
DRAFT: DO NOT QUOTE OR CITE 1

Coupling Robot Perception and Online Simulation
for Grounding Conversational Semantics

Deb Roy, Kai-Yuh Hsiao, and Nikolaos Mavridis

Abstract— How can we build robots that engage in fluid spoken
conversations with people, moving beyond canned responses and
towards actual understanding? Many difficult questions arise
regarding the nature of word meanings, and how those meanings
are grounded in the world of the robot. We introduce an
architecture that provides the basis for grounding word meanings
in terms of robot perception, action, and memory. The robot’s
perceptual system drives an online simulator that maintains a
virtual version of the physical environment in synchronization
with the robot’s noisy and changing perceptual input. The simu-
lator serves as a “mental model” that enables object permanence
and virtual shifts of perspective. This architecture provides a
rich set of data structures and procedures that serve as a basis
set for grounding lexical semantics, a step towards situated,
conversational robots.

Index Terms— Robots, Natural language interfaces, Knowledge
representation, Active vision, Simulation.

I. I NTRODUCTION

L ANGUAGE enables people to talk about the world.
Through language, we are able to refer to the past

and future, and to describe things as they are or how we
imagine them. For a robot to use language in human-like
ways, it must ground the meaning of words in its world as
mediated by perception, action, and memory. Many words
that refer to things in the world can be grounded through
sensory-motor associations. For instance, the meaning ofball
includes perceptual associations that encode how balls look
and predictive models of how balls behave. The representation
of touch includes procedural associations that encode how
to perform the action, as well as perceptual encodings to
recognize the action in others. Words thus serve as labels for
perceptual or action concepts that are anchored in sensory-
motor representations. When a word is uttered, the underlying
concept is communicated to the degree that the speaker and
listener maintain similar associations. This basic approach
underlies most work to date in building machines that ground
language [1]–[8].

Not all words, however, can be grounded in sensory-motor
representations. In even the simplest conversations about ev-
eryday objects, events, and relations, problems arise. Consider
a person and a robot sitting across a table from each other,
engaged in coordinated activity involving manipulation of
objects. After some interaction, the person says to the robot:

Touch the heavy blue thing that was on my left.

To understand and act on this command, the robot must
bind words of this utterance to a range of representations:

touch can be grounded in a visually-guided motor program
that enables the robot to move towards and touch ob-
jects. This is an example of a procedural association
that depends on perception to guide action.

heavy specifies a property of objects which involvesaf-
fordances[9]. A light object affords manipulation
whereas a sufficiently heavy one does not. To rep-
resent affordances, both procedural and perceptual
representations must be combined.

blue specifies a visual property, an example of perceptual
grounding.

thing must be grounded in terms of both perception and
affordances (one can see an object, and expect to
reach out and touch it).

was triggers a shift of perspective in time. Words and in-
flections that mark tense must cue the robot to “look”
back in time to successfully ground the referent of
the utterance.

my triggers a shift of perspective in space. As opposed to
your leftor simply left (which would be ambiguous),
my tells the listener to look at the world from the
speaker’s point of view.

left can be grounded in visual features that compute
linguistically-salient spatial relations between objects
within an appropriate frame of reference.

We have developed an architecture in which a robotic
manipulator is coupled with a physical simulator. By virtue of
the robot’s sensory, motor control, and simulation processes,
a set of representations are obtained for grounding each of the
kinds of words listed above1.

The robot, called Ripley (Figure 1), is driven by compliant
actuators which enable it to manipulate small objects. Ripley
has cameras, touch, and various other sensors on its “head”.
Force and position sensors in each actuated joint provide a
sense of proprioception. Ripley’s visual and proprioceptive
systems drive a physical simulator that keeps a constructed
version of the world (including a representation of itself)
in synchronization with Ripley’s noisy perceptual input. An
object permanence module determines when to instantiate and

1We acknowledge that the words in this example, like most words, have
numerous additional connotations that are not captured by the representations
that we have suggested. For example, words such astouch, heavyand blue
can be used metaphorically to refer to emotional actions and states.Things
are not always physical perceivable objects,my usually indicates possession,
and so forth. Barwise and Perry use the phrase “efficiency of language” to
highlight the situation-dependent reusability of words and utterances [10].
Given the utterance and context that we described, the groundings listed above
are sufficient. Other senses of words may be metaphoric extensions of these
embodied representations [11].



