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Mental Imagery for a Conversational Robot

Deb Roy, Kai-Yuh Hsiao, and Nikolaos Mavridis

Abstract—To build robots that engage in fluid face-to-face to the robots perceptual and action systems in a situationally
spoken conversations with people, robots must have ways to appropriate way.
connect what they say to what they see. A critical aspect of —q,r cyrrent work aims to develop a conversational interface

how language connects to vision is that language encodes point . .
of view. The meaning ofmy leftand your left differs due to an %o an interactive robot (see also [3]-{6]). The development

implied shift of visual perspective. The connection of language to Of such a robot is of practical interest in domains ranging
vision also relies on object permanence. We can talk about things from space exploration (e.g., [7]) to assistive aids (e.g., [8]).

that are not in view. For a robot to participate in situated spoken  Furthermore, we believe that lessons learned from developing

dialog, it must have the capacity to imagine shifts of perspective, (o ntic interfaces may have impact in numerous other natural
and it must maintain object permanence. We present a set of . .
language processing domains.

representations and procedures that enable a robotic manipulator . .
to maintain a “mental model” of its physical environment by A necessary step towards creating situated speech process-
coupling active vision to physical simulation. Within this model, ing systems is to develop representations and procedures that

“imagined” views can be generated from arbitrary perspectives, enable machines to ground the meaning of words in their
providing the basis for situated language comprehension and physical environments. In contrast to dictionary definitions
production. An initial application of mental imagery for spatial : . .
language understanding for an interactive robot is described. th"?‘t represent words '_n .t.erms of other WOVO_'S. _(Ieadlng, In-

evitably, to circular definitions), grounded definitions anchor
word meanings in non-linguistic primitives. Assuming that a
machine has access to its environment through appropriate
sensory channels, language grounding enables machines to
|. SITUATED LANGUAGE USE link linguistic meanings to elements of the machine’s physical

In using language to convey meaning to listeners, speak¥rd- _ . _
leverage situational context [1], [2]. Context may include nterest has grown in the computational representation and
many levels of knowledge ranging from the details of sharéfquisition of word meaning grounded in vision [9]-[18] and
physical environments to cultural norms. As the degree gotor action [19]-{21]. This line of research, in addition to
shared context decreases between communication partn@%king contributions to theoretical aspects of lexical semantics
the efficiency of language also decreases since the speef’l&d cognitive modeling, has practical relevance for building
is forced to explicate increasing quantities of information th&ftuated human-machine communication systems. A limitation
could otherwise be left unsaid. A sufficient lack of commoRT this previous work, however, is the assumption of a fixed,
ground can lead to communication failures. first-person visual frame of reference. _

If machines are to engage in meaningful, fluent, situated©Ur approach departs from the assumption of camera-
spoken dialog, they must be aware of their situational contegfounded fixed perspective by introducing an implemented
As a starting point, we focus our attention on physical conteXfodel of mental imagerydriven by active vision. Mental
A machine that is aware of where it is, what it is doingMagery enables_groundlng of_spatlal Iangyage that cannot be
the presence and activities of other objects and people in f@ndled under fixed-perspective assumptions. To understand
vicinity, and salient aspects of recent history, can use thd§€ difference betweebehind meandbehind youthe listener
contextual factors to interpret natural language. must factor points of view into the language comprehension

In numerous applications of spoken language technologlR¥9Cess: Speakers must similarly take_into account Iisten_ers’
such as talking car navigation systems and speech-baBQifts of view to produce clear, unambiguous language. Sim-
control of portable devices, we envision machines that conn@i¢r solutions such as in-plane rotation of images to correct
word meanings to the machine’s immediate environments. Fgf Perspective will not work in general, since full three-
example, if a car navigation system could see landmarks qfnensional changes of perspective are required in many
its vicinity based on computer vision, and anchor descriptifiuations. Furthermore, mental imagery enables anticipation
language to this visual perception, then the system would hdfeVisual occlusions which are view dependent and cannot

a basis for generating contextually appropriate directions syef Predicted through image rotations. Our approach also

as, “Take a left turn immediately after the large red building'Ntroduces object permanence so that language can bind to

Consider also an assistive service robot that can lend a helpfJects that are not in direct view of the system's camera.
hand based on spoken requests from a human user. ForAfie? 'esult, the system can understand and generate language
robot to properly interpret requests such as, “Hand me the r@gPut objects which are not physical in camera’s sight.

cup and put it to the right of my plate”, the robot must connect We first introduce our notion of mental imagery and its

the meaning of verbs, nouns, adjectives, and spatial langudg¢ I language use. We then present details of an imple-
mentation of a computer vision driven mental model that is

DRAFT: Do not quote or cite used to generate mental imagery. We conclude by presenting
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an application of language understanding grounded in mentaldy, and the space of navigation [29]. Here, we primarily
imagery. Although we build on earlier work on visually-address computational representations of space around the
grounded language cited above, this work makes a significémoidy of a robot. The ability to shift perspectives is also related
departure by defining a new way to connect language atwdaspects of space in navigation, although verbal interaction
vision that is better able to address the needs of situatedh a mobile robot (e.g., [30]) addresses the latter more
language processing. directly.

