

Behavior Compilation for AI in Games

Jeff Orkin, Tynan Smith, Deb Roy

MIT Media Laboratory

75 Amherst St.

Cambridge, MA 02139

{jorkin, tssmith, dkroy}@media.mit.edu

Abstract

In order to cooperate effectively with human players,
characters need to infer the tasks players are pursuing and
select contextually appropriate responses. This process of
parsing a serial input stream of observations to infer a
hierarchical task structure is much like the process of
compiling source code. We draw an analogy between
compiling source code and compiling behavior, and propose
modeling the cognitive system of a character as a compiler,
which tokenizes observations and infers a hierarchical task
structure. An evaluation comparing automatically compiled
behavior to human annotation demonstrates the potential for
this approach to enable AI characters to understand the
behavior and infer the tasks of human partners.

 Introduction

Mining data from human players offers a promising new
solution for authoring character behavior in games. This
data-driven approach has been proven effective for creating
computer-controlled players real-time strategy games
(Ortanon et al 2007; Weber & Mateas 2009), and
preliminary results show potential for generating behavior
from data in character-driven games (Orkin & Roy 2009).
While it is straightforward to record gameplay to a log file
of time-coded actions, state changes, and chat text, it
remains an open question how best to process and
represent this data such that it will be useful to an AI
character.
 Many games today implement character behavior with
hierarchical representations, such as variants of
hierarchical planners or hierarchical finite state machines
(Gorniak & Davis 2007; Hoang et al. 2005; Fu & Houlette
2004); for example, Hierarchical Task Networks in
Killzone 2 (Straatman 2009), or Behavior Trees in the Halo
series (Isla 2005). Ideally, we would like to transform the
sequence of observations recorded in a gameplay log into
one of these familiar hierarchical structures. This process
of parsing a serial input stream of symbols to generate a

Copyright © 2010, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

hierarchical structure is much like the process of compiling
source code (Aho et al. 1986).
 We compile code for several reasons -- to validate the
syntax, to compact the size of the code base, and to
represent a program such that it can be readily executed by
a machine. The same reasons motivate compiling behavior
for characters in games. While observing the interactions
of other human and/or AI agents, characters need to parse
these observations to recognize valid patterns of behavior,
and separate the signal from noise. As we collect thousands
(or even millions) of gameplay traces, the storage memory
footprint cannot be ignored. While a centralized system
can execute a hierarchical plan to control a group of AI
characters, if the team includes human players centralized
control is no longer an option. In order to cooperate
effectively with humans (on the battlefield, or in a social
scenario like a restaurant) characters need understand the
behavior of others by inferring the tasks they are pursuing,
and execute appropriate responses in the right contexts.
 In this paper, we draw an analogy between compiling
source code and compiling behavior. We propose modeling
the cognitive system of a character as a compiler, which
tokenizes observations and infers a hierarchical task
structure. This structure gives context for understanding
the behavior of others, and for selecting contextually
appropriate actions in response. However, the analogy is
not perfect. There are significant differences between
compiling code and compiling behavior. Behavior exists in
a noisy environment, where multiple characters may be
pursuing multiple, possibly conflicting goals, or engaging
in exploratory behaviors that do not contribute to any goal
at all. A source code compiler processes code for a single
program, and terminates with an error when it encounters
invalid syntax. Compiling behavior, on the other hand,
requires the ability to ignore fragments of invalid syntax
without halting, and simultaneously process tangled
streams of observations that may contribute to different
goals.
 We demonstrate these ideas by describing work with
data from The Restaurant Game, a corpus of almost 10,000
logs of interactions between waitresses and customers
cooperating in a virtual restaurant. First we describe how
we tokenize actions, state changes, and chat text into a
lexicon. Next we detail how these tokens can be compiled

into a model of behavior at runtime, or as a preprocessing
step. Finally, we evaluate how well our system compiles
behavior as compared to a human, and relate our system to
previous work.

The Restaurant Game

The Restaurant Game is an online game where humans are
anonymously paired to play the roles of customers and
waitresses in a virtual restaurant. Players can chat with
open-ended typed text, move around the 3D environment,
and manipulate 47 types provides the same interaction
options: pick up, put down, give, inspect, sit on, eat, and
touch. Objects respond to these actions in different ways --
food diminishes bite by bite when eaten, while eating a
chair makes a crunch sound, but does not change the shape
of the chair. The chef and bartender are hard-coded to
produce food items based on keywords in chat text. A
game takes about 10-15 minutes to play, and a typical
game consists of 84 physical actions and 40 utterances.
Everything players say and do is logged in time-coded text
files on our servers. Player interactions vary greatly,
ranging from dramatizations of what one would expect to
witness in a restaurant, to games where players fill the
restaurant with cherry pies. Details about the first iteration
of our planning system for AI-controlled characters are
available in a previous publication (Orkin & Roy 2009).

Lexical Analysis

In order to compile a sequence of observations, we first
need to tokenize the input stream. When compiling source
code, a lexical analyzer such as the Unix tool Lex is
employed to match regular expressions in the input, and
export tokens in their place (Levin et al. 1992). Tokens
may represent a single symbol in the input, or a pattern
composed of several adjacent symbols. For example, the
Lex specification for analyzing Java code might include:

"if" { return IF; }

"else" { return ELSE; }

“while" { return WHILE; }

"=" { return EQ; }

"!=" { return NE; }

[0-9]+ { return NUMBER; }

Guided by this specification, Lex generates a program that
transforms human-authored source code into a sequence of
tokens that are more easily interpreted by a machine. Our
 gameplay data consists of a variety of keywords for
actions and state changes, names of objects, and arbitrary
strings of chat text. We would like to tokenize this
sequence of heterogeneous symbols into a common
currency of tokens that can be uniformly processed by the
behavior compiler.
 Tokenizing actions and chat text is more complex than
tokenizing source code, due to the fact that actions refer to
objects which change state over time, and open-ended

Figure 1. Screenshot from The Restaurant Game.

natural language chat text is infinitely varied, yet must be
categorized into a minimal number of functionally
meaningful dialogue acts. Below we detail our approach to
tokenizing physical acts and dialogue acts.

Tokenizing Physical Acts

We learn a lexicon of context-sensitive, role-dependent
physical acts through a bottom-up procedure. The state of
each object in the game (such as steak, coffee, menus, pots,
pans, and appliances) is represented by a small vector of
variables including ON, ATTACHED_TO, and SHAPE.
(Some objects change shape as a result of an action – steak
diminishes with each bite). Our lexical analysis procedure
tracks the state of each object over the course of each
gameplay session. When the lexical analyzer encounters an
action (e.g. PICK_UP), we assume that the current state of
the object represents the action’s preconditions, and the
state changes that immediately follow the action represent
the effects. The action’s representation also includes the
character type of the action’s actor (e.g. waitress) and the
target object (e.g. pie). We store every unique observed
action in the lexicon. For example, we have one entry in
the lexicon for a waitress picking up pie from the counter.
 Recognizing that many objects serve the same function
within the game, we automatically cluster objects by their
observed affordances. For each type of object, we count
how many times the object is the target of each possible
action. From these counts, we compute the likelihood of
taking each action with each object, and ignore actions
with a likelihood below a hand-tuned threshold. Objects
that share the same list of likely actions (affordances) are
clustered. For example, we learn that customers tend to sit
on chairs and stools, and both steak and salmon tend to be
picked up by waitresses and eaten by customers. Clustering
objects greatly decreases the size of the action lexicon,
which refers to these objects. After processing 5,000
gameplay logs, our lexicon contains 11,206 unclustered
actions, and 7,086 clustered.
 Once we have learned the lexicon, we can use it to

tokenize gameplay logs. Each action in a log can be
replaced with an index into the action lexicon, which
serves as a unique token. The behavior compiler can then
recognize tasks based solely on token sequences, without
having to track the details of state changes.