DRAFT: DO NOT QUOTE OR CITE 2

Fig. 1. Ripley has 7 degrees of freedom powered by series elastic actuators
enabling it to manipulate objects in a 3 foot radius workspace. The perceptual
system includes stereo vision, audition, touch and proprioceptive sensors, and
a sense of gravity. The camera and microphones are placed on Ripley’s ‘head’.
Ripley is shown here looking up from the table.

destroy objects in the model based on perceptual evidence.
Once instantiated, perception can continue to influence the
properties of an object in the model, but knowledge of physical
world dynamics is built into the simulator and counteracts
’unreasonable’ percepts. The simulator maintains a consistent
and stable interpretation of sensory experience over time.

Language can be grounded in terms of associations with
elements of this perceptually driven world model. Although
the world model directly reflects reality, the state of the
model is the result of an interpretation process that compiles
perceptual input into a stable registration of the environment.
As opposed to direct perception, the world model affords the
ability to assume arbitrary points of view through the use of
synthetic vision which operates within the simulator, enabling
a limited form of “out of body experience”. This ability is
essential to successfully differentiate the semantics ofmy left
versusyour left. Non-linguistic cues such as the visual location
of the speaker can be integrated with linguistic input to trigger
context-appropriate perspective shifts. Shifts of perspective in
time and space may be thought of assemantic modulation
functions. Although the meaning ofleft in one sense remains
constant across usages, words likemyandyour modulate their
meaning by shifting frames of reference. We believe that fluid
use of language requires constant modulation of grounded
meanings.

In this paper, we describe the robot and simulator, and
mechanisms for real-time coupling. We then discuss mecha-
nisms designed for the purpose of grounding the semantics
of situated, natural spoken conversation. Although a lan-
guage understanding system has not yet been constructed,
we conclude by sketching how the semantics of each word
within the utterance discussed above can be grounded in
data structures and processes provided by this architecture.
This work provides a foundation for our long term goal of
developing robots and other machines that use language in
human-like ways by leveraging deep, grounded representations
of meaning that hook into the world through robot perception,
action, and higher layers of cognitive processes.

Conversational robots may be of use in deep sea and space
exploration, remote handling of hazardous materials, and assis-
tive health care. Beyond conversational robots, the underlying
ideas of how to endow machines with a deeper sense of
word meaning may have numerous applications ranging from
question answering systems to language translation.

II. BACKGROUND

Although robots may be connected to speech recognizers,
parsers, and speech synthesizers in various simple ways, the
results are typically limited to canned behavior. Attempts
to endow robots with linguistic capabilities introduces deep
theoretical issues that touch on virtually all aspects of artificial
intelligence (and cognitive science) including perception, ac-
tion, memory, and planning. Indeed, the problem of combining
robots and language reminds us of the impossibility of treating
language in isolation from numerous non-linguistic processes.

The termgrounding is often used to refer to the process
of anchoring the meaning of words and utterances in terms
of non-linguistic representations that language users possess
through a combination of evolutionary and lifetime learn-
ing. The issue of language grounding, in various forms and
carrying numerous labels, has been a central issue in the
philosophy of language and mind since antiquity. In contrast,
most work on natural language processing (NLP) by machine
tends to focus on structural / relational representations of
word meaning, defining words through typed relations to
other words (cf. [12]), much in the spirit of conventional
dictionaries. Jurafsky and Martin, authors of a recent text on
NLP, point out the fundamental limitation of such approaches:

This inherent circularity [of defining words in
terms of other words] is evidence that dictionary
entries are often not definitions at all, but rather
descriptions of lexemes in terms of other lexemes.
Such entries are useful when the user of the dic-
tionary has sufficient grasp of these other terms to
make the entry in question sensible. As is obvious
with lexemes likered and right, this approach will
fail without some ultimate grounding in the external
world [13] (p. 591).