Using Miller and Johnson-Laird’s terminology [31], speak-

II. MENTAL MODELS AND MENTAL IMAGERY: WHERE ers may assume a first-persoeictic frame of reference (e.g.,
LANGUAGE AND VISION MEET “on my left”), or alternatively anintrinsic perspective (e.g.,

on your left”, “in front of the house”). Intrinsic expressions

A key aspect of human perception is that it is active. Weccur when spatial terms are used to indicate positions relative

cannot move without affecting our senses, and in order ?8entities that have intrinsic parts (e.g., houses have fronts and

erceive, we must coordinate our movements. In the reajm .
P acks) and may thus serve as the bases for spatial frames of

of visual percept_lon,_movem_ent of _the head and body lea tlerence. One way for a listener to interpret the meaning of
to apparent motion in the visual field, and the appearan

G&ictic references, and the approach that we have explored in

/ disappearance of objects from the field of view. Yet, we . . . i h
our computational model, is to use mental imagery to visualize

are able to conceptualize the world as stable, maintain objﬁ% shared scene from the speakers point of view, and within

gﬁ(rjmdailf[f]ee:rnecr?ti;?et?:Iff?ncoetigr: ;g&ezgggﬁnat?i gf\i?gfﬂig’lﬁ?ssshifted frame, interpret spatial expressions. In other words,
he phrase “on my left” is decomposed into two parts, “my”,

We adopt the ternmental modeto refer to the conceptual and “on — left”. The “my” part triggers a shift of perspective

structures that represent a stabilized version of reality, essg(p-the speaker's point of view. Similar strategies can be

:'r?”y t? cacr)e of thet e>|<ternf1l WO_Ir_Ir? 6.‘3 prOj]:e cted ttTrou%ufed within this framework to shift perspectives according to
e observer's perceptual system. The idea of mental modgls. - =« - ¢ reference.

is well established in the cognitive science literature (cf. . : )
L . ! . Imagining how a shared environment looks from another’s

[22]) although it is more typically used to describe offline LY : . o
erspective is often crucial to effective communication. If an

cognitive Processes where perception is not directly dr'V"ic)%ject is in view to speaker S, but not listener L, S should
the construction and updates of the mental model. In ol

: : f<e this factor into account when referring to the object. If S
approach, perceptually driven mental models provide a I‘3\f<enows that L can't see an apple because it is behind a basket

of abstrf'iction above low level vision _that is appropriate fcg might say “the apple behind the basket’ rather than just
connecting to language (along these lines, see also [23]). “the apple”. If the apple is in view to both parties, the former

We also adopt the te_r”“ef“?" 'm‘.igery“? refer_ tq Images dFscription would seem odd since it specifies unnecessarily
that are generated by imagining viewpoints within a ment?edundant details

model. That Stanford Encyclopedia of philosophy [24] defines To summarize, language cannot be grounded directly in

mental |mage_ry as ) first-person visual representations. Language must instead be
Experience that resembles perceptual experience, groynded through some other representational layer which

but which occurs in the absence of the appropri-  proyides a stable view of the environment in spite of self-
ate stimuli for the relevant perception [25], [26].  mgtion, This middle ground also enables speakers and listeners
Very often these experiences are understood by {4 jmagine each others point of view, a necessary precondition
their subjects as echoes or reconstructions of actual 4 pagural situated spoken dialog.
perceptual experiences from their past; at other imes  \wjh this motivation in mind, we present an architecture for
they may seem to anticipate possible, often desired actively constructing mental models.
or feared, future experiences.

Our use of the term extends this definition since we are
concerned with representations and processes that are active
during actual perceptual experience. We choose to use th®ur current experiments are based on a robotic manipulator
same term for both cases based on our intuition that manyr@&med Ripley (Figure 1). Ripley has seven degrees of freedom
the same processes used for online perception are also UfdFs), enabling it to manipulate objects in a three-foot radius
for offline reconstruction and reasoning (see also [27], [28]workspace. The robot may be thought of as an articulated torso

