
Semi-Automatic Task Recognition for Interactive
Narratives with EAT & RUN

Jeff Orkin
MIT Media Laboratory

75 Amherst Street
Cambridge, MA 02139

jorkin@media.mit.edu

Tynan Smith
MIT Media Laboratory

75 Amherst Street
Cambridge, MA 02139

tssmith@mit.edu

Hilke Reckman
MIT Media Laboratory

75 Amherst Street
Cambridge, MA 02139

reckman@media.mit.edu

Deb Roy
MIT Media Laboratory

75 Amherst Street
Cambridge, MA 02139

dkroy@media.mit.edu

ABSTRACT
Mining data from online games provides a potential alternative to
programming behavior and dialogue for characters in interactive
narratives by hand. Human annotation of course-grained tasks can
provide explanations that make the data more useful to an AI
system, however human labor is expensive. We describe a semi-
automatic methodology for recognizing tasks in gameplay traces,
including an annotation tool for non-experts, and a runtime
algorithm. Our results show that this methodology works well
with a large corpus from one game, and suggests the possibility of
refactoring the development process for interactive narratives.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods – frames and scripts.

General Terms
Algorithms, Experimentation.

Keywords
Story understanding, authoring tools.

1. INTRODUCTION
Current approaches to authoring interactive narratives are labor
intensive, and require technical skills and understanding of AI
systems. Creating characters who can interact with each other, and
possibly with humans, within the context of a narrative often
requires designers to encode behavior and dialogue into some
kind of hierarchical representation [3, 22]. While these
representations are intuitive to engineers, designers do not
necessarily have an engineering background, making current
approaches inaccessible. Meanwhile, the popularity of multiplayer
games is skyrocketing due to the ubiquity of broadband, and the
growing number of online communities and services like Xbox
Live. The combination of cheap storage, fast connections, and lots
of players opens an opportunity for a new approach to authoring
content, by recording human-human interactions, and annotating

these gameplay traces such that characters can exploit them at
runtime. Human annotations explain to the AI system the intent
behind recurring patterns of physical and/or linguistic behavior.

This paper describes a methodology for annotating tasks in
gameplay traces, where a task refers to a sequence of actions or
utterances recognizable as a coherent, intentional unit by humans.
The methodology includes an annotation tool designed for non-
experts, and an algorithm for automatically recognizing tasks
based on human-annotated examples. Designers use the
Environment for Annotating Tasks (EAT) to produce data to train
RUN (not an acronym), a simple yet effective algorithm for
recognizing tasks at runtime. RUN can also be used to preprocess
a corpus of thousands of recorded gameplay traces.

We have collected a corpus of 9,882 gameplay traces generated
from over 15,000 people playing the roles of customers and
waitresses in a virtual restaurant. Our long-term goal is to develop
a case-based planning system that can exploit this corpus to power
the behavior of AI-controlled actors who can interact in a
convincingly human-like way. Case-based planning [10] refers to
a system that utilizes examples from similar episodes in the past to
plan actions in the current situation. We have previously
described the first iteration of our case-based planning system,
which automatically learns to imitate humans based on recurring
patterns of behavior [17]. In this paper we describe how
annotating and recognizing tasks will address issues in our first
iteration, and improve the future iteration of the planning system.

Influenced by Schank’s conception the restaurant script -- an
abstract representation of typical restaurant behavior that enables
a machine to understand stories about restaurants [20] -- we
believe that generating convincing behavior and dialogue for AI-
controlled customers and waitresses requires a representation of
typical restaurant behavior that gives context to observed actions
and utterances. In our case, this representation will be learned
from thousands of gameplay traces, rather than hand-crafted, with
tasks as a critical representational building block. EAT & RUN
provide us with the means to recognize tasks in gameplay traces,
as a first step toward learning the restaurant script. The rest of this
paper describes the motivation for introducing tasks, the design of
the EAT interface, the specifics of the RUN algorithm, our task
recognition evaluation results, and discussion of related work.

2. THE RESTAURANT GAME
The Restaurant Game is an online game where humans are
anonymously paired to play the roles of customers and waitresses
in a virtual restaurant. Players can chat with open-ended typed
text, move around the 3D environment, and manipulate 47 types

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
INT3 2010, June 18, Monterey, CA, USA.
Copyright 2010 ACM 978-1-4503-0022-3/10/06…$10.00.

of objects through a point-and-click interface. Every object
provides the same interaction options: pick up, put down, give,
inspect, sit on, eat, and touch. Objects respond to these actions in
different ways -- food diminishes bite by bite when eaten, while
eating a chair makes a crunch sound, but does not change the
shape of the chair. The chef and bartender are hard-coded to
produce food items based on keywords in chat text. A game takes
about 10-15 minutes to play, and a typical game consists of 84
physical actions and 40 utterances. Everything players say and do
is logged in time-coded text files on our servers. Player
interactions vary greatly, ranging from dramatizations of what one
would expect to witness in a restaurant, to games where players
fill the restaurant with cherry pies. While many players do
misbehave, we have demonstrated that enough people do engage
in common behavior that it is possible for an automatic system to
learn statistical models of typical behavior and language that
correlate highly with human judgment of typicality. Details about
data collection, analysis, and our first iteration of the planning
system are available in previous publications [16, 17].