For robots to understand and use language, we must turn
to methods beyond the standard techniques of NLP so that
these machines can connect words and utterances to actions
and percepts in the physical world. One approach would
be to connect words to perceptual classifiers so that the
appearance of an object, event, or relation in the environment
can instantiate a corresponding word in the robot [8], [14],
[15]. Crangle and Suppes [16] also take this approach, and
furthermore present a detailed approach to integrating syntactic
processing of commands with robot control programs.

Detailed models have been suggested for sensory-motor
representations underlying color [6], and spatial relations [3],
[17]. Models for grounding verbs include grounding verb
meanings in the perception of actions [5], and in terms of
motor control programs [1], [2]. Although object shape is
important when connecting language to the world, it remains
a challenging problem for computational models of language



DRAFT: DO NOT QUOTE OR CITE 3

grounding. In previous work, we found histograms of local
geometric features sufficient for grounding names of basic
objects (dogs, shoes, cars, etc.) [18]. Landau and Jackendoff
provide a detailed analysis of additional visual shape features,
such as axes of orientation, that also play a role in language
[19].

Clark observed that people speak and gesture to coordinate
joint actions [20]. Speakers and listeners use various aspects
of their physical environment to encode and decode utterance
meanings. Communication partners are aware of each other’s
gestures and foci of attention and they integrate these sources
of information in conversation. Even young infants leverage
situational cues and knowledge of joint attention to facilitate
language acquisition [21]. Recent work on social robots have
explored mechanisms that provide visual awareness of human
partner’s gaze and other facial cues relevant for interaction
[22]–[24]. Although our current architecture does not include
representations of social cues, Clark’s work highlights the
need for eventually incorporating such cues into a model of
language grounding (for a computational approach along these
lines, see [25]).

To understand language, it is often necessary for the listener
to assume the speaker’s point of view. Points of view can
involve seeing something from a different physical vantage
point, as well as less literal perspective shifts in order to see
things from different social or cultural perspectives. Occasion-
ally, one communication partner carries more of the burden
of shifts of view than the other. When speaking to a young
child, an adult is more likely to take the view of the child than
vice versa. However, for all but the simplest interactions, the
child must also recognize the divergence of viewpoints. If we
are to build robots that can interact naturally with people, they
will need similar perceptual awareness of the environment and
communication partners, and the ability to change points of
view.

III. R IPLEY: AN INTERACTIVE ROBOT

Ripley has been designed to explore questions of grounded
language and interactive language acquisition. The robot has
a range of motions that enable it to examine and manipulate
objects on a tabletop workspace. Ripley can also look up
and make eye contact with a human partner. Three primary
considerations have driven the design of the robot. We were
interested in studying:

• The effects of changes of visual perspective and their
effects on language and conversation.

• Sensory-motor grounding of manipulation verbs (e.g.,
touch, lift, push, take, etc.).

• Human-directed training of motion. For example, to teach
Ripley the sensory-motor meaning oftouch, exemplars of
the word can be demonstrated by a human trainer while
labeling the behavior.

To address the issue of visual perspective, Ripley has video
cameras placed on its head so that all motions of the body
lead to changes in view points. This design decision leads to
challenges in maintaining stable perspectives in a scene, but
reflects the type of corrections that people must also constantly

perform that shape how language is used. To support acqui-
sition of verbs, Ripley has a gripper that can grasp objects
to enable manipulation. As a result, the most natural class
of verbs that Ripley will learn involve manual actions such
as touching, lifting, pushing, and giving. To address human
directed training, Ripley is actuated with compliant joints, and
has training handles (Figure 1).

A. Mechanical Structure and Actuation

Ripley has seven degrees of freedom (DOF’s). At the base of
the robot, two revolute joints are arranged along perpendicular
axes, giving the robot 180 degrees of motion about the two
horizontal axes at its base and serving as a waist for the torso
(or shoulder if thought of as an arm). Halfway between the
base and the robot’s head, a single joint with an 180-degree
range of motion gives the robot the articulation necessary to
touch any point on a work surface in front of it. Ripley’s head
is connected to the body through three orthogonal DOF’s that
enable the gripper to orient freely within a 180-degree range
about two axes at the end of the arm and to rotate 540 degrees
about the axis that runs along the arm. Finally, the gripper itself
opens and closes, providing the seventh DOF.

Each DOF other than the gripper is actuated by series-
elastic actuators [26] in which all forces from electric motors
are transferred through torsion springs. Each motor drives
a threaded shaft. A sliding nut fit on the shaft connects
to a spring. The other end of the spring is connected to
a cable assembly that provides actuation to the robot. This
arrangement enables the force applied by the motors to be
controlled directly, in contrast to motors which are controlled
by speed. Compression sensors are placed on each spring
and used to provide force feedback. The use of series-elastic
actuators provides precise sensation of the amount of force
applied at each DOF, and leads to compliant motions. The
springs in each DOF also act as natural shock absorbers that
dampen vibrations.

B. Motion Control

Motion control in Ripley is inspired by studies of motor
force fields in frogs [27]. In essence, frogs use a sequence
of control points to control motions. Local disturbances to
motion are compensated by internal force fields which exhibit
stronger pull towards control points as a function of distance
between actual and desired location. As a rough approximation
to this method, a position-derivative control loop is used to
track target points that are sequenced to move smoothly from
the starting point of a motion gesture to the end point. Natural
motion trajectories are learned from human teachers through
manual demonstrations.

The robot’s motion control is organized in a layered ar-
chitecture. The lowest level of control is implemented in
hardware and consists of a continuous control loop between
motor amplifiers and force sensors of each DOF. At the
next level of control, a dedicated microcontroller running
a real-time operating system executes a position-derivative
(PD) control loop with a 5 millisecond cycle time. The
microcontroller controls a set of digital-to-analog converters



DRAFT: DO NOT QUOTE OR CITE 4

Fig. 2. Ripley’s motions can be trained through direct manipulation. The
motor controllers are placed in a “anti-gravity” mode so that a human trainer
can effortlessly guide Ripley through natural motions. Motion trajectories
recorded during training are processed by interpolation algorithms that are
combined with visual guidance to generate novel motion trajectories.

(DAC’s) that set target force levels for each motor amplifier.
The microcontroller also accepts target positions from a master
controller (host computer) and translates these targets into
force commands via the PD control loop. The resulting force
commands are sent downstream to the motor amplifier control
loop. The same force commands are also sent upstream to
the master controller, serving as dynamic proprioceptive force
information.

The master controller is responsible for providing target
point trajectories to the microcontroller. A set of seven target
positions, one for each DOF, are sent to the microcontroller
every 20 milliseconds. We refer to a stream of position target
points as amotion trajectory. Motion trajectories can be
created by manual demonstration. A human trainer simply
grasps Ripley’s training handles and demonstrates a motion
much like the way an adult might show a child how to perform
an action by guiding his/her hand along an ideal trajectory
(Figure 2). This approach provides a simple and intuitive
means for specifying fluid, natural motions which takes into
account the natural affordances of the robot’s mechanical
design, as well as introducing “puppeteer” instincts of human
trainers to capture the aesthetics of smooth, natural motions.

To support training, we have implemented a special mode
of motor control referred to asanti-gravity mode. This allows
Ripley to remain active and hold its own weight, while being
responsive to light touch from the human trainer. This eases
the physical force that the trainer must exert to move Ripley,
resulting in more natural movement trajectories.

To achieve anti-gravity motor control, joint position infor-
mation is used to estimate the force of gravity on each DOF
of the robot. An approximate model of the mass distribution
of the robot is used to estimate the effects of gravity. Since the
robot’s actuators compensate with an equal force on each DOF,
the robot can be made to stay perfectly still in any position,
effectively canceling the effect of gravity. However, in such a

state, the robot still responds perfectly to other external forces,
resulting in remarkable pliability. By leading the seemingly
lightweight robot through gestures, it is possible for human
trainers to easily generate motion trajectories.