Language refers to the stabilized conceptualization of therminating with a head that includes its “mouth” (a one DOF
world provided by mental models and imagery — we do ngripper).
talk of objects as being in motion when we know that the Ripley has been designed to explore situated, embodied spo-
apparent motion was caused by our own movements. We akam language use. In contrast to our previous robots [13], [32],
talk about objects that are out of view if we are certain dRipley is able to use its gripper to manipulate small objects,
their location. Moreover, spatial language in situated dialogaving the way for grounding verbs related to manipulation
assumes a point of view that will depend on how the spealamtions. The robot's range of motions enable it to examine
decides to express herself. Tversky has analyzed various basiuiects through vision and touch. Ripley is also able to look
frames of references that humans use to conceptualize spageand make “eye contact” with its human communication
including space of the body (body parts), space around thartner. This behavior plays a functional role since Ripley

IIl. PHYSICAL EMBODIMENT: RIPLEY
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Fig. 1. Ripley hands an apple to its human communication partner in response

to the phrase “Hand me the thing on your left". )
Object and Face

4

regions

must keep track of the position of the partner in order to
understand relative spatial reference. Eye contact is also, of 2-D and 3-D
course, important for engaging in natural face-to-face dialog. Registration & |

Most of Ripley’'s sensors are in its head, including two Stabilization ——
color video cameras, two microphones, touch sensors, and an I Dynyamics
inertial sensor for gravity. Additional proprioceptive (position Predictor
and force) sensors are placed on each joint. In our current 3-D Rigid Body
work, only one of the cameras are used for visual input Mental Model

The placement of the camera on the mouth simplifies grasping
since visual servoing can be used to guide the gripper to
objects. However, the placement also leads to constant changes S .

. e . . . ynthetic
in the robot’s field of view since any motion of the torso affects Camera
the camera. For this reason, Ripley provides an excellent
platform for developing mechanisms for mental imagery.

|

1

Low level motor control is achieved by computing trajec- Mental Position &
tories of target joint configurations. An elastic force model Images Orientation
loosely inspired by motor force fields in biological motor _control
control [33] is used to provide compliant motion control
[20]. Higher level motor control directives are issued from Language
a planning mechanism that is driven by task specific criteria. Interpreter /

Low level visual processing relies on color based separation Generator

of objects from a known (fixed) background (the image

processing methods are described in [32]). The vision system

generates a set of foreground regions at a rate of 15Hz. Thege2. Architectural overview: Active vision drives the construction and
region sets are passed to an object permanence module whightenance of a mental model. Synthetic mental images from the mental
integrates region sets over time to determine the preseffi&gte! are linked to language.

and properties of objects in the scene. As we describe in the

next section, the object permanence module uses the robot’s

joint configurations to compensate for view points in order ®igure 2 provides an overview of Ripley’s mental model and
maintain a view-independent model object locations. A fagmagery architecture that registers and stabilizes sensory data
detector [34] searches for faces in the visual field. Faces @&em the robot’'s moving camera. We begin with an overview
treated specially, leading to a model of the communicatiaf the architecture. Subsequent sections highlight technical
partner's location in the robot’'s mental model. details of the implementation.

IV. MENTAL MODEL AND MENTAL IMAGERY Ripley's camera provides a constant stream of images to
o ) the image processor. The image processor finds foreground

As we move around our direction of gaze, objects come {aions (typically corresponding to the location of objects
and out of sight, but our conception of objects remain stablg," the robot's work surface) and face locations which are

1in ongoing work, we are introducing depth perception based on steré%layed' at the 1_5HZ frame rate, to a regiStratiqn a.nd stabiliza-
visual input. tion module. This module constructs and maintains a three-
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dimensional model of objects in the environment. The robot’s
joint configuration is used to perform projective transforms
on incoming images so that a three-dimensional model can b
created out of multiple two-dimensional views.
The mental model is a 3-D model consisting of a set of
rigid body objects, and represents Ripley’s belief of the state
of the world. The registration and stabilization module acts
as a sophisticated hysteresis function to smooth sensory da
Persistent perceptual evidence for the presence, movement,
disappearance of objects drives updates in the mental mode
A physical dynamics estimator is used to provide predic-
tions of where objects should be in incoming image frames
given the current state of the mental model and knowledgs
of Newtonian physics. This predicted model is used to aligre
perspective-dependent camera image regions with the contents
of the 3-D mental model. The contents of the mental modgp- 3. Ripley looks down at the tabletop with four objects in view.
can be used to generate synthetic images using a synthetic

camera and standard projective computer graphics techniques.t | f the virtual robot dtoth | f
The language processor receives these synthetic ima gt angies of the virtual robot are compared 1o the angles o
physical robot. For each joint, if the difference in angles

as a basis for grounding semantics. The language proce ter th t threshold. th iate f .

has control over the position and orientation of the synthef% g:_e % ir I"fm atr? reset thres g. ' _etn aln_ gpt}:)r:)pru;lfe toiﬁe IS

camera. To interpret spatial language, the synthetic camera gRRiec to align the corresponding virtual joint. n etect, the

be positioned to simulate Ripley’s or Ripley’s human partner\§rtual joint tracks the associated DOF of the physical robot.