3. TASK HIERARCHIES & ANNOTATION
In this section, we motivate introducing a task-based
representation into our planning system, discuss current
applications of task hierarchies to interactive narratives, and
explore ways to annotate tasks in recorded gameplay data.

3.1 Motivation for Task-Based Representation
Our planning system selects actions and utterances for a character
by searching for a gameplay trace that best matches the observed
interaction history, and then imitating what a human did in that
situation. The first iteration of this system can only compare
histories based on fine-grained surface similarities of action and
utterance sequences. Without the courser-grained context
provided by tasks, we see two issues: (1) cycles (e.g. infinite loops
of serving drinks) and (2) non-sequiturs (e.g. answering questions
that were never asked).

As a gameplay session progresses, and the interaction history
grows, it becomes less likely that the system will find a gameplay
trace that matches the history exactly. Our current solution only
compares recent history (actions since the last dialogue ended),
but this eliminates long-term memory, and leads to amnesic cycles
of repeated behavior. Cycles also result from imitating games
where players are misbehaving, and truly engaging in cycles. It is
trivial to ignore abnormal actions (e.g. eating trash. sitting on
lobsters), but without some higher-level structure to give context,
it is difficult to recognize that ordering many items from the chef
to pile on the counter is different from ordering multiple items to
serve to a customer. Without structure, it is difficult to recognize
typical actions and utterances in atypical contexts.

Non-sequiturs are a side-effect of characters periodically
switching which gameplay traces they are following (out of the
corpus of thousands) in order to better match recent history. Upon
retrieval of a new trace, the character advances a pointer to the
action after the matched portion and blindly imitates whatever the
human did next, which leads to non-sequiturs when the human in
the trace was responding to something that happened prior to the
match point. For example, in one run we observe this sequence: a
customer asks for a menu, the waitress picks up a menu from the

podium and brings it to the table, the customer spontaneously says
“Florida” (responding to “where are you from?” asked before the
match point).

Introducing a task-based representation will allow the system to
retrieve gameplay traces by matching at a courser-grained level,
where it is more likely to find traces that match a much longer
span, or even the entire history, restoring long-term memory and
eliminating cycles. Tasks will provide context for actions and
utterances, allowing characters to ignore actions within tasks that
began prior to the match point, and to filter out actions occurring
in unusual contexts. Tasks will also allow characters to
disentangle behaviors that occur in parallel, and do not require a
response from one another. The waitress can ignore the customer
taking bites of his meal while she is cleaning tables because, while
the actions are interleaved temporally, they belong to separate
tasks that overlap in time.

3.2 Task Hierarchies in Games & Narratives
A number of interactive narrative systems have been developed
based on variants of Hierarchical Task Network (HTN) planning
systems [3, 22]. HTNs provide an intuitive means of specifying an
overarching compound task, which can be decomposed
recursively into sub-tasks, until reaching primitives that can be
executed in the game engine. A task may coordinate multiple
characters interacting with one another, and sub-tasks may
execute sequentially or in parallel. Young has noted that this
hierarchical structure is amenable to storytelling, where tasks
represent recurring patterns of action which can be re-used within
the narrative. Dramatic beats in Façade can also be described as
hierarchical plans, implemented in a reactive planning language
called ABL [13]. In all of these systems, plans are encoded by
hand. Mateas comments that the authorial burden for hand-
programming plans for Façade was high, and future research
should focus on ways to generate story pieces that decrease
authorial effort, possibly by exploring case-based generation
techniques.

Aside from the authorial burden, there is the issue of coverage. It
would be simple enough to hand-craft a plan to specify typical
restaurant behavior, where a customer sits, looks at a menu,
orders, eats, pays, and leaves. In our gameplay traces, we see
many variations from the norm, such as customers who order an
appetizer before looking at the menu, get food to-go without ever
sitting down, dine & dash (without paying), or steal the cash
register. Schank describes the early days of Legal Sea Foods,
where people had to pay for their food before eating [20]. There
are also nuances due to cultural differences. It is unlikely that a
designer will account for every possible variation when hand-
crafting a plan, leading to failure when the system encounters
deviations from the norm. Generating a hierarchical plan from
thousands of human examples has the potential to provide better
coverage.