Tokenizing Dialogue Acts

The effects of physical acts are directly observable in the
gameplay logs -- when a waitress picks up a steak, the log
records that the steak is now ATTACHED_TO the
waitress. The same cannot be said of chat text. When a
customer says “I’ll have the steak,” there is no explicit
representation in the log of the effect this utterance has had
on the interaction. Taking inspiration from the
philosophical observation that "by saying something, we
do something" (Austin 1962) we recognize that utterances
can serve as speech acts (Searle 1969) that serve a function
similar to physical acts, effecting the interaction going
forward. However, there are many ways to say the same
thing, using entirely different words to serve the same
function.
 Our approach to tokenizing the chat text relies on a
classification scheme that clusters utterances semantically,
so that we can represent the infinite variety of ways to say
the same thing with an identical token. We classify each
line of chat text into a {speech act, content, referent} triple,
where speech act refers to the illocutionary force (e.g.
question, directive, greeting), content refers to the
propositional content (what is the utterance a question
about?), and referent identifies an object referenced by the
utterance (e.g. beer, menu, bill, waitress). For example,
“I’ll have a beer” and “Bring me a pint” would both be
represented by DIRECTIVE_BRING_BEER. Our scheme
has 8 possible speech act labels, 23 content labels, and 16
referent labels. Members of the triple may be labeled
OTHER when no existing labels fit. Elsewhere we have
described a dialogue act classifier that can be trained to
automatically label utterances (Orkin & Roy 2010). For
this study, we hand-annotated the utterances in the 100
games, in order to evaluate behavior compilation in
isolation in a best-case scenario. We observed 312 unique
dialogue act triples in the 100 annotated games.
Augmenting the action lexicon with these dialogue act
triples, we can now represent the physical and linguistic
interactions in a gameplay log as a sequence of tokens that
can be processed uniformly by the behavior compiler.

Syntactic Analysis

Having tokenized the gameplay logs, we can now proceed
with compiling behavior in a more conventional manner.
Guided by a grammar specification, a compiler infers
structure by parsing token sequences. Tokens are the
terminals of the grammar. Syntactic rules define non-
terminals (on the left-hand side) as any combination of
terminals and non-terminals (on the right-hand side),
forming a hierarchical structure. If a token sequence cannot

be fully explained by the grammar, the compiler halts with
a syntax error. YACC (Yet Another Compiler-Compiler) is
a Unix tool that generates a parser given a grammar (Levin
et al 1992). The generated parser may include user-
provided code to compile recognized patterns into a
machine-interpretable intermediate representation. The
YACC grammar specification for Java syntax might
include:

If_Statement

: IF '(' Expression ')' Statement

| IF '(' Expression ')' Statement ELSE

Statement

While_Statement

: WHILE '(' Expression ')' Statement

Note that there may be multiple valid sequences
representing the same non-terminal. In the grammar
fragment above, there are two sequences provided for an
If_Statement. This is the approach we take to
recognizing structure in behavior – providing the behavior
compiler with a grammar of task decompositions, where
each task may be decomposed into any number of token
sequences. For example, our grammar for restaurant
behavior might include:

W_Serves_Food

: W_PICKSUP_FOOD_FROM_COUNTER

W_PUTSDOWN_FOOD_ON_TABLE

| W_PICKSUP_FOOD_FROM_COUNTER

W_GIVES_FOOD_TO_C

C_EXPRESSIVE_THANKS_NONE

| W_PICKSUP_FOOD_FROM_COUNTER

W_ASSERTION_GIVE_FOOD

 W_PUTSDOWN_FOOD_ON_TABLE

In this example, tokens are presented in plain English for
readability, while in actuality the grammar terminals are
stored as numerical indices into the action lexicon. What
we have described so far employs the exact same approach
to compiling source code and behavior. However, there are
some complications related to the syntax of behavior that
prevent us from directly applying a tool like YACC, and
require an alternative approach.
 The first complication arises from the spontaneous
nature of gameplay data, which may include syntactically
invalid action sequences related to player exploration,
indecision, or intentional misbehavior. Invalid sequences
may be composed of valid tokens – ordinary actions and/or
utterances executed in abnormal contexts, such as a
waitress ordering 50 beers and stacking them on the bar
instead of serving them to customers. Rather than halting
with a syntax error, we would like our behavior compiler
to be able to separate the signal from the noise, and to
disregard invalid sequences while continuing to process
valid observations.
 The second complication relates to the fact that there are
multiple human players interacting, who may be pursuing
multiple tasks at once. A waitress might take a customer’s
order while cleaning the table, as the customer drinks wine.
The actions belonging to these tasks may be arbitrarily

Figure 2. Gameplay trace in EAT before (top) and after (bottom) annotation.

intertwined, and may contribute to unrelated top-level
goals (e.g. satisfying hunger, earning money, getting
promoted). To bring the analogy back to source code, it’s
as if the compiler is faced with code from multiple
programs that have been arbitrarily combined into one
input file, and needs to compile them all simultaneously.
Below we describe our approach to behavior compilation
that addresses these complications.

Behavior Compilation

The grammar provided to the behavior compiler could be
authored by hand, but to maximize coverage of possible
valid sequences we learn the grammar from human-
annotated gameplay transcripts. We have previously
published details about the implementation and evaluation
of EAT & RUN (Orkin et al. 2010). EAT (the Environment
for Annotating Tasks) is an online annotation tool for non-
experts and RUN (not an acronym) is an algorithm for
recognizing tasks at runtime, trained on annotations from
EAT. We summarize this previous work here.
 EAT presents each gameplay session as a timeline,
where nodes represent physical acts and dialogue acts. The
annotator encloses node sequences in labeled boxes
representing tasks, and assigns a task label. When nodes
from multiple tasks are interleaved, the annotator can move
nodes up or down on the screen to disentangle the tasks,
allowing tasks that overlap temporally to enclose only the

relevant nodes. Bigger boxes can enclose smaller task
boxes, to annotate higher levels of the hierarchy. We
annotated the first level of the task hierarchy in 100 games,
from which we generated a grammar by exporting each
unique token sequence as a syntactic rule. Our grammar
has 28 task labels (e.g. W_DEPOSITS_BILL,
W_SERVES_FOOD, C_GETS_SEATED, C_DRINKS),
serving as non-terminals, plus an OTHER label for
unclassifiable token sequences. Based on a ten game
subset, we found substantial agreement between the
annotations of an expert and five annotators who were not
involved with the development of EAT (average kappa of
0.81). Annotating higher levels of the hierarchy remains
for future work, and we will represent these higher-level
tasks by exporting the sub-tasks (which may temporally
overlap) as a sequence of tokens representing task start and
end points.
 RUN is a simple, greedy algorithm that recognizes tasks
at runtime as observations arrive, or can be run as a
preprocessing step to process a corpus of gameplay logs.
The algorithm extends multiple observation sequences in
parallel by maintaining incomplete sequences on an Open
list. A sequence can be validly extended by appending an
observation, as long as it remains a subsequence of the
right-hand side of a syntactic rule. When a sequence in the
Open list grows to match a complete sequence on the right-
hand side of a syntactic rule in the grammar, a task label is
assigned (the left-hand side of the matching syntactic rule)

// Process all new observations.

Iterate over new observations

 Try to append obs to seq in Open

 Else try to add obs as new seq in Open

 Else try to append obs to seq in Closed

 // Detect completed rules.

 If a seq in Open was added or extended

 If seq matches a complete rule

 Move seq to Closed and apply label

// Salvage fragments left in Open.

Iterate over seqs in Open

 Try to append to seq in Closed

Figure 3. Outline of the RUN algorithm.

and the sequence is moved to the Closed list. In cases
where an observation cannot extend a sequence or start a
new sequence in the Open list, sequences in the Closed list
may continue to be extended. This captures the fact that
the grammar includes sequences that may be subsequences
of longer syntactic rules. At any point in time, the
sequences in the Closed list represent the recognized task
history so far. Sequences not found in the Closed list are
assigned a task label of OTHER. RUN processes tokens at
one level of the task hierarchy at a time, initially
processing only the terminal tokens. The output of RUN at
one level serves as the input tokens for the next level.
 Compiling the corpus of gameplay logs with RUN
generates a library of thousands of hierarchical plans,
executable by a character. Compiled logs are stored in text
files where each line contains a token, time code, task
instance ID, and plain English description of a physical act
(for debugging) or the line of quoted human chat text
corresponding to the dialogue act. We are currently
building on previous work (Orkin & Roy 2009) to develop
a planning system driven by the RUN algorithm.
Characters employ RUN to process observations, and infer
which tasks have been completed and which are in
progress. Retrieving compiled logs with similar task
histories from the library provides the means to select an
appropriate next action in the context of current
observations.

Evaluation

We evaluate our approach to behavior compilation based
on the criteria of correctness and compactness of the
compiler’s output. Ideally, the compiler will filter out
syntactically invalid behavior; produce a task hierarchy
that closely resembles human annotation for the same
gameplay log; and the exported files will be significantly
smaller than the original logs.
 We evaluated our compiler with a 10-fold cross-
validation test of recognizing tasks in the 100 human
annotated gameplay traces, where each fold was trained on
90 traces and tested on 10. Our results show that RUN
works well on our dataset, achieving a 0.744 precision and
0.918 recall. Precision measures how often RUN and the
human assigned the same task label to a token. Recall

measures how many of the human-annotated task instances
were recovered by RUN. The baselines for precision and
recall are 0.362 and 0.160 respectively. While these results
are encouraging, we need to evaluate our system on a
dataset of gameplay traces from another domain for
comparison. The fact that RUN scores higher recall than
precision indicates that the system is doing a good job of
getting the gist of the interaction, but is sometimes
omitting tokens within a sequence.
 Unlike a source code compiler, which terminates with a
syntax error when encountering invalid syntax, our
compiler needs to filter out invalid behavior while
continuing to process subsequent observations. We can
measure how well the compiler filters invalid behavior by
scrutinizing the number of tokens assigned to task OTHER
by a human and by the compiler. We found the compiler
has 89% precision and 82% recall for task label OTHER,
meaning that a human agreed with 89% of the tokens that
the compiler filtered out, and the compiler caught 82% of
the tokens filtered out by a human.
 The file sizes of the compiled log files are considerably
smaller than the original gameplay logs. We compiled a
directory of 9,890 log files, and the size of the directory
decreased dramatically from 2.87 GB to 165 MB.
Currently log files are compiled into a text-based format,
which includes a plain English description of a physical act
for debugging or the line of quoted human chat text
corresponding to the dialogue act. Further compression is
possible by compiling into a binary format, omitting the
debug information, and storing references into an external
dictionary of phrases rather than storing the raw dialogue
text (which is often repeated).

Related Work

Behavior compilation is closely related to plan recognition
(Kautz & Allen 1986), but requires the ability to recognize
multiple plans simultaneously, in cases where temporally
overlapping tasks contribute to different top-level goals.
Furthermore, gameplay data is typically not logged in a
tokenized format amendable to plan recognition, requiring
lexical analysis as a preprocessing step. Gorniak and Roy
employed plan recognition to disambiguate directives
issued to an AI-controlled partner while solving a puzzle in
Neverwinter Nights (2005). Their system employed a
probabilistic parser guided by a hand-crafted behavior
grammar. Our system learns a grammar from annotated
data, and tries to recognize tasks contributing to multiple
top-level goals in parallel, which incorporate a wider
variety of speech acts than directives.
 Our approach to learning hierarchical plans from
annotated gameplay data is similar to work on Case-Based
Planning for strategy games (Ortanon et al 2007). Their
system extracts cases from a small number of annotated
games. In our system, a small number of human-annotated
games train the behavior compiler to automatically
annotate a corpus of thousands, generating a large case
base that captures subtle variations between gameplay logs.

In addition, we do not assume anything about the
hierarchical structure from the temporal overlaps of tasks,
and instead rely on human annotation of higher-level tasks
to determine which tasks encompass lower-level sub-tasks.
Unlike a strategy game, where all player interactions
ultimately contribute to the high-level goal of winning the
game, there is no notion of winning The Restaurant Game.
Plus, we are modeling the interactions between two
players. Thus we cannot make assumptions about
hierarchical structure based on temporal relationships –
ordering food while the waitress cleans the table does not
mean that ordering is a sub-task of cleaning. These tasks
contribute to unrelated top-level goals of having a meal,
and keeping the restaurant clean.

Conclusion

Our evaluation compared the output of the behavior
compiler to human annotation of the same gameplay logs,
and demonstrated that the compiler does well at inferring
tasks from observations and filtering out invalid behavior,
when tested on our data set. Future work remains to show
that these results generalize to other data sets, and that the
compiled logs work well to drive character behavior at
execution time. We are currently developing a planning
system driven by the compiled logs to test execution, and
will soon begin developing a new game to test
generalization of the approach to a completely different
scenario.
 When tokenizing observations from our current
scenario, we benefit from the fact that actions are discreet.
For example, clicking the PICK_UP button on the interface
results in the character immediately grasping the object.
While interaction in other games may not be as discreet,
we are optimistic that similar tokenization should be
possible. The intuition for this optimism is that if behavior
can be represented with a hierarchical plan or state
machine, there must be some means of recognizing the
completion of actions in order to proceed. In theory, these
completion points can be transformed into tokens for
behavior compilation.
 Executing the plan compiled from one gameplay log
works no differently than currently existing systems in the
game industry, which execute behavior represented in a
hierarchical plan or state machine. More complex is a
system that dynamically pivots between thousands of
compiled logs, to adapt a character’s behavior to cooperate
with another autonomous human or AI-controlled partner.
Running the behavior compiler at execution time, as a
character processes observations, will provide the means to
recognize the task history of the interaction, and use this
history to find similar episodes in the corpus.

Acknowledgements

This research is supported by a grant from the Singapore-
MIT GAMBIT Game Lab.

References

Aho, A.V., Sethi, R., and Ullman, J.D. 1986. Compilers:
Principles, Techniques, and Tools. Addison-Wesley.

Austin, J.L. 1962. How to do things with Words. Oxford
University Press.

Fu, D. and Houlette, R. 2004. The Ultimate Guide to FSMs
in Games. AI Game Programming Wisdom 2. Charles
River Media.

Gorniak, P., and Roy, D. 2005. Speaking with your
sidekick: Understanding situated speech in computer role
playing games. Proc of Artificial Intelligence and Digital
Entertainment.

Gorniak, P. and Davis I. 2007. SquadSmart: Hierarchical
planning and coordinated plan execution for squads of
characters. Proc of Artificial Intelligence and Interactive
Digital Entertainment.

Hoang, H. Lee-Urban, S. and Munoz-Avila, H. 2005.
Hierarchical plan representations for encoding strategic
game AI. Proc of Artificial Intelligence and Digitial
Entertainment.

Isla, D. 2005. Handling Complexity in the Halo 2 AI. Proc
of the Game Developers Conference.

Kautz, H. and Allen, J. 1986. Generalized plan recognition.
Proc of the National Conference on Artificial Intelligence.

Levine, J.R., Mason, T., and Brown, D. 1992. LEX &
YACC (2nd edition). O'Reilly.

Orkin, J., Smith, T., Reckman, H., and Roy, D. 2010.
Semi-Automatic Task Recognition for Interactive
Narratives with EAT & RUN. Proc of the 3rd Intelligent
Narrative Technologies Workshop.

Orkin, J. and Roy, D. 2010. Semi-Automated Dialogue Act
Classification for Situated Social Agents in Games. Proc of
the AAMAS Agents for Games & Simulations Workshop.

Orkin, J. and Roy, D. 2009. Automatic Learning and
Generation of Social Behavior from Collective Human
Gameplay. Proc of Autonomous Agents and Multiagent
Systems.

Ortanon, S., Mishra, K., Sugandh, N., and Ram, A. 2007.
Case-based planning and execution for real-time strategy
games. Proc. of the 7th Int. Conference on Case-Based
Reasoning Research and Development.

Searle, J.R. 1969. Speech Acts: An Essay in the Philosophy
of Language. Cambridge University Press.

Straatman, R. 2009. The AI in Killzone 2's Bots:
Architecture and HTN Planning. AIGameDev.com.

Weber, B. and Mateas, M. 2009. A Data Mining Approach
to Strategy Prediction, Proc of the IEEE Symposium on
Computational Intelligence in Games.