points of view ince only angle differences above a threshold lead to virtual
' forces, low level jitter in the physical robot is attenuated in

the mental model.
A. Representation of Mental Model State

The physical environment is modeled by a set of rigid 3. Coupling Active Vision to the Mental Model
D objects which include (1) a model of Ripley’s own body, A primary motivation for developing the mental model
(2) a built in model of the workspace table, (3) a physicat 1o register, stabilize, and track visually observed objects
model of the human communication partner's body, and (f} Ripley’s environment. To address these needs, an object
objects situated on the work surface. The complete state of & 1 anence module. called t@bjecter bridges the incoming
mental model is captured at any moment by the descriptionsQfeam of input from the image analysis module to the contents
all ql_ajects._Each_ object in the model is fully descr_lbed by itSt the mental model (for other approaches to perceptually
position, orientation, shape, color, mass, and velocity. The Se&iupled simulation, see [36][38]). When an image region
model consists of a set of four cylindrical blocks connected By ¢5,nd to stably exist for a sustained period of time, an
swivel joints to approximate the shape and range of positioggject is instantiated by the Objecter in the mental model. The
of the physical robot. The physical model of the human partngg|or and position of the object are determined from the visual

is currently a simple sphere which is used to position synthe;wput_ It is only at this point that Ripley becomes “aware”

cameras to obtain the human's point of view. of the object and is able to talk about it. If Ripley looks
away from an object such that the object moves out of view,
B. Dynamic Prediction a representation of the object persists in the mental model.

The ODE rigid body dynamics simulator [35] is used tvhen a physical object is removed from Ripley’s workspace,
predict future states in the mental model. ODE is an Opé}grsistent perceptual evidence of its disappearance causes the
source Newtonian physics simulator that operates on 3-D rigii€ct to be deleted from the model. _ ,
body models. At a rate of 10Hz, the state of the mental modelF'9uré 3 shows an example of Ripley looking over its
is copied into ODE, ODE is executed to generate a predictiWPrkSpace with four obje_cts in view. In Figure 4, the leftimage
for the next time step, and this predicted state is integrated wifioWVs the output from Ripley’s head-mounted camera, and the
perceptual evidence from Ripley’s camera and joint sensdight image shows corresponding simulated objects that have

to update the state of the mental model (see below). OPEEN registered and which are being tracked.. _
thus provides two main functions within our system: collision '€ Objecter consists of three components: a 2D-Objecter,
detection, and dynamics simulation. 3D-Objecter, and 2D-t0-3D resolver. The 2D-Objecter tracks

two-dimensional visual regions generated by the vision sys-

) ) tem. The 2D-Objecter implements a hysteresis function which

C. Ripley’s Physical Self-Model detects 2D visual regions that persist over time, and resolves

The model of the robot’s body is controlled by a simulateihtra-frame region correspondences, assigning unigue IDs to
position-derivative motor controller similar to the controllepersistent regions. The 2D-to-3D resolver module follows,
used in the physical robot. At each update cycle in the modelhich calculates the position and pose of prospective 3-D



DRAFT: DO NOT QUOTE OR CITE 5

initialized to 0. At each successive time step, a new region set
is generated by the vision system. The 2D-Objecter attempts
to put each region iV into one-to-one correspondence with
each candidate i@ such that the total distance using Equation
1 between paired regions is minimized. In general, the number
of visual regionsV and 2D-Objecter candidate regiohs will

not be equal. The alignment process aligns #thi (N, M)

Fig. 4. Visual regions and corresponding simulated objects in Ripley’'s menstibset of regions. After the optimal alignment is found, only
model corresponding to the view from Figure 3. The white ellipses in the lgfhoge \whose distances resulting from the match are below
image indicate the output of the region analysis routines of the vision system. . .

The objects in the simulator on the right are actually spherical, but appgarmaximum allowable distance threshold are accepted. The
elliptical due to optical warp of the synthetic viewpoint generated by theonfidences of candidate regions that are aligned to regions
simulator. from V are updated (increased) using a rule similar to an
infinite impulse response filter, assuming positive input of

objects, based on the persistent 2-D regions it is fed. DueUcBit magnitude. Thus, confidence values never reach an upper
a lack of depth information, the resolver relies on projecti\}éoun,d of 1'_0' IfN. > ﬂ/‘[ at mos_t(N — M) Eew.chandld?tes
geometry and the assumption that objects are in contact Wit instantiated in the 2D-Objecter_, each with confidence
Ripley’s table. The 3D-Objecter brings the prospective 3 Lt 0. If N, < M, thgn the cpnfldgnce of the at least
objects into correspondence with those already existing in thie — N) unaligned candidate regions is updated (decreased)

mental model, and decides whether and how to create, up similar rule, driven by a negative input of unit magnitude.
or delete objects in the mental model At the end of this alignment and confidence update process,

e properties of the matched or newly instantiated regions

As Ripley moves (and thus changes its vantage poin}), Lo )
pey ( d ge p j m the 2-DV are copied intaD. The unmatched candidate

the 2D-Objecter continues to track visual regions until th . ! X , .
leave the field of view. However, updates to the 3-D ment ffgions retain their previous properties, and any of them for
[t].conf < 0 are destroyed.

model are not performed while Ripley is in motion. Thié"’hiCh 1 . . .
simplifies the process of tracking objects and leads to greate;rhe output qf the 2D_—Objecter aF each time .step Is the
model accuracy. Overall, as a coupled pair, the 2-D and %gbset of candidate regions for which thg conﬁdencg level
D Objecter maintain correspondence of objects across tinfe, greater thanConf]k\l/HN. Iln' the current |mp.Iementat_|on,.
enabling tracking and object persistence in spite of perceptLQeff@foN = 0.9. Each newly instantiated candidate region is
gaps, noise, and spatial reorderings of the objects. assigned a unique ID. These IDs are persistent over time, thus

More precisely, the output of the image processing modd@plken;ebntinhg r;gi(())nb_trackin\?v.hSmoothLy mqving obje(cj:tfs are
at each time step is a set d¥ visual regions,V[t] = tracked by the 2D-Objecter. When an object Is removed from a

(R[], Ry[{] RY[#]}. In general, the ordering of regionsscene, the confidence value of the corresponding candidate re-
1 ) £L2 gy ey LUN . 1

within V' is arbitrary since the vision system finds regions iflon will drop steadﬂy from a maximum value ﬂon_fMAX'
Ag soon as the confidence drops bel@wn fi N, it stops

each frame of video independent of knowledge of previo% i Thi ; id I d threshold

frames. Thus, there is no guarantee tRaft] will correspond 2€INg Output. This use of confidence values and thresholds

to RY[t + 1]. implements a hysteresis function that requires persistent visual
! Igyidence before either instantiating or destroying regions.

To obtain correspondence of regions over time, the 2 The 3D-Obi o infer th .
Objecter maintains its own set of regions which are candidates e 3D-Objecter uses projective geometry to infer the pos-

for being output to the 3D-Objecter. We denote the candidaﬂgn of objects in three-dimensional space based on 2D regions.
region set a®[t] = { R3[t], RS[{] o [1]}. The purpose of Given the position and orientation of Ripley’s camera, the 2-D
the 2D-Objecter is to 1ma{int2ain’cor;es]gondence betwegir regions are linearly projected in 3-D until t_he projection lines
and R¢[t + 1]. To maintain region correspondence, We‘ defin@tersect Ripley’s work surface. The location of the surface,

a tunable distance metric between two visual regions as: a round tabletop, is built into the initial state of the mental
" model. Thus, Ripley’s perceptual input is not necessary for

establishing the presence of the table.

d(R;, Rj) = ady(R;, Rj)+4ds(R;, Rj)+(1—a—pB)d.(R;, R;j)  Interaction between the 2D- and 3D-Objecter proceeds as

(1) follows. Each time Ripley moves, the 3D-Objecter ignores

Whered,() is the Euclidean distance between the centroids ofitput from the 2D-Objecter, and when Ripley stabilizes its
the regionsd;() is the difference in size (number of pixels) ofposition, the 3D-Objecter waits 0.5 seconds to ensure that the
regions, andl.() is the difference in average RGB color of the2D-Objecter’s region report is stable, and then resumes 3-D
regions. The tuning parametexsand 3 are scalar values suchprocessing. When the 3D-Objecter processes a 2-D region
that (a4 3) < 1. They are used to set the relative emphasis eét, it projects each region to a corresponding 3-D object
the position, size, and color properties in comparing regionkcation. Then, the projected objects are then placed into cor-
When Ripley moves to a new vantage point, the 2D-Objecterspondence with existing objects in the 3-D mental model. To
candidates are initialized by copying the output of the visiocompare projected and existing objects, a modified version of

system Q < V) so that a candidate is created correspondiriguation 1 is used in which,() measures three dimensional

to each region in the current visual analysis frame. A coleuclidean distance, anfi () is not computed (since the current
fidence value R?[t].conf, is assigned to each candidate andersion of the simulator assumes all objects to be of equal
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size). The same alignment process as the 2D-Objecter is used
to align projected objects to existing objects in the mental
model. If projected objects have no existing counterparts in
the simulator, new objects are instantiated. Conversely, if an
object exists in the mental model but no corresponding object
has been projected based on visual evidence, then the object
in mental model is destroyed. There is no hysteresis function
required in the 3D-Objecter since all 2-D regions have already
passed through a hysteresis function in the 2D-Objecter.