3.3 Annotating Tasks in Gameplay Traces
An alternative to authoring a hierarchical plan by hand is to
extract it from an annotated gameplay trace, as Ram and
colleagues have demonstrated in the domain of case-based
planning for strategy games [19]. After each gameplay session, a
human annotates a log file by labeling each action with the task

the player was trying to accomplish. For example, an Attack
action might be annotated with KillUnit and WinGame. Applying
Allen’s temporal reasoning framework [1], tasks are determined to
occur in sequence, in parallel, or as sub-tasks of one another. If
one task occurs during another, it is assumed to be a sub-task,
otherwise if tasks partially overlap temporally they are assumed to
be pursued in parallel. Ultimately, all tasks are sub-tasks of the
overarching WinGame task. These temporal relations inform the
extraction of a hierarchical plan for playing the game. Annotating
just a few games has been shown to produce an AI-controlled
player capable of beating the game’s built-in AI.

3.4 Annotating Tasks in Interactive Narratives
Our annotation scheme is similar to Ram’s with respect to
supporting tasks that occur in parallel temporally, but we do not
assume anything about hierarchical structure from the
annotations. In scrutinizing our data, we find that the
characteristics of social interaction between two players in a
restaurant are quite different from the behavior of a strategy game
player. Dramatic improvisation between humans in an open-ended
scenario is highly varied and fluid, exhibits many instances where
one task occurs during another but is not a sub-task, and may not
all contribute to a single overarching task -- there is no notion of
winning in The Restaurant Game. Gervás has noted that stories
rarely have one single end point where the goal of the story can be
said to be achieved, and many stories have no identifiable goal at
all [6].

In one game we observe a waitress taking an order from a
customer while cleaning a table. Taking an order is not a sub-task
of cleaning the table. In another game we observe a customer
asking the waitress where she is from, while he continues eating
his meal. This behavior contributes to a higher-level task of
socializing, and is not a sub-task of eating. Eating and socializing
are in different realms of thought [15], and do not belong to the
same hierarchy. Trying to fit all of these tasks into one over-
arching task is awkward. In addition, characters’ goals may
conflict – cleaning the table and taking an order may be sub-tasks
of the waitress rushing the customer out, to make more money by
seating someone else, however the customer’s temporally
overlapping behavior of drinking wine may be a sub-task of
enjoying a leisurely meal.

This is not to say that hierarchies are not useful for representing
interactive narratives for a case-based planning system. Grouping
tasks into courser-grained tasks (e.g. subsuming tasks for greeting,
seating, and giving the customer a menu into a task for
commencing dining) will help retrieve a maximal number of
matching gameplay traces by abstracting away subtle variations,
and will give context to screen out unusual behavior. We take
three positions with regard to task hierarchies for interactive
narratives: (1) Task hierarchies should not be forced to collapse
into a single overarching task. Multiple hierarchies may co-exist.
(2) Task hierarchies should not be assumed based on annotations
at the lowest level. Instead, tasks produced at one level can serve
as input for task annotation of the next level of the hierarchy. (3)
The flexibility of the hierarchy depends on the number of
annotated gameplay traces, the more the better.

4. ANNOTATING TASKS WITH EAT
The Environment for Annotating Tasks (EAT) is a browser-based
tool (developed in Adobe FLEX and Action Script 3) designed to
allow non-experts to intuitively and efficiently annotate tasks in
gameplay traces. The interface displays a game as a horizontally
scrolling timeline, where each node represents an action or
utterance. We omit actions for physical movement from the
timeline -- it is safe to assume if the waitress picks up pie from the
counter and puts it down on a table, she moved from the counter
to the table. Annotators use the mouse to enclose nodes in boxes
representing tasks, and then select a task label from a list. In
expert mode, the annotator can add to the list of labels while
annotating. Annotation is complete when every node has been
enclosed in a task. Each node can only be enclosed in one task. In
cases of ambiguity, the annotator chooses one or the other.
Annotators can move nodes up or down into separate bands to
accommodate cases where tasks overlap temporally, and actions
and utterances from multiple tasks are interleaved. Figure 1 shows
a timeline before and after annotation.

It took one of the authors 20 hours to annotate 100 games
(randomly selected from the corpus), each with an average of 125
nodes. The list of task labels was generated during this initial
annotation process, to cover the range of tasks typically observed
in restaurant interaction. There are 28 task labels, plus OTHER
for tasks that do not fit any of the labels in the list. Examples
include W_DEPOSITS_BILL, W_SERVES_FOOD,
W_CLEANS_TABLE, C_DRINKS, C_GETS_SEATED,
C_EATS, C_COMPLAINS_BILL, SHARE_NAMES. While the
optional prefix denotes customer (C) or waitress (W), labels are
intentionally ambiguous as to who carries out the action. For
instance, C_GETS_SEATED can be applied to a sequence where
the customer seats himself, or a sequence where the waitress
shows him to a table, as long as the end result is that the customer
is sitting at a table. Any task can include a mixture of actions and
utterances, carried out by either actor or both. OTHER is applied
to sequences of mischievous behavior (e.g. eating flowers, sitting
on the stove, stealing the register), atypical behavior (e.g.
waitresses eating meals while on the job), or unintelligible
dialogue. Recognizing tasks for misbehavior is of interest, but
remains for future work. However, providing characters with a
model of typical behavior enables them to disregard off-script
behavior, which is a significant step toward more robust
interactions.

Five additional annotators who were not involved with the
development of EAT annotated a 10 game subset of the
previously annotated games to evaluate inter-annotator agreement.
Two of the annotators work in our lab. We had no face-to-face
contact with the other three, who were given instructions via a
tutorial web page. The annotators applied labels from the list
supplied by the expert annotator. Annotating 10 games took three
hours, and the annotators reported that the task became easier and
faster after annotating the first few games. We computed an
average kappa coefficient between the five annotators and the
expert of 0.81. The annotators from our lab scored high agreement
(0.8 and 0.9), but the other annotators still achieved substantial
agreement (0.75, 0.7, and 0.89). Kappa between 0.61 and 0.80 is
considered substantial agreement [12]. Our results suggest that
this annotation task is accessible to non-experts with minimal
investment in training.

Figure 1. Gameplay trace in EAT before (top) and after (bottom) annotation.

We have annotated tasks for one level of a task hierarchy, but it is
not hard to imagine repeating this process recursively, where tasks
at one level become nodes for annotation at a higher-level. To
support nesting tasks, which may overlap temporally, the interface
needs to allow boxes that can stretch over multiple bands to
enclose vertically adjacent tasks. Adjacent tasks can be stored as
sequences of task start and end nodes. For example, discussing
where players are from while eating can be represented:
C_EATS.1.START, SHARE_GEOGRAPHY.2.START,
SHARE_GEOGRAPHY.2.END, C_EATS.1.END.

Ultimately we want to annotate an entire corpus of 10,000
gameplay traces to guide the case-based planning system. The
combination of EAT and RUN affords us two options, each with
trade-offs. One option is for humans to hand-annotate the entire
corpus online, the other is to use 100 annotated games to train
RUN to automatically annotate the rest. The fact that EAT is
browser-based and accessible to non-experts allows us to
reformulate the difficult problem of authoring behavior into
something akin to data-entry. Testing inter-annotator agreement
with a larger population is required to draw conclusions about the
accessibility of the tool in general, but our pilot test results are
encouraging, pointing to the potential possibility of hiring an
online workforce to annotate data through an outsourcing service
such as Amazon’s Mechanical Turk. Annotating 10,000 games
will take about 2,000 hours – almost a man-year of work.
However, unlike traditional approaches to authoring AI behaviors,
where the labor cannot be easily distributed and parallelized, the
mythical man-month [2] actually does apply here. Dividing the
corpus among ten annotators would allow completion in about

one month. Annotating gameplay traces automatically with RUN
has the advantage of being fast and free, but will only recognize
patterns for tasks observed in the 100 training games. Online
annotation costs time and money, but can collect a much wider
variety of examples, providing better coverage of the subtle
nuances of human behavior. Either way, the RUN algorithm is
still necessary to recognize tasks during interactions at runtime.

5. THE RUN ALGORITHM
The RUN algorithm is a simple yet effective algorithm for
recognizing tasks at runtime, based on a dictionary of examples
extracted from annotated gameplay traces. RUN can also be used
to automatically annotate tasks in a corpus of gameplay traces, as
a preprocessing step to support the case-based planning system.

5.1 The Task Dictionary
We compile a dictionary of examples by extracting each instance
of an annotated task from each gameplay trace. This provides
many subtle variations of token sequences (where tokens are
actions and utterances) sanctioned by humans as valid examples.
While annotators see plain English text (e.g. WAITRESS
PICKS_UP Bill.1 FROM Table.4, or “what would u like?”),
internally actions and utterances are stored in a machine-
comprehendible representation. Actions are stored as indices into
a lexicon. We have previously described automatically learning an
action lexicon from thousands of gameplay traces [16]. Our
lexicon has over 7,000 unique actions, represented in a STRIPS-
like format [4], with preconditions and effects. Actions are

context-sensitive and role-dependent (e.g. waitress picks up pie
from counter). In the 100 annotated games, we observed 665
unique actions. Utterances are stored as dialogue acts, represented
as {speech act, content, referent} triples. For example, “I’ll have
the steak” is represented as DIRECTIVE_BRING_FOOD.
Elsewhere we have described a dialogue act classifier that can be
trained to automatically label utterances [18]. For this study, we
hand-annotated the utterances in the 100 games prior to
annotating tasks, in order to evaluate the task recognition
algorithm in isolation in a best-case scenario. We observed 312
unique dialogue act triples in the 100 annotated games. Tokens
for utterances with dialogue act annotations containing OTHER
are omitted from the extracted examples.

We do not attempt to generalize examples – RUN will only
recognize tasks that match one of the examples exactly (in terms
of action indices and dialogue act triples). After pruning examples
that have only been observed in one gameplay trace, our
dictionary has 264 unique examples, covering the 28 tasks labels.
Each label has between 1 and 29 examples (mean 9.43, median 7),
where an example consists of between 1 and 10 tokens (mean
2.73, median 3). There are 322 unique tokens in the dictionary
after pruning.

The dictionary is stored in a trie (or suffix tree [9]), which stores
each example as a branch from the root to a leaf node. If the first
n tokens are identical in two example sequences, they will share
the first n nodes from the root, and then split into separate
branches. Testing whether some sequence matches (or is a
substring of) any valid example is efficient with this data
structure. When inserting examples into the trie, we append an
END token, which allows us to detect valid examples that may be
substrings of longer valid examples. The END nodes become the
leaves of the trie, and these nodes store the task label describing
the example that formed the corresponding branch.

5.2 Task Recognition & Sequence Alignment
Like a human annotator identifying tasks by separating actions
and utterances into bands and grouping them into boxes, RUN is
intended to disentangle tasks represented by sequentially
interleaved tokens, which may be separated by arbitrarily long
gaps. RUN accomplishes this by searching for sub-sequences in a
gameplay trace that match examples in the task dictionary. On the
surface, this pattern-matching problem seems similar to sequence
alignment in computational biology [9], where algorithms exist to
search for known protein sequences within much longer
sequences. However, the performance requirements and
characteristics of the data are very different, justifying
development of a new, simpler algorithm.

Biological sequence alignment algorithms run offline, searching
for one sequence at a time in a large database of sequences.
Algorithms that guarantee optimal alignment employ dynamic
programming solutions, which are expensive in terms of space
and time. More efficient, heuristic search-based algorithms exist,
which sacrifice optimality for speed, but are still offline
algorithms that search for one sequence at a time, as well as being
complex to implement. An interactive narrative system demands a
fast, memory-efficient algorithm that runs online to detect tasks in
real-time as a character receives new observations, and ideally is
easy to implement. Optimal alignment is not as important as
getting the gist of the situation by simultaneously recognizing

examples of all possibly occurring tasks, while also filtering out
irrelevant observations for behavior that is mischievous or does
not require a character’s response.

Due to the nature of the data, sequence alignment and task
recognition are essentially different problems. Biological data has
a small number of tokens which have no meaning on their own
(e.g. A, T, G, and C in DNA). The tokens themselves are entirely
ambiguous, but when ordered in different combinations give
meaning to sequences. Our tokens (actions and utterances), on the
other hand, are meaningful on their own, and very few of them are
ambiguous in terms of task membership. Of the 322 unique tokens
in the pruned dictionary, only 19 can be found in examples of
more than one task. (With the exception that any token can be
labeled as task OTHER, discussed more below). The most
ambiguous tokens are associated with utterances like “yes” and
“thanks.” We did not make any special effort to minimize
ambiguity of tokens to ensure tasks would be easily separable; but
rather this is a natural consequence of humans grouping actions
and utterances into coherent sequences, within some structured
scenario. It is this same meaningful property of the tokens that
leads to high inter-annotator agreement between humans in the
data that generates the examples for the dictionary. Matching
patterns within sequences of highly ambiguous biological tokens
necessitates more computationally intense approaches than are
required for recognizing more easily separable tasks.

While biological sequence alignment algorithms are
computational overkill for task recognition, the fact that they align
one pair of sequences at a time offline does not address the unique
challenges associated with simultaneously recognizing any
example of any task type within observations of fluid, tangled
human interaction between two actors. Each task may be
represented by many different example sequences, some of which
may be substrings of one another. A single game may contain
multiple instances of the same task, and these tasks may be
overlapping in time. A gameplay trace may contain degenerate
uncompleted task fragments, which should be ignored (by
labeling the fragment OTHER). If a customer asks for a menu,
and the waitress does not respond, the task recognizer should not
detect that a C_GETS_MENU task occurred (because in fact it
did not – the customer never received a menu). Through the same
process the recognizer should ignore typical actions and
utterances occurring in atypical contexts, such as ordering many
pies from the chef and stacking them on the counter. Only
completed tasks that completely match human annotated examples
of typical behavior should be recovered.

5.3 The Algorithm
RUN is a greedy algorithm that iterates over a sequence of tokens,
adding each to an accumulating sequence in the Open or Closed
list (closed sequences can continue to be extended). Accumulating
tokens in multiple sequences in the Open and Closed lists is
conceptually similar to what humans are doing with EAT, by
separating actions and utterances into different bands to
disentangle tasks. Once the entire input sequence has been
processed, the sequences in the Closed list indicate the task labels
to apply to spans of the original sequence (possibly including gaps
within). A labeled sequence is guaranteed to match one of the
examples in the task dictionary. Figure 2 presents one iteration of
the algorithm in pseudo code, which can be run in a loop to

Dictionary d
SequenceList open, closed
SequenceTokenIndex iPos
Token tok

void processToken(d, open, closed,
 tok, iPos) {
 if(addToOpen(d, open, closed,
 tok, iPos)) return
 else if(startNew(d, open, closed,
 tok, iPos)) return
 else addToClosed(d, closed, tok, iPos) }

Boolean addToOpen(d, open, closed,
 tok, iPos){
 for each seq in open {
 append(seq, tok)
 if(!exists(d, seq))
 remove(seq, tok), continue
 seq.end = iPos
 remove(open, seq)
 if(matchesWholeExample(d, seq))
 seq.label = getLabel(d, seq)
 push_front(closed, seq)
 else push_front(open, seq)
 return true }
 return false }

Figure 2. Pseudo-code for the RUN algorithm.

process an entire gameplay trace, or run periodically as new
observations arrive at runtime. Our implementation was written in
about a page of Java in a few hours, and processes an average
gameplay trace (125 tokens) in 0.015 seconds on a Pentium 4.