Motion trajectories are created by recording the outputs of
the position sensors during training. These control points can
then later be sent to the microcontroller for motion playback.
Motion trajectories can be interrupted and smoothly revised
to follow new trajectories as determined by higher level
control. We have also implemented interpolative algorithms
that blend trajectories to produce new motions beyond the
training set. In Section D below, we describe how motion
trajectory demonstrations are combined to teach Ripley how
to reach for objects in arbitrary positions.

C. Sensory System and Visual Processing

Ripley’s perceptual system is based on several kinds of
sensors. Two color video cameras, a two-axis tilt accelerometer
(for sensing gravity), and two microphones are mounted on the
head. Force sensitive resistors provide a sense of touch on the
inside and outside surfaces of the gripper. In the work reported
here, we make use of the visual, touch, and force sensors. The
remaining sensors will be used in future applications.

Some of the most important sensors are embedded in the
actuators which are force-controlled, meaning that the control
loop adjusts the force that is output by each actuator. Thus
the amount of force being applied at each joint is known.
Additionally, each DOF is equipped with position sensors that
are used for all levels of motion control and for maintaining
the anti-gravity mode.

The vision system is responsible for detecting objects in
the robot’s field of view. A Gaussian mixture model is
used to detect the background based on color, providing
foreground/background classification. Connected regions with
uniform color are extracted from the foreground regions.
While this simple approach has several limitations, including
the requirement that objects be of uniform color, as well as
occasional errors due to shadows, it is sufficient for our current
purposes. The output of the visual analysis module is a set
of N connected regions. We denote the output of the visual
system at time stept asV [t] = {Rv

1 [t], R
v
2 [t], ...R

v
N [t]}. Each

regionRv
i [t] consists of a list of member pixels and their RGB

values. The vision system generates region vectors with an
update rate of 15Hz. These region sets are passed to an object
permanence module which integrates region sets over time to
determine the presence and properties of objects in the scene.

The three-dimensional shape of an object is represented us-
ing a set of histograms, each of which represents the silhouette
of the object from a different viewpoint [28]. We assume
that with sufficient stored viewpoints, a novel viewpoint of
an object may be matched by interpolation. A 2-D shape
histogram is created using image pixels that correspond to
an object based on figure-ground segmentation. First, all the
outer edge points of the object are found. For each pair of
edge points, two values are computed: the distance between
the points, normalized by the largest distance between any
two edge points, and the angle between the tangents to the



DRAFT: DO NOT QUOTE OR CITE 5

edge of the object at the edge points. A 2-D histogram of
all {distance, angle} values is accumulated for all pairs of
edge points. The resulting histogram representation of the
object silhouette is invariant to rotation (since all angles are
relative) and object size (since all distances are normalized).
Histograms are compared using theχ2 divergence metric.
Three dimensional shape is represented by bundling a set of 2-
D histograms that represent different views of an object. This
shape representation provides a basis for grounding words that
refer to 3-D objects (e.g.,ball).

The color of regions is also represented using histograms
[28]. To compensate for lighting changes, the red (R), green
(G), and blue (B) components of each pixel are divided by
the sum of all three components (R + G + B) resulting in
a set of “illumination-normalized” values. Since all triplets
of illumination-normalized values must add to 1.0, there are
only two free parameters for each pixel. For this reason, the
normalized blue value of all pixels are not stored. A 2-D
color histogram is generated by accumulating illumination-
normalized red and green values for each pixel in the target
region. Theχ2 divergence metric is also used to compare color
histograms.

To enable grounding of spatial terms such asaboveandleft,
the set of three spatial features suggested in [17] is measured
between pairs of objects. The first feature is the angle (relative
to the horizon) of the line connecting the centers of area of an
object pair. The second feature is the shortest distance between
the edges of the objects. The third feature measures the angle
(relative to the horizon) of the line which connects the two
most proximal points of the objects.

The representations of shape, color, and spatial relations de-
scribed above can also be generated from virtual scenes based
on Ripley’s mental model as described below. Thus, the visual
features can serve as a means to ground words in either real-
time, camera-grounded vision, or simulated synthetic vision.

D. Visually-Guided Reaching

Ripley can reach out and touch objects by interpolating
between recorded motion trajectories. A set of sample trajec-
tories are trained by placing objects on the tabletop, placing
Ripley in a canonical position so that the table is in view, and
then manually guiding the robot until it touches the object.
A motion trajectory library is collected in this way, with each
trajectory indexed by the position of the visual target. To reach
objects in new positions, the appropriate linear interpolation
between trajectories is computed.

E. Encoding Environmental Affordances: Object Weight and
Compliance

Words such asheavyandsoft refer to properties of objects
that cannot be passively perceived, but require interaction with
the object. Following Gibson [9], we refer to such properties
of objects asaffordances, highlighting what an object affords
to an agent who interacts with it. For instance, a lightweight
object can be lifted with ease as opposed to a heavy object. To
assess the weight of an unknown object, an agent must actually
lift (or at least attempt to lift) it and gauge the level of effort

required. This is precisely how Ripley perceives weight. When
an object is placed in Ripley’s gripper, a motor routine tightly
grasps the object and then lifts and lowers the object. While
this motor program is running, the forces experienced in each
DOF (Section III-B) are monitored. In initial word learning
experiments, Ripley is handed objects of various weights and
provided word labels such asvery light or heavy. A simple
Bayes classifier was trained to distinguish the semantics of
very light, light, heavy, andvery heavy. Similarly, we ground
the semantics ofhard and soft in terms of grasping motor
routines that monitor pressure changes at each fingertip as a
function of grip displacement.

IV. A PERCEPTUALLY-DRIVEN MENTAL MODEL

Ripley integrates real-time information from its visual and
proprioceptive systems to construct an internal replica, or
mental modelof its environment that best explains the history
of sensory data that Ripley has observed. The mental model
is built upon the ODE rigid body dynamics simulator [29].
ODE enables modeling the dynamics of 3-D rigid objects
based on Newtonian physics. As Ripley’s physical environ-
ment changes, perception of these changes drives the creation,
updating, and destruction of objects in the mental model.
Although simulators are typically used in place of physical
systems, we found physical simulation to be an ideal substrate
for implementing Ripley’s mental model (for other uses of
coupled online simulation, see [30]–[32]). Our motivations for
introducing a perceptually-aligned simulator were to provide:

• RegistrationPerceptual data provides evidence for deter-
mining when an object is believed to be “out there” in the
objective world. When an object is determined to exist,
it is instantiated in the internal mental model.

• TrackingObjects must be tracked across time to establish
persistent referents for language.

• Stabilization Knowledge of Newtonian physics is used
to enforce consistency of dynamics within the model.
Early-stage visual processing errors that lead to phys-
ically impossible interpretations are overcome through
stabilization in the simulator.

• Compensating For Vantage ShiftsCompensation is nec-
essary for shifts in physical point of view as Ripley
mechanically moves its view, because movements in
Ripley’s body cause changes (often radical changes) in
perspective. To accomplish this, a physical model of
Ripley’s own body is maintained in the internal model,
and used to estimate the position of its cameras, thus
providing a basis for perspective correction.

• Enabling Virtual (Imagined) Shifts in PerspectiveBy
moving the placement of a synthetic camera, Ripley is
able to assume arbitrary points of view, including that of
its human communication partner.

• Event-based MemoryThe mental model maintains a
history of events, enabling Ripley to refer back in time.

• Partial knowledgeObjects in the simulator may be rep-
resented with only partial knowledge of their properties
through the use of confidence values.

The mental model mediates between perception of the
objective world on one hand, and the semantics of language



DRAFT: DO NOT QUOTE OR CITE 6

on the other. Although the mental model reflects the objective
environment, it is biased as a result of a projection through
Ripley’s sensory system and built-in perceptual representa-
tions.