E. Inferring Force Vectors from Vision

In the process of updating the position of moving objects,
the 3D-Objecter must infer the magnitude and direction &fd- 5. By positioning Ia synthtz)eltic cameralat thehposition ?ppro?(]imating the
. . man’s viewpoint, Ripley is able to “visualize” the scene from the person’s
forces .WhICh lead to observed mations. Inferencg of for{; int of view, which includes a view of Ripley.
dynamics has been argued to be of fundamental importance
in grounding verb meanings [39] We now explain how forces
are inferred from visual observation in the Objecter. V. SITUATED SPEECHUNDERSTANDING AND

Consider a situation in which an object, such as a bal, GENERATION GROUNDED IN MENTAL |IMAGERY

'S on the workspace and N view. ane the 2D-Objecter .hasThe mental model and mental imagery provide Ripley with
registered the corresponding region, it will relay the reglonbject permanence and imagined perspective shifts, enabling

to the 3D-Objecter which will instantiate an object in the : ) . ;
. ; . ) new forms of human-machine dialog. As a first exploration
mental model. At this point, Ripley is aware of the ball. Now, " . . . . .
. . Into its use, we have integrated the architecture into a dialog
assume the ball begins to slowly roll. Although the visua

region corresponding to the ball will be displaced from o system that supports early forms of spoken dialog with Ripley.

time step to the next, the 2D-Objecter will generally determinehIS mtegrate_d system consists of.several components |n(_:l.ud—
a sensorimotor grounded lexicon, a speech recognition

the correspondence between regions over time steps and t!?r?g robust parser, grounded semantic composition procedures
track the object. After the correspondence process has beenTu P 9 P P '

by the 3D-Objecter, a displacement in positions between pr%r-1 wsually-drn{en language generation p_rocedures. Although
. . . ) ; complete descriptions of these modules is beyond the scope
jected and existing objects in the simulator must be accountéd, . .
. . of this paper, we briefly sketch salient aspects of each module
for. This is where the force inference step takes place. A force L .
. : . L SO that the application of the mental model and imagery may
proportional to the displacement and in the direction of tl“bee resented
projected object is applied within ODE to the corresponding P '
object. As the object (de)accelerates, the inferred forces will

be delincreased accordingly. To summarize, in the process Grounded Lexicon

of tracking objects, the Objecter also generates a constank central component of the system is a grounded lexicon

stream of inferred forces acting on each object to account ft?]rt defines the meaning of words in terms of richly struc-
their changes in velocity. These force vectors may be usmi71

0 classi i . biect d oth s of f ed sensorimotor representations. In essence, these structures
di/ncaartqsiigy sell-moving objects, and other aspects Of 101G, yq| the meaning of words in terms of their correspondences

to percepts, actions, and affordances [41].

F. Generating Images within the Mental Model B. Verbs = Sensorimotor Networks

The meaning of manipulation verbiift; pick up, touch are
The mental model is integrated with a 3-D graphics rended- g P bis p P y

. . h . b q E‘Ed(ounded insensorimotor networkéSN). SNs can be used to
ing environment [40]. The 3-D environment may be render ecute actions on the robot (in that sense, they may be thought

from an arbitrary viewpoint by positioning and orienting Ebf,as plan fragments), but they also serve as a representational

synthet|c' camera and.renderlng the scene from .the came@Bstrate for the semantics of verbs, and modifiers that are
perspective. Changes in placement of the synthetic camera #fed to verbs

usec_l to ir_npleme_nt shifts in perspective without physically A SN is defined by a linked set gierceptual conditionand
“?0"'”2 tﬁ'ple.%/' I?gurel 5 jho_wts ;r.] i)famplesof ‘3 Zywetlﬁotor primitives Figure 6 shows the SN farickup Perceptual
view of the situation aiso depicted In Figures s and <. Or%%)nditions are indicated by rectangles, motor primitives by
with visually referential semanticdblie, ball, left etc.) are

; circles. Verbs expect a single argument the patient of
grounded in terms of features extracted from these syntheﬂ% verb2. The main execution path of this SN is a single
“mental images”. As we shall see, we can ground spatia '
phrases such asny left as a combination of a shift of 2In ongoing work, we are expanding our formalism to accept agents,

perspective combined with a visually grounded spatial modelstruments, and manner arguments.
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Fig. 7. The meaning dfieavyandlight are grounded in expected resistance
Fig. 6. A sensorimotor network that encodes the semantigsottip measuring while lifting an object.

green(x)
alternating sequence of perceptual conditions and motor prim-
itives. Thepickup SN may be interpreted as (1) ensurds
in view, (2) extend head untit is visually looming (recall
that Ripley’s cameras are mounted next to the gripper), (3)
grasp with the gripper until the gripper touch sensors are
activated, and finally, (4) retract. Errors can be sensed at each
perceptual condition. The default behavior on all errors is to
retry the previous motor action once, and then give up. All

activ ation

A I .
+ projection function:
' region averaged color

SNs terminate in either sauccesr failure final state.
D N
C. Modifiers = Sensorimotor Expectations in_view(X) center(X)
Modifiers, such as color, shape, and weight, are defined lookat(x)

with respect to an underlying SN. Figure 7 illustrates the

representation ofieavyand light. This structure captures therig. 8. The meaning ofgreen and orange are grounded in expected

commonsense notion that something is heavy if it is difficuistributions of context-normalized color space measured by looking at an

to lift. The SN (bottom) grounds the meaning lft. The object

dashed line indicates projection functionthat projects the

exec_utlon of an SN, '”tP a low .dlmenS|onaI featpr_e SPaCanerated using a projection function defined in terms of the

In thls case, the 'prOJectlon function acqumglates JOIn't forc Sime SN as color terméopkas.

during the execution of theetract motor primitive, effectively

weighing the patient ofift. The meaning oheavyand light ) ) ) o

are grounded as distributions of expected values with respEet Spatial Relations and Perspective Shifting

to this projection of the underlying SN. These distributions To ground spatial words (e.gabove, to the left §fin our

are referred to aactivation functionsTo determine how well past work with two-dimensional virtual worlds (cf. [14]), we

a word fits an object, the SN underlying that word mudtave used Regier's set of three spatial features [11], which

be executed and projected using the associated projectiake into account the relative shape and size of objects. The

function. The activation function associated with the word first feature is the angle (relative to the horizon) of the line

evaluated at the projected point to determine how well tlmwnnecting the centers of area of an object pair. The second

word fits the object. Since activation functions are continuoufgature is the shortest distance between the edges of the

all scores are continuously graded. objects. The third feature measures the angle (relative to the
Categorical distinctions (e.g., determining whether an objeabrizon) of the line which connects the two most proximal

is blue or not, as a binary decision) are made using a simgeints of the objects. Spatial relations suchabsveand left

voting mechanism. Within a feature space, the most activateflare defined as Gaussian distributions in terms of these

function determines the category label of the object. three features. To apply a spatial relation, two objects must
The grounding of color terms closely parallels weight termise identified, the target and the landmark. The two-argument

(Figure 8). In place ofift, color terms are defined in terms ofstructure associated with spatial terms is encoded in the speech

the SN associated witlbokat which, when executed, causegarser as described below.

Ripley to center the object in the robot’s visual field. The Since Ripley’s mental model is three dimensional, we use

projection function computes the average value of color in gltojective transforms to capture 2-D views of the mental model

pixels of the visual region corresponding to the object. Coldusing synthetic vision). Regier’s features are then computed

terms such agreenandorangeare defined as two-dimensionalon the 2-D image. In Regier's models, and our previous

Gaussian distributions within this projected feature space. work, the perspective of the viewer has always remained
Shape descriptors are grounded using histograms of lofiged, assuming a first person perspective. Using the mental

geometric feature, described in [42]. The histograms amneodel, the synthetic camera can be moved to any 3-D location
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and orientation. Using this perspective shift operation, the Results and Discussion
semantics ofmy left versusyour left can be differentiated Ripley is able to interactively respond to a range of im-

by using the wordmy, in this linguistic context, as a trigger perative spoken commands such as “Pick up the blue cup on
for positioning the synthetic camera. Ripley’s proprioceptiv;Our left” and “Hand me the ball to the right of the large
system guides the placement of the camera for first persqien peanbag”. In cases where the reference of the command
pe.rs'pectives, and the face.—tracker driven human model ena BBears ambiguous, Ripley uses a simple dialog strategy to
shifting to the human's point of view. request further descriptive terms. When an explicit spatial
frame is not indicated through language, Ripley’s default is to
imagine the workspace from the user’s point of view, thereby
E. Spatially Situated Speech Understanding interpreting commands from a deictic frame of reference.
Using the SN and projection function representation, we N prinf:ip_al, Ripley c,an l_mderstand referent_:e to objects that
have encoded a small vocabulary of words that cover verB€ Not in its camera's view due to the object permanence
(pickup, touch etc.), names of objectsygple, beanbag, cup function of the. mental model. Although the_ physical camera
etc.), and terms for color, weight, and spatial relations. K@ not be directed towards a target object, the synthetic

speech recognizer, parser, and semantic composition sysféffieré can be dlre(;:teo:c at. any portloq of th\‘;/ 3}? model of
work together to convert commands into robot actions. Mogle scene 1o ground referring expressions. We have not yet
aspects of the lexical structures are hand coded. Only tHEPlemented the procedures for controlling synthetic vision,

activation functions (pdf’s) are trained from examples usi t the representatlongl cgp_acny for performing this kind of

standard statistical estimation techniques. nguage comprehension is in place.

Front end speech recognition is performed using a HMM- Although this application of the men_tal model IS too pre-
Igrr}g\ary for formal performance analysis, two major sources

based decoder [43]. The single best word sequence is passe . . L
| processing errors are apparent, each suggesting a direction

a chart parser [44] which serves as the first step of a sema € future work. First, the simplifying assumption of color-
composition procedure. The composition process is presenied ' ' P 9 P

in detail in [45]. In brief, each lexical entry has a function ased foreground / background separation in the low level

interface that specifies how it performs semantic compositiov'.s.ual analys_ls algorithms Ieads_, to an inability to deal W'th
object occlusions. To address this, a more robust segmentation

Currently, the interface definition consists of the number an I cess based on contrast maos and depth imaging is bein
arrangement of arguments the entry is willing to accepf. P P ging 9

Semantic type mismatches are handled during compositi %Vr?lljc;ﬁ)leds'ets(ijci;)tr;i’cjta;/ﬁir:I \?vizamgtec:rsnflir(]j(atgc?e(ggi:?ter;tzge
rather than being enforced through the interface. Each en?r:)z y g gns, y k

can contain aemantic composehat encapsulates the actua ° t.z{e I?(?S(')?,g ;cr)lvisrlébn-rﬁre)zrtnaltsst)égghrtohrgzztlogr;r;et?eersrzgielloe
function to combine this entry with other constituents durin ' ' P

a parse. gutomatmally determined using machine learning techniques,

. once an annotated set of active vision data has been collected.
The system is able to resolve the referent of utterances Wltpl

multiple modifiers. To achieve this, virtual objects consisting
of one or more actual objects are internally generated during VI. CONCLUSIONS
semantic composition. Consider the spoken command, “PickOur vision is to create interactive robots that can engage
up the large green cup to the left of the blue plate”. To resolvie cooperative tasks with humans mediated by fluid, natural
the reference ofarge green cupthe innermost termgup, is spoken conversation. To achieve this vision, the robots must
first bound to objects in the robot's environment based drave rich representations of the physical situations in which
the visual shape models associated with the word. If multipleey are embedded. That representation must be coupled to the
cups are found, they are grouped into a virtual object. Thisbot's physical senses so that it reflects reality, and provide
virtual object is then composed with the representation appropriate interfaces for grounding natural language.
green which will threshold and sort the contents of the virtual Motivated by these needs, we have developed a method for
object based on greenness, and pass along the new virtistructing and maintaining a physical model of a robot’s
object tolarge. The landmark phradalue plateis processed in environment based on active perceptual input. The mental
the same way, resulting in a second virtual object. The spatiabdel provides a representational medium that is suitable for
phraseto the left ofis used to find the best pair of objectsgrounding the semantics of referring expressions. The mental
one drawn from each of the virtual objects. Finally, the bestodel serves as the robot's dynamically constructed “cache”
referent is passed as an argument to piekup SN, which of the external world. Rather than tie the meaning of utterances
actually executes the action and picks up the target objectto first-person perspective visual representations, the mental
The wordsmy, your, me andyouare given special treatmentmodel provides an abstracted representational layer to interface
when adjacent to spatial terms, each triggering an appropriatigh natural language semantics.
shift of visual perspective within Ripley’s mental modéh (  Understanding relativized spatial language is only one of
front of me to your left etc.). Subsequent spatial terms araumerous reasons for endowing Ripley with a mental model.
evaluated in the shifted frame of reference. In this way, mentabnsider, for example, how Ripley should generate referring
imagery provides the grounding for deictic and intrinsic spatiekpressions to bring its human partner’s attention to an object.
language. Depending on the situation, objects in view for the robot may
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be occluded from the human’s perspective. If a cup is sittings]
behind an obstacle, say a box, that prevents the human from
seeing the cup, it would be ineffective for Ripley to refer ter7)
the cup as justhe cup Instead, by taking into account the
human’s viewpoint, Ripley can anticipate that the object Will1 |
not be in view and instead s#éye cup behind the boRipley’s
mental model enables this kind of situated language use.
Perhaps one of the most intuitive views of word meaning®!
is the referential theory: words get their meaning due to their
correspondence to events, objects, properties, and relations in
the world. Although many other critical aspects of meaning®
have been raised in the philosophy of language and mind, the
referential aspect of words holds firm as a crucial part of aia]
complete theory of meaning. The approach we have presented
here enables Ripley to establish meaningful corresponde
between words and world, enabling a central aspect of situated

language understanding. 23]
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