is safe to assume if the waitress picks up pie from the 
counter and puts it down on a table, she moved from the counter  
to the table. Annotators use the mouse to enclose nodes in boxes 
representing  tasks,  and  then  select  a  task  label  from a  list.  In 
expert  mode,  the  annotator  can  add  to  the  list  of  labels  while 
annotating.  Annotation  is  complete  when  every node  has  been 
enclosed in a task. Each node can only be enclosed in one task. In 
cases  of  ambiguity,  the  annotator  chooses  one  or  the  other. 
Annotators  can move nodes up or down into separate  bands to 
accommodate cases where tasks overlap temporally,  and actions 
and utterances from multiple tasks are interleaved. Figure 1 shows 
a timeline before and after annotation.

It  took  one  of  the  authors  20  hours  to  annotate  100  games 
(randomly selected from the corpus), each with an average of 125 
nodes.  The  list  of  task labels  was generated  during  this  initial 
annotation process, to cover the range of tasks typically observed 
in restaurant interaction.  There are 28 task labels, plus OTHER 
for tasks that do not  fit  any of the labels in the list.  Examples 
include  W_DEPOSITS_BILL,  W_SERVES_FOOD, 
W_CLEANS_TABLE,  C_DRINKS,  C_GETS_SEATED, 
C_EATS, C_COMPLAINS_BILL,  SHARE_NAMES. While the 
optional prefix denotes customer (C) or waitress (W), labels are 
intentionally  ambiguous  as  to  who  carries  out  the  action.  For 
instance, C_GETS_SEATED can be applied to a sequence where 
the  customer  seats  himself,  or  a  sequence  where  the  waitress 
shows him to a table, as long as the end result is that the customer 
is sitting at a table. Any task can include a mixture of actions and  
utterances, carried out by either actor or both. OTHER is applied 
to sequences of mischievous behavior (e.g. eating flowers, sitting 
on  the  stove,  stealing  the  register),  atypical  behavior  (e.g. 
waitresses  eating  meals  while  on  the  job),  or  unintelligible 
dialogue.  Recognizing  tasks  for  misbehavior  is  of  interest,  but 
remains  for  future  work.  However,  providing  characters  with  a 
model  of  typical  behavior  enables  them to  disregard  off-script 
behavior,  which  is  a  significant  step  toward  more  robust 
interactions.

Five  additional  annotators  who  were  not  involved  with  the 
development  of  EAT  annotated  a  10  game  subset  of  the 
previously annotated games to evaluate inter-annotator agreement. 
Two of the annotators work in our lab. We had no face-to-face 
contact with the other  three,  who were given instructions via a 
tutorial  web  page.  The  annotators  applied  labels  from the  list 
supplied by the expert annotator. Annotating 10 games took three 
hours, and the annotators reported that the task became easier and 
faster  after  annotating  the  first  few  games.  We  computed  an 
average  kappa  coefficient  between  the  five  annotators  and  the 
expert of 0.81. The annotators from our lab scored high agreement 
(0.8 and 0.9), but the other annotators still achieved substantial 
agreement (0.75, 0.7, and 0.89). Kappa between 0.61 and 0.80 is 
considered  substantial  agreement  [12].  Our  results  suggest  that 
this  annotation  task  is  accessible  to  non-experts  with  minimal 
investment in training.



Figure 1. Gameplay trace in EAT before (top) and after (bottom) annotation.

We have annotated tasks for one level of a task hierarchy, but it is 
not hard to imagine repeating this process recursively, where tasks 
at  one level become nodes for annotation at  a higher-level.  To 
support nesting tasks, which may overlap temporally, the interface 
needs  to  allow boxes  that  can  stretch  over  multiple  bands  to 
enclose vertically adjacent tasks. Adjacent tasks can be stored as 
sequences of task start  and end nodes.  For  example,  discussing 
where  players  are  from  while  eating  can  be  represented: 
C_EATS.1.START,  SHARE_GEOGRAPHY.2.START, 
SHARE_GEOGRAPHY.2.END, C_EATS.1.END.

Ultimately  we  want  to  annotate  an  entire  corpus  of  10,000 
gameplay traces  to  guide  the  case-based  planning  system.  The 
combination of EAT and RUN affords us two options, each with 
trade-offs. One option is for humans to hand-annotate the entire 
corpus online,  the other is to use 100 annotated games to train 
RUN to  automatically  annotate  the  rest.  The  fact  that  EAT is 
browser-based  and  accessible  to  non-experts  allows  us  to 
reformulate  the  difficult  problem  of  authoring  behavior  into 
something akin to  data-entry.  Testing inter-annotator  agreement 
with a larger population is required to draw conclusions about the 
accessibility of the tool in general, but our pilot  test results are 
encouraging,  pointing  to  the  potential  possibility  of  hiring  an 
online workforce to annotate data through an outsourcing service 
such  as  Amazon’s  Mechanical  Turk.  Annotating  10,000  games 
will  take  about  2,000  hours  –  almost  a  man-year  of  work. 
However, unlike traditional approaches to authoring AI behaviors, 
where the labor cannot be easily distributed and parallelized, the 
mythical  man-month [2]  actually  does apply here.  Dividing the 
corpus  among ten  annotators  would  allow completion  in  about 

one month. Annotating gameplay traces automatically with RUN 
has the advantage of being fast and free, but will only recognize 
patterns  for  tasks  observed  in  the  100  training  games.  Online 
annotation costs time and money, but can collect a much wider 
variety  of  examples,  providing  better  coverage  of  the  subtle 
nuances of human behavior.  Either  way,  the RUN algorithm is 
still necessary to recognize tasks during interactions at runtime.

5. THE RUN ALGORITHM
The  RUN  algorithm  is  a  simple  yet  effective  algorithm  for 
recognizing tasks at runtime, based on a dictionary of examples 
extracted from annotated gameplay traces. RUN can also be used 
to automatically annotate tasks in a corpus of gameplay traces, as 
a preprocessing step to support the case-based planning system. 

5.1 The Task Dictionary
We compile a dictionary of examples by extracting each instance 
of  an  annotated  task  from each  gameplay trace.  This  provides 
many  subtle  variations  of  token  sequences  (where  tokens  are 
actions and utterances) sanctioned by humans as valid examples. 
While  annotators  see  plain  English  text  (e.g.  WAITRESS 
PICKS_UP  Bill.1  FROM  Table.4,  or  “what  would  u  like?”), 
internally  actions  and  utterances  are  stored  in  a  machine-
comprehendible representation. Actions are stored as indices into 
a lexicon. We have previously described automatically learning an 
action  lexicon  from  thousands  of  gameplay  traces  [16].  Our 
lexicon has over 7,000 unique actions, represented in a STRIPS-
like  format  [4],  with  preconditions  and  effects.  Actions  are 



context-sensitive and role-dependent  (e.g.  waitress picks up pie 
from counter).  In  the  100  annotated  games,  we  observed  665 
unique actions. Utterances are stored as dialogue acts, represented 
as {speech act, content, referent} triples. For example, “I’ll have 
the  steak”  is  represented  as  DIRECTIVE_BRING_FOOD. 
Elsewhere we have described a dialogue act classifier that can be  
trained to automatically label utterances [18]. For this study, we 
hand-annotated  the  utterances  in  the  100  games  prior  to 
annotating  tasks,  in  order  to  evaluate  the  task  recognition 
algorithm in isolation in a best-case scenario.  We observed 312 
unique dialogue act triples in the 100 annotated games. Tokens 
for utterances with dialogue act annotations containing OTHER 
are omitted from the extracted examples. 

We  do  not  attempt  to  generalize  examples  –  RUN  will  only 
recognize tasks that match one of the examples exactly (in terms 
of action indices and dialogue act triples). After pruning examples 
that  have  only  been  observed  in  one  gameplay  trace,  our 
dictionary has 264 unique examples, covering the 28 tasks labels. 
Each label has between 1 and 29 examples (mean 9.43, median 7),  
where  an  example consists  of between  1 and  10  tokens  (mean 
2.73,  median 3).  There are 322 unique tokens in the dictionary 
after pruning.

The dictionary is stored in a trie (or suffix tree [9]), which stores 
each example as a branch from the root to a leaf node. If the first 
n tokens are identical in two example sequences, they will share 
the  first  n nodes  from  the  root,  and  then  split  into  separate 
branches.  Testing  whether  some  sequence  matches  (or  is  a 
substring  of)  any  valid  example  is  efficient  with  this  data 
structure.  When inserting examples into the trie,  we append an 
END token, which allows us to detect valid examples that may be 
substrings of longer valid examples. The END nodes become the 
leaves of the trie, and these nodes store the task label describing 
the example that formed the corresponding branch.

5.2 Task Recognition & Sequence Alignment
Like a human annotator  identifying tasks by separating actions 
and utterances into bands and grouping them into boxes, RUN is 
intended  to  disentangle  tasks  represented  by  sequentially 
interleaved  tokens,  which  may be  separated  by arbitrarily  long 
gaps. RUN accomplishes this by searching for sub-sequences in a 
gameplay trace that match examples in the task dictionary. On the 
surface, this pattern-matching problem seems similar to sequence 
alignment in computational biology [9], where algorithms exist to 
search  for  known  protein  sequences  within  much  longer 
sequences.  However,  the  performance  requirements  and 
characteristics  of  the  data  are  very  different,  justifying 
development of a new, simpler algorithm.

Biological sequence alignment algorithms run offline,  searching 
for  one  sequence  at  a  time  in  a  large  database  of  sequences.  
Algorithms  that  guarantee  optimal  alignment  employ  dynamic 
programming solutions,  which  are  expensive  in  terms  of  space 
and time. More efficient, heuristic search-based algorithms exist, 
which  sacrifice  optimality  for  speed,  but  are  still  offline 
algorithms that search for one sequence at a time, as well as being 
complex to implement. An interactive narrative system demands a 
fast, memory-efficient algorithm that runs online to detect tasks in 
real-time as a character receives new observations, and ideally is 
easy  to  implement.  Optimal  alignment  is  not  as  important  as 
getting  the  gist  of  the  situation  by simultaneously  recognizing 

examples of all possibly occurring tasks, while also filtering out 
irrelevant observations for behavior  that is mischievous or does 
not require a character’s response.

Due  to  the  nature  of  the  data,  sequence  alignment  and  task 
recognition are essentially different problems. Biological data has 
a small number of tokens which have no meaning on their own 
(e.g. A, T, G, and C in DNA). The tokens themselves are entirely 
ambiguous,  but  when  ordered  in  different  combinations  give 
meaning to sequences. Our tokens (actions and utterances), on the 
other hand, are meaningful on their own, and very few of them are 
ambiguous in terms of task membership. Of the 322 unique tokens 
in  the pruned  dictionary,  only 19 can be found in examples  of 
more than one task.  (With the exception that any token can be 
labeled  as  task  OTHER,  discussed  more  below).  The  most 
ambiguous tokens are associated with utterances like “yes” and 
“thanks.”  We  did  not  make  any  special  effort  to  minimize 
ambiguity of tokens to ensure tasks would be easily separable; but 
rather this is a natural consequence of humans grouping actions 
and  utterances into  coherent  sequences,  within  some structured 
scenario.  It  is  this same meaningful  property of the tokens that  
leads to  high  inter-annotator  agreement  between humans in  the 
data  that  generates  the  examples  for  the  dictionary.  Matching 
patterns within sequences of highly ambiguous biological tokens 
necessitates  more  computationally  intense  approaches  than  are 
required for recognizing more easily separable tasks.

While  biological  sequence  alignment  algorithms  are 
computational overkill for task recognition, the fact that they align 
one pair of sequences at a time offline does not address the unique 
challenges  associated  with  simultaneously  recognizing  any 
example  of  any task type  within  observations  of fluid,  tangled 
human  interaction  between  two  actors.  Each  task  may  be 
represented by many different example sequences, some of which 
may be substrings  of one  another.  A single  game may contain 
multiple  instances  of  the  same  task,  and  these  tasks  may  be 
overlapping  in  time.  A gameplay trace may contain  degenerate 
uncompleted  task  fragments,  which  should  be  ignored  (by 
labeling the fragment OTHER).  If  a customer asks for a menu, 
and the waitress does not respond, the task recognizer should not 
detect that a C_GETS_MENU task occurred (because in fact it 
did not – the customer never received a menu). Through the same 
process  the  recognizer  should  ignore  typical  actions  and 
utterances occurring in atypical contexts, such as ordering many 
pies  from  the  chef  and  stacking  them  on  the  counter.  Only 
completed tasks that completely match human annotated examples 
of typical behavior should be recovered.

5.3 The Algorithm
RUN is a greedy algorithm that iterates over a sequence of tokens, 
adding each to an accumulating sequence in the Open or Closed 
list (closed sequences can continue to be extended). Accumulating 
tokens  in  multiple  sequences  in  the  Open  and  Closed  lists  is  
conceptually  similar  to  what  humans  are  doing  with  EAT,  by 
separating  actions  and  utterances  into  different  bands  to 
disentangle  tasks.  Once  the  entire  input  sequence  has  been 
processed, the sequences in the Closed list indicate the task labels 
to apply to spans of the original sequence (possibly including gaps 
within).  A labeled sequence is  guaranteed  to  match  one  of the 
examples in the task dictionary. Figure 2 presents one iteration of 
the algorithm in pseudo code, which can be run in a loop to 



Dictionary d
SequenceList open, closed
SequenceTokenIndex iPos
Token tok

void processToken(d, open, closed,
   tok, iPos) {
   if(addToOpen(d, open, closed, 
      tok, iPos)) return
   else if(startNew(d, open, closed, 
      tok, iPos)) return
   else addToClosed(d, closed, tok, iPos) }

Boolean addToOpen(d, open, closed, 
   tok, iPos){
   for each seq in open {
      append(seq, tok)
      if( !exists(d, seq) ) 
         remove(seq, tok), continue
      seq.end = iPos
      remove(open, seq)
      if( matchesWholeExample(d, seq) )
         seq.label = getLabel(d, seq)
         push_front(closed, seq)
      else push_front(open, seq)         
      return true }
   return false }

Figure 2. Pseudo-code for the RUN algorithm.

process  an  entire  gameplay  trace,  or  run  periodically  as  new 
observations arrive at runtime. Our implementation was written in 
about  a page of Java in  a few hours,  and processes an average 
gameplay trace (125 tokens) in 0.015 seconds on a Pentium 4.

The Open and Closed lists begin empty.  For  each token in the 
input sequence, we first try to add the token to an accumulating 
sequence  in  the  Open  list.  If  that  fails,  we  try to  start  a  new 
sequence with the token. Finally, if all else fails, we try to extend 
a  previously  closed  sequence.  Any time  an  open  sequence  is 
found  that  exactly  matches  a  sequence  in  the  dictionary,  the 
sequence  is  moved  to  the  Closed  list.  In  some  cases,  a  new 
sequence is started and immediately closed, but may continue to 
be extended in the Closed list. As a sequence in the Closed list is 
extended, we keep track of the last end point that marked an exact 

Boolean startNew(d, open, closed, 
   tok, iPos) {
   seq=tok, seq.start=iPos, seq.end=iPos
   if( !exists(d, seq) ) return false
   if( matchesWholeExample(d, seq) )
      seq.label = getLabel(d, seq)
      push_front(closed, seq)
   else push_front(open, seq)         
   return true }

Boolean addToClosed(d, closed, tok, iPos) {
   for each seq in closed {
      append(seq, tok)
      if( !exists(d, seq) ) 
         remove(seq, tok), continue
      if( matchesWholeExample(d, seq) )
         seq.label = getLabel(d, seq)
         seq.end = iPos
      remove(closed, seq)
      push_front(closed, seq)         
      return true }
   return false }

void appendOpenToClosed(d, open, closed) {
   for each o_seq in open {
      for each c_seq in closed {
         if( o_seq.start < c_seq.end )
            continue
         append( c_seq, o_seq )
         if( !exists(d, c_seq) ||
             !matchesWholeExample(d, c_seq))
            remove(c_seq, o_seq)
         else c_seq.end = o_seq.end 
                             c_seq.label = getLabel(d, c_seq)
} } }

match of a complete example. This end marker is important when 
finally applying task labels based on the Closed sequences,  for 
ensuring  all  task  instances  exactly  match  human-sanctioned 
examples.  Dictionary  queries  determine  if  sequences  are 
potentially valid (meaning they are sub-sequences of examples), 
and if sequences represent an exact match of a complete example.  
Whenever we successfully add a token to a sequence, we move 
the sequence to the front of the Open or Closed list.  This leads 
RUN to prefer more compact sequences by continuing to extend 
whatever was most recently extended.

Once the entire input stream has been processed, task labels can 
be applied by iterating over the sequences in the Closed list. There 
is some book keeping required (omitted from the pseudo code) to 
keep track of which action or utterance instances are associated 



with each token.  Prior  to assigning task labels from the Closed 
list, we try to salvage fragments in the Open list, which would be 
otherwise discarded, by trying to append them to the sequences in 
the Closed list with  appendOpenToClosed. This step can be 
performed once after processing an entire input  stream, or after 
processing each new observation at runtime. 

RUN can be applied hierarchically by running multiple instances 
of the algorithm in parallel, once for each level of the hierarchy. 
The output  of one level of the hierarchy becomes input  for the 
next.  Nested  temporally  overlapping  task  instances  can  be 
encoded  as  a  sequence  of  start  and  end  points,  as  describe  in  
Section 4.

5.4 Task Recognition Evaluation
We  evaluated  RUN  with  a  10-fold  cross-validation  test  of 
recognizing tasks in  the 100 human annotated gameplay traces, 
where each fold was trained on 90 traces and tested on 10. Our 
results  show that  RUN works well  on  our  dataset,  achieving a 
0.744 precision and 0.918 recall.  Precision measures how often 
RUN and the  human  assigned  the  same task  label  to  a  token. 
Recall measures how many of the human-annotated task instances 
were recovered by RUN. The baselines for precision and recall are 
0.362 and 0.160 respectively. While these results are encouraging, 
we need to evaluate RUN on a dataset of gameplay traces from 
another domain for comparison.  However, such datasets are not 
readily available.

The fact that RUN scores higher recall  than precision indicates 
that  the  system is  doing  a  good  job  of  getting  the  gist  of  the 
interaction, but is sometimes omitting tokens within a sequence. 
High recall  will  benefit  the case-based planner,  which needs to 
find gameplay traces with similar task histories. Task labels with 
low recall  are primarily the result  of sparse data.  For  instance, 
RUN  has  trouble  recognizing  C_COMPLAINS_BILL,  because 
there are only 15 examples, and the examples are highly varied. 
Annotating  more  gameplay  traces  should  improve  recall  of 
C_COMPLAINS_BILL, especially if annotators focus on games 
where customers complain about the bill. Figure 3 suggests that 
we need at least 40 training files to maximize recall, in general.

Naturally  precision  is  affected  by sparse  data  as  well,  but  the 
biggest factor lowering precision is related to tokens for lowering 
precision is related to tokens for utterances that were omitted from 
examples  in  the  dictionary  due  to  dialogue  act  annotations 
containing OTHER, indicating that a human found them in some 
way unclassifiable. In these cases, RUN will automatically assign 
the task label OTHER and ignore these tokens completely. RUN 
also  has  problems  when  an  example  in  one  task  label  is  a 
substring that begins an example in another label. For instance, 
we label the following sequence W_PREPARES_BILL: waitress 
asks if the customer wants anything else, he replies “no, just the 
check”, she interacts with the register. We apply the same label if  
the customer replies “no”, and the waitress say “I’ll get your bill 
then”, and uses the register. The problem is that in other instances 
we see a waitress ask if the customer wants anything else, and the 
customer  replies  “no,”  and  continues  eating  his  meal.  These 
instances are labeled W_CHECKS_IN. This is clearly ambiguous 
to RUN (as it is for humans), and perhaps suggests a revision to 
our labeling protocol. However, while ambiguity like this lowers 
our evaluation statistics, it is often ultimately inconsequential – it 
does not really matter whether we consider the whole sequence 

Figure 3. Effect of corpus size (x axis) on precision and recall 

W_PREPARES_BILL,  or  W_CHECKS_IN  followed  by 
W_PREPARES_BILL.

One of our requirements for RUN is that it does a good job of 
filtering out  tokens  that  do  not  contribute  to  typical  restaurant 
behavior. Moving sequences from Open to Closed only when they 
exactly match a complete dictionary example is intended to filter 
out atypical behavior, even when composed of otherwise typical 
actions  and utterances.  We can evaluate  success in  filtering by 
looking at the recall for tokens labeled OTHER by a human. If we 
only  use  an  Open  list  in  RUN,  and  never  move  sequences  to 
Closed, recall for OTHER is 0.594. The full implementation with 
Open  and  Closed  achieves  a  0.817  recall  for  OTHER,  a  27% 
improvement over the naïve solution.

6. RELATED WORK
We relate our  work to previous research on  dialogue modeling 
and learning from human data, and highlight differences. Gorin et 
al [7] describe learning to route calls in response to the prompt 
“How may I help you?”, by finding mutual information between 
routing decisions  and n-grams in utterances.  Satingh  et  al  [21] 
developed a dialogue system that learns an optimal policy for a 
phone-based  information  system from interactions  with  human 
callers. Huang et al [11] trained chatbots by extracting title-reply 
pairs from online discussions. Our work differs by collecting data 
from humans situated in a (virtual) physical environment, where 
players dramatize an everyday scenario through a combination of 
(typed) dialogue and physical interaction, contributing to learning 
an  interleaved  model  of  actions  and  utterances  representing  a 
commonsense script of restaurant behavior. 

McQuiggan and Lester [14] applied a similar methodology to ours 
(capturing  demonstrations  between  humans  in  a  game 
environment)  to  learn  models  of  empathetic  behavior.  Their 
system learns  to  give  emotional  commentary through  character 
gestures and pre-recorded audio clips. We are learning a model of 
collaborative  behavior,  including  open-ended  typed  dialogue, 
where  actors  playing  different  roles  depend  on  each  other  to 
dramatize a scenario constrained by learned social  conventions. 
Gorniak and Roy [8] collected data, including speech, from pairs 
of players solving a puzzle in Neverwinter Nights, and constructed 
a plan  grammar,  which  could  be used to  understand  utterances 
between players. Similarly, Fleischman and Hovy [5] leveraged a 
task  model  of  a  game-based  training  exercise  to  understand 
natural language input. In these projects, hand-constructed models 
of the situation (plan grammar or task model) helped the system 
understand  language.  In  contrast,  we  are  training  a  system to 
automatically  recognized  tasks  composed  of  utterances  and 



actions.  While  our  data  collection  methodology  is  similar  to 
previous work,  we are working toward learning the structure of 
the  situation  from  data,  based  on  semi-automated  annotation, 
rather than hand-crafting a plan grammar or task model. Learning 
the structure has the potential of producing a more robust model 
through a less laborious process.

7. CONCLUSIONS & FUTURE WORK
RUN performs well on our dataset, recalling almost 92% of the 
human  annotated  task  instances.  There  are  numerous  possible 
improvements to RUN that may help us recall the remaining 8%, 
many of which are composed of sequences that end up discarded 
in the Open list.  There may be ways to merge fragments in the  
Open  list  to  recover  additional  valid  examples.  When  RUN 
encounters ambiguity,  we might benefit by exploiting frequency 
statistics  of  examples  to  determine  which  sequence  to  extend, 
rather  than  always  selecting  the  most  recently  extended.  Our 
results  reflect  the  best-case  scenario,  with  human  annotated 
dialogue  acts;  we need to  evaluate  the  impact  of automatically 
classified utterances. We would also like to evaluate how well we 
can detect tasks representing common ways to misbehave.

The big question is how well this methodology generalizes to new 
scenarios. There are certainly other routinized everyday activities, 
but  the  more  interesting  question  is  whether  latent  script-like 
structures  can  be  recovered  from online  re-enactments  of  less 
mundane scenarios (e.g. hold-ups, lovers’ quarrels, interrogations, 
etc). We are building a new game to evaluate such generalization.

Our  methodology  relies  on  human  annotation,  and  further 
evaluation of inter-annotator agreement is required to determine if 
strong results hold when online annotation is taken to an extreme, 
and  is  distributed  among  anonymous  outsourcing  workers.  If 
results do hold, this hints at an exciting new potential approach, in 
which we can refactor the difficult problem of authoring content 
for  interactive  narratives  by  collecting  content  from  humans 
interacting online, and outsourcing the labor involved in making 
these  gameplay  traces  useful  to  an  AI  system.  This 
democratization of the development process shifts the focus from 
engineering,  to  directing  humans  to  dramatize  the  desired 
performances,  and labeling these examples such that a designer 
can sculpt narrative possibilities from a desired subset of the data.

8. REFERENCES
[1] Allen F. G. 1983 Maintaining knowledge about temporal 

intervals. Communications of the ACM, 26(11):832–843.
[2] Brooks, F.P. 1975 The Mythical Man Month, Reading, 

Mass.: Addison-Wesley.
[3] Cavazza, M., Charles, F., and Mead, S. J. 2002 Sex, Lies and 

Videogames: an Interactive Storytelling Prototype. In Proc. 
of AAAI Symposium on Artificial Intelligence & Interactive 
Entertainment.

[4] Fikes, R.E. and Nilsson, N.J. 1971 STRIPS: A new approach 
to the application of theorem proving to problem solving. 
Artificial Intelligence, 2(3-4), 189-208.

[5] Fleischman, M. and Hovy, E. 2006 Taking Advantage of the 
Situation: Non-Linguistic Context for Natural Language 
Interfaces to Interactive Virtual Environments. In Proc of 
Intelligent User Interfaces.

[6] Gervás, P., Lönneker-Rodman, B., Meister, J.C., and 
Peinado, F. 2006 Narrative Models: Narratology Meets 
Artificial Intelligence. In Proc. of Toward Computational 
Models of Literary Analysis, International Conference on 
Language Resources and Evaluation. Genoa, Italy.

[7] Gorin, A., Riccardi, G., and Wright, J. 1997 How may I help 
you? Speech Communication, Volume 23, Elsevier Science.

[8] Gorniak, P. and Roy, D. 2005 Speaking with your sidekick: 
Understanding situated speech in computer role playing 
games. In Proc. of Artificial Intelligence & Digital 
Entertainment.

[9] Gusfield, D. 1997 Algorithms on Strings, Trees and 
Sequences: Computer Science and Computational Biology. 
Cambridge University Press.

[10] Hammond, K. F. 1990 Case based planning: A framework 
for planning from experience. Cognitive Science, 14(3).

[11] Huang, J., Zhou, M., and Yang, D. 2007 Extracting chatbot 
knowledge from online discussion forums. In Proc. of the 
International Joint Conferences on Artificial Intelligence.

[12] Landis, J.R., and Koch, G.G. 1977 The measurement of 
observer agreement for categorical data. Biometrics, 33(1).

[13] Mateas, M. 2002 Interactive Drama, Art and Artificial 
Intelligence. Ph.D. Thesis. School of Computer Science, 
Carnegie Mellon University, Pittsburgh, PA.

[14] McQuiggan, S., and Lester, J. 2006 Learning empathy: A 
data-driven framework for modeling empathetic companion 
agents. In Proc. of Int. Joint Conference on Autonomous 
Agents & Multi-Agent Systems. Hakodate, Japan.

[15] Minsky, M. 1987. The Society of Mind, Simon and Schuster.
[16] Orkin, J. and Roy, D. 2007 The Restaurant Game: Learning 

social behavior and language from thousands of players 
online. Journal of Game Development, 3(1).

[17] Orkin, J. and Roy, D. 2009 Automatic Learning and 
Generation of Social Behavior from Collective Human 
Gameplay. In Proc the International Conference on 
Autonomous Agents and Multiagent Systems.

[18] Orkin, J. and Roy, D. 2010 Semi-Automated Dialogue Act 
Classification for Situated Social Agents in Games. In Proc 
of the AAMAS Agents for Games & Simulations Workshop. 

[19] Ortanon, S., Mishra, K., Sugandh, N., Ram, A. 2007 Case-
based planning and execution for real-time strategy games. In 
Proc. of the 7th Int. Conference on Case-Based Reasoning 
Research and Development.

[20] Schank, R.C., and Abelson, R.P. 1977 Scripts, Plans, Goals, 
and Understanding: An Inquiry into Human Knowledge 
Structures. Lawrence Erlbaum Associates.

[21] Satingh, S., Litman, D., Kearns, M., and Walker, M. 2002 
Optimizing Dialogue Management with Reinforcement 
Learning: Experiments with the NJFun System. Journal of 
Artificial Intelligence Research.

[22] Young, R. M. 2007 Story and Discourse: A Bipartite Model 
of Narrative Generation in Virtual Worlds, in Interaction 
Studies: Social Behaviour and Communication in Biological 
and Artificial Systems, 8, 2(32).


	1. INTRODUCTION
	2. THE RESTAURANT GAME
	3. TASK HIERARCHIES & ANNOTATION
	3.1 Motivation for Task-Based Representation
	3.2 Task Hierarchies in Games & Narratives
	3.3 Annotating Tasks in Gameplay Traces
	3.4 Annotating Tasks in Interactive Narratives

	4. ANNOTATING TASKS WITH EAT
	5. THE RUN ALGORITHM
	5.1 The Task Dictionary
	5.2 Task Recognition & Sequence Alignment
	5.3 The Algorithm
	5.4 Task Recognition Evaluation

	6. RELATED WORK
	7. CONCLUSIONS & FUTURE WORK
	8. REFERENCES