A. Physical Simulation

The ODE simulator provides facilities for creating and
destroying rigid objects with arbitrary polyhedron geometries
placed within a 3-D virtual world. Forces can be applied to
move them, and other properties such as color and mass can
be updated during simulation. Based on laws of Newtonian
physics, ODE updates object positions at discrete time steps.
Objects in Ripley’s workspace (the tabletop) are constrained
to be spheres of fixed size. Ripley’s body is modeled within
the simulator as a configuration of four connected cylindrical
links terminated with a rectangular head that approximate the
dimensions and mass of the physical robot.

B. Coupling Proprioception to the Mental Model

The model of the robot’s body is controlled by a virtual
motor controller that operates within the physical simulator. At
each update cycle in the simulator, joint angles of the virtual
robot are compared to the angles of the physical robot. For
each joint, if the difference in angles is greater than a preset
threshold, then an appropriate force is applied to align the
corresponding virtual joint. In effect, the virtual joint tracks
the associated DOF of the physical robot. Since only angle
differences above a threshold lead to virtual forces, low level
jitter in the physical robot are filtered in the simulator.

C. Coupling Visual Perception to the Mental Model

A primary motivation for introducing the mental model was
to register, stabilize, and track visually observed objects in
Ripley’s environment. An object permanence module, called
the Objecter, was developed as a bridge between raw visual
analysis and the physical simulator. When a visual region
is found to stably exist for a sustained period of time, an
object is instantiated by the Objecter in the ODE physical
simulator. It is only at this point that Ripley becomes “aware”
of the object and is able to talk about it. If Ripley looks
away from an object such that the object moves out of view,
a representation of the object persists in the mental model.
When a physical object is removed from Ripley’s workspace,
persistent perceptual evidence of its disappearance will cause
the object to be deleted from the model.

Figure 3 shows an example of Ripley looking over the
workspace with four objects in view. In Figure 4, the left image
shows the output from Ripley’s head-mounted camera, and the
right image shows corresponding simulated objects that have
been registered and which are being tracked.

The Objecter consists of two interconnected components.
The first component, the2D-Objecter, tracks two-dimensional
visual regions generated by the vision system. The 2D-
Objecter also implements a hysteresis function which detects
visual regions that persist over time. The second component,
the 3D-Objecter, takes as input persistent visual regions from

Fig. 3. Ripley looks down at the tabletop with four objects in view.

Fig. 4. Visual regions and corresponding simulated objects in Ripley’s mental
model corresponding to the view from Figure 3. The white ellipses in the left
image indicate the output of the region analysis routines of the vision system.
The objects in the simulator on the right are actually spherical, but appear
elliptical due to optical warp of the synthetic viewpoint generated by the
simulator.

the 2D-Objecter, which are brought into correspondence with
a full 3-D physical model which is maintained by ODE.
The 3D-Objecter performs projective geometry calculations
to approximate the position of objects in 3-D based on 2-
D region locations combined with the position of the source
video camera (i.e., the position of Ripley’s head). As Ripley
moves (and thus changes its vantage point), the 2D-Objecter
continues to track visual regions until they leave the field
of view. However, updates to the 3-D mental model are not
performed while Ripley is in motion. While this assumption
simplifies the process of tracking objects, it will be relaxed
in the future work. Both the 2-D and 3-D Objecter maintain
correspondence of objects across time, enabling tracking and
object persistence in spite of perceptual gaps and noise.