The Open and Closed lists begin empty. For each token in the
input sequence, we first try to add the token to an accumulating
sequence in the Open list. If that fails, we try to start a new
sequence with the token. Finally, if all else fails, we try to extend
a previously closed sequence. Any time an open sequence is
found that exactly matches a sequence in the dictionary, the
sequence is moved to the Closed list. In some cases, a new
sequence is started and immediately closed, but may continue to
be extended in the Closed list. As a sequence in the Closed list is
extended, we keep track of the last end point that marked an exact

Boolean startNew(d, open, closed,
 tok, iPos) {
 seq=tok, seq.start=iPos, seq.end=iPos
 if(!exists(d, seq)) return false
 if(matchesWholeExample(d, seq))
 seq.label = getLabel(d, seq)
 push_front(closed, seq)
 else push_front(open, seq)
 return true }

Boolean addToClosed(d, closed, tok, iPos) {
 for each seq in closed {
 append(seq, tok)
 if(!exists(d, seq))
 remove(seq, tok), continue
 if(matchesWholeExample(d, seq))
 seq.label = getLabel(d, seq)
 seq.end = iPos
 remove(closed, seq)
 push_front(closed, seq)
 return true }
 return false }

void appendOpenToClosed(d, open, closed) {
 for each o_seq in open {
 for each c_seq in closed {
 if(o_seq.start < c_seq.end)
 continue
 append(c_seq, o_seq)
 if(!exists(d, c_seq) ||
 !matchesWholeExample(d, c_seq))
 remove(c_seq, o_seq)
 else c_seq.end = o_seq.end
 c_seq.label = getLabel(d, c_seq)
} } }

match of a complete example. This end marker is important when
finally applying task labels based on the Closed sequences, for
ensuring all task instances exactly match human-sanctioned
examples. Dictionary queries determine if sequences are
potentially valid (meaning they are sub-sequences of examples),
and if sequences represent an exact match of a complete example.
Whenever we successfully add a token to a sequence, we move
the sequence to the front of the Open or Closed list. This leads
RUN to prefer more compact sequences by continuing to extend
whatever was most recently extended.

Once the entire input stream has been processed, task labels can
be applied by iterating over the sequences in the Closed list. There
is some book keeping required (omitted from the pseudo code) to
keep track of which action or utterance instances are associated

with each token. Prior to assigning task labels from the Closed
list, we try to salvage fragments in the Open list, which would be
otherwise discarded, by trying to append them to the sequences in
the Closed list with appendOpenToClosed. This step can be
performed once after processing an entire input stream, or after
processing each new observation at runtime.

RUN can be applied hierarchically by running multiple instances
of the algorithm in parallel, once for each level of the hierarchy.
The output of one level of the hierarchy becomes input for the
next. Nested temporally overlapping task instances can be
encoded as a sequence of start and end points, as describe in
Section 4.

5.4 Task Recognition Evaluation
We evaluated RUN with a 10-fold cross-validation test of
recognizing tasks in the 100 human annotated gameplay traces,
where each fold was trained on 90 traces and tested on 10. Our
results show that RUN works well on our dataset, achieving a
0.744 precision and 0.918 recall. Precision measures how often
RUN and the human assigned the same task label to a token.
Recall measures how many of the human-annotated task instances
were recovered by RUN. The baselines for precision and recall are
0.362 and 0.160 respectively. While these results are encouraging,
we need to evaluate RUN on a dataset of gameplay traces from
another domain for comparison. However, such datasets are not
readily available.

The fact that RUN scores higher recall than precision indicates
that the system is doing a good job of getting the gist of the
interaction, but is sometimes omitting tokens within a sequence.
High recall will benefit the case-based planner, which needs to
find gameplay traces with similar task histories. Task labels with
low recall are primarily the result of sparse data. For instance,
RUN has trouble recognizing C_COMPLAINS_BILL, because
there are only 15 examples, and the examples are highly varied.
Annotating more gameplay traces should improve recall of
C_COMPLAINS_BILL, especially if annotators focus on games
where customers complain about the bill. Figure 3 suggests that
we need at least 40 training files to maximize recall, in general.

Naturally precision is affected by sparse data as well, but the
biggest factor lowering precision is related to tokens for lowering
precision is related to tokens for utterances that were omitted from
examples in the dictionary due to dialogue act annotations
containing OTHER, indicating that a human found them in some
way unclassifiable. In these cases, RUN will automatically assign
the task label OTHER and ignore these tokens completely. RUN
also has problems when an example in one task label is a
substring that begins an example in another label. For instance,
we label the following sequence W_PREPARES_BILL: waitress
asks if the customer wants anything else, he replies “no, just the
check”, she interacts with the register. We apply the same label if
the customer replies “no”, and the waitress say “I’ll get your bill
then”, and uses the register. The problem is that in other instances
we see a waitress ask if the customer wants anything else, and the
customer replies “no,” and continues eating his meal. These
instances are labeled W_CHECKS_IN. This is clearly ambiguous
to RUN (as it is for humans), and perhaps suggests a revision to
our labeling protocol. However, while ambiguity like this lowers
our evaluation statistics, it is often ultimately inconsequential – it
does not really matter whether we consider the whole sequence

Figure 3. Effect of corpus size (x axis) on precision and recall

W_PREPARES_BILL, or W_CHECKS_IN followed by
W_PREPARES_BILL.

One of our requirements for RUN is that it does a good job of
filtering out tokens that do not contribute to typical restaurant
behavior. Moving sequences from Open to Closed only when they
exactly match a complete dictionary example is intended to filter
out atypical behavior, even when composed of otherwise typical
actions and utterances. We can evaluate success in filtering by
looking at the recall for tokens labeled OTHER by a human. If we
only use an Open list in RUN, and never move sequences to
Closed, recall for OTHER is 0.594. The full implementation with
Open and Closed achieves a 0.817 recall for OTHER, a 27%
improvement over the naïve solution.

6. RELATED WORK
We relate our work to previous research on dialogue modeling
and learning from human data, and highlight differences. Gorin et
al [7] describe learning to route calls in response to the prompt
“How may I help you?”, by finding mutual information between
routing decisions and n-grams in utterances. Satingh et al [21]
developed a dialogue system that learns an optimal policy for a
phone-based information system from interactions with human
callers. Huang et al [11] trained chatbots by extracting title-reply
pairs from online discussions. Our work differs by collecting data
from humans situated in a (virtual) physical environment, where
players dramatize an everyday scenario through a combination of
(typed) dialogue and physical interaction, contributing to learning
an interleaved model of actions and utterances representing a
commonsense script of restaurant behavior.

McQuiggan and Lester [14] applied a similar methodology to ours
(capturing demonstrations between humans in a game
environment) to learn models of empathetic behavior. Their
system learns to give emotional commentary through character
gestures and pre-recorded audio clips. We are learning a model of
collaborative behavior, including open-ended typed dialogue,
where actors playing different roles depend on each other to
dramatize a scenario constrained by learned social conventions.
Gorniak and Roy [8] collected data, including speech, from pairs
of players solving a puzzle in Neverwinter Nights, and constructed
a plan grammar, which could be used to understand utterances
between players. Similarly, Fleischman and Hovy [5] leveraged a
task model of a game-based training exercise to understand
natural language input. In these projects, hand-constructed models
of the situation (plan grammar or task model) helped the system
understand language. In contrast, we are training a system to
automatically recognized tasks composed of utterances and

actions. While our data collection methodology is similar to
previous work, we are working toward learning the structure of
the situation from data, based on semi-automated annotation,
rather than hand-crafting a plan grammar or task model. Learning
the structure has the potential of producing a more robust model
through a less laborious process.

7. CONCLUSIONS & FUTURE WORK
RUN performs well on our dataset, recalling almost 92% of the
human annotated task instances. There are numerous possible
improvements to RUN that may help us recall the remaining 8%,
many of which are composed of sequences that end up discarded
in the Open list. There may be ways to merge fragments in the
Open list to recover additional valid examples. When RUN
encounters ambiguity, we might benefit by exploiting frequency
statistics of examples to determine which sequence to extend,
rather than always selecting the most recently extended. Our
results reflect the best-case scenario, with human annotated
dialogue acts; we need to evaluate the impact of automatically
classified utterances. We would also like to evaluate how well we
can detect tasks representing common ways to misbehave.

The big question is how well this methodology generalizes to new
scenarios. There are certainly other routinized everyday activities,
but the more interesting question is whether latent script-like
structures can be recovered from online re-enactments of less
mundane scenarios (e.g. hold-ups, lovers’ quarrels, interrogations,
etc). We are building a new game to evaluate such generalization.

Our methodology relies on human annotation, and further
evaluation of inter-annotator agreement is required to determine if
strong results hold when online annotation is taken to an extreme,
and is distributed among anonymous outsourcing workers. If
results do hold, this hints at an exciting new potential approach, in
which we can refactor the difficult problem of authoring content
for interactive narratives by collecting content from humans
interacting online, and outsourcing the labor involved in making
these gameplay traces useful to an AI system. This
democratization of the development process shifts the focus from
engineering, to directing humans to dramatize the desired
performances, and labeling these examples such that a designer
can sculpt narrative possibilities from a desired subset of the data.

8. REFERENCES
[1] Allen F. G. 1983 Maintaining knowledge about temporal

intervals. Communications of the ACM, 26(11):832–843.
[2] Brooks, F.P. 1975 The Mythical Man Month, Reading,

Mass.: Addison-Wesley.
[3] Cavazza, M., Charles, F., and Mead, S. J. 2002 Sex, Lies and

Videogames: an Interactive Storytelling Prototype. In Proc.
of AAAI Symposium on Artificial Intelligence & Interactive
Entertainment.

[4] Fikes, R.E. and Nilsson, N.J. 1971 STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence, 2(3-4), 189-208.

[5] Fleischman, M. and Hovy, E. 2006 Taking Advantage of the
Situation: Non-Linguistic Context for Natural Language
Interfaces to Interactive Virtual Environments. In Proc of
Intelligent User Interfaces.

[6] Gervás, P., Lönneker-Rodman, B., Meister, J.C., and
Peinado, F. 2006 Narrative Models: Narratology Meets
Artificial Intelligence. In Proc. of Toward Computational
Models of Literary Analysis, International Conference on
Language Resources and Evaluation. Genoa, Italy.

[7] Gorin, A., Riccardi, G., and Wright, J. 1997 How may I help
you? Speech Communication, Volume 23, Elsevier Science.

[8] Gorniak, P. and Roy, D. 2005 Speaking with your sidekick:
Understanding situated speech in computer role playing
games. In Proc. of Artificial Intelligence & Digital
Entertainment.

[9] Gusfield, D. 1997 Algorithms on Strings, Trees and
Sequences: Computer Science and Computational Biology.
Cambridge University Press.

[10] Hammond, K. F. 1990 Case based planning: A framework
for planning from experience. Cognitive Science, 14(3).

[11] Huang, J., Zhou, M., and Yang, D. 2007 Extracting chatbot
knowledge from online discussion forums. In Proc. of the
International Joint Conferences on Artificial Intelligence.

[12] Landis, J.R., and Koch, G.G. 1977 The measurement of
observer agreement for categorical data. Biometrics, 33(1).

[13] Mateas, M. 2002 Interactive Drama, Art and Artificial
Intelligence. Ph.D. Thesis. School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA.

[14] McQuiggan, S., and Lester, J. 2006 Learning empathy: A
data-driven framework for modeling empathetic companion
agents. In Proc. of Int. Joint Conference on Autonomous
Agents & Multi-Agent Systems. Hakodate, Japan.

[15] Minsky, M. 1987. The Society of Mind, Simon and Schuster.
[16] Orkin, J. and Roy, D. 2007 The Restaurant Game: Learning

social behavior and language from thousands of players
online. Journal of Game Development, 3(1).

[17] Orkin, J. and Roy, D. 2009 Automatic Learning and
Generation of Social Behavior from Collective Human
Gameplay. In Proc the International Conference on
Autonomous Agents and Multiagent Systems.

[18] Orkin, J. and Roy, D. 2010 Semi-Automated Dialogue Act
Classification for Situated Social Agents in Games. In Proc
of the AAMAS Agents for Games & Simulations Workshop.

[19] Ortanon, S., Mishra, K., Sugandh, N., Ram, A. 2007 Case-
based planning and execution for real-time strategy games. In
Proc. of the 7th Int. Conference on Case-Based Reasoning
Research and Development.

[20] Schank, R.C., and Abelson, R.P. 1977 Scripts, Plans, Goals,
and Understanding: An Inquiry into Human Knowledge
Structures. Lawrence Erlbaum Associates.

[21] Satingh, S., Litman, D., Kearns, M., and Walker, M. 2002
Optimizing Dialogue Management with Reinforcement
Learning: Experiments with the NJFun System. Journal of
Artificial Intelligence Research.

[22] Young, R. M. 2007 Story and Discourse: A Bipartite Model
of Narrative Generation in Virtual Worlds, in Interaction
Studies: Social Behaviour and Communication in Biological
and Artificial Systems, 8, 2(32).

	1. INTRODUCTION
	2. THE RESTAURANT GAME
	3. TASK HIERARCHIES & ANNOTATION
	3.1 Motivation for Task-Based Representation
	3.2 Task Hierarchies in Games & Narratives
	3.3 Annotating Tasks in Gameplay Traces
	3.4 Annotating Tasks in Interactive Narratives

	4. ANNOTATING TASKS WITH EAT
	5. THE RUN ALGORITHM
	5.1 The Task Dictionary
	5.2 Task Recognition & Sequence Alignment
	5.3 The Algorithm
	5.4 Task Recognition Evaluation

	6. RELATED WORK
	7. CONCLUSIONS & FUTURE WORK
	8. REFERENCES