Recall from Section III-C that the output of the vision
system at each time step is a set ofN visual regions,V [t] =
{Rv

1 [t], R
v
2 [t], . . . , R

v
N [t]}. In general, the ordering of regions

within V is arbitrary since the vision system finds regions in
each frame of video independent of knowledge of previous
frames. Thus, there is no guarantee thatRv

i [t] will correspond
to Rv

i [t + 1].
To obtain correspondence of regions over time, the 2D-

Objecter maintains its own set of regions which are candidates
for being output to the 3D-Objecter. We denote the candidate
region set asO[t] = {Ro

1[t], R
o
2[t], . . . , R

o
M [t]}. In contrast to

V , the purpose of the 2D-Objecter is to maintain correspon-



DRAFT: DO NOT QUOTE OR CITE 7

dence betweenRo
i [t] andRo

i [t]. Each candidate region has an
associated confidence valueRo

i [t].conf .
A tunable distance metric between two visual regions is

defined as:

d(Ri, Rj) = αdp(Ri, Rj)+βds(Ri, Rj)+(1−α−β)dc(Ri, Rj)
(1)

Wheredp() is the Euclidean distance between the centroids of
the regions,ds() is the difference in size (number of pixels) of
regions, anddc() is the difference in average RGB color of the
regions. The tuning parametersα andβ are scalar values such
that (α+β) ≤ 1. They are used to set the relative emphasis of
the position, size, and color properties in comparing regions.

When Ripley moves to a new vantage point, the 2D-Objecter
candidates are initialized by copying the output of the vision
system (O ← V ) so that a candidate is created corresponding
to each region in the current visual analysis frame. The
confidence of each candidate is set to 0. At each successive
time step, a new region set is generated by the vision system.
The 2D-Objecter attempts to put each region inV into one-
to-one correspondence with each candidate inO such that the
total distance between paired regions is minimized. In general,
the number of visual regionsN and 2D-Objecter candidate
regionsM will not be equal. The alignment process aligns
themin(N,M) subset of regions. However, after the optimal
alignment is found, only those whose distances resulting from
the match that are below a maximum allowable distance
threshold are accepted. The confidence of candidate regions
that are aligned to regions fromV is updated (increased) using
a rule similar to an infinite impulse response filter, assuming
positive input of unit magnitude. Thus, effectively, confidence
values never reach an upper bound of one. IfN > M , at
most (N − M) new candidates are instantiated in the 2D-
Objecter, each with confidence set to 0. IfN < M , then
the confidence of the at least(M − N) unaligned candidate
regions is updated (decreased) by a similar rule, driven by a
negative input of unit magnitude. At the end of this alignment
and confidence update process, the properties of the matched
or newly instantiated regions fromSv are copied intoRc. The
unmatched candidate regions retain their previous properties,
and any of them for whichRc

i [t].conf < 0 are destroyed.
The output of the 2D-Objecter at each time step is the

subset of candidate regions for which the confidence level
is greater thanConfMIN . In the current implementation,
ConfMIN = 0.9. Each newly instantiated candidate region is
assigned a unique ID. These IDs are persistent over time, thus
implementing region tracking. Smoothly moving objects are
tracked by the 2D-Objecter. When an object is removed from a
scene, the confidence value of the corresponding candidate re-
gion will drop steadily from a maximum value ofConfMAX .
As soon as the confidence drops belowConfMIN , it stops
being output. This use of confidence values and thresholds
implements a hysteresis function that requires persistent visual
evidence before either instantiating or destroying regions.

The 3D-Objecter uses projective geometry to infer the
position of objects in three-dimensional space based on 2D
regions. Given the position and orientation of Ripley’s camera

(which are derived from the body model described in Section
IV-B), the 2-D regions are linearly projected in 3-D until the
projection lines intersect Ripley’s work surface. The location
of the surface, a round tabletop, is built into the ODE sim-
ulator. Thus, Ripley’s perceptual input is not necessary for
establishing the presence of the table.

Interaction between the 2D- and 3D-Objecter proceeds as
follows. Each time Ripley moves, the 3D-Objecter ignores
output from the 2D-Objecter, and when Ripley stabilizes its
position, the 3D-Objecter waits 0.5 seconds to ensure that the
2D-Objecter’s region report is stable, and then resumes 3-D
processing. When the 3D-Objecter processes a 2-D region
set, it projects each region to a corresponding 3-D object
location. Then, the projected objects are then placed into
correspondence with existing objects in ODE. To compare
projected and existing objects, a modified version of Equation
1 is used in whichdp() measures three dimensional Euclidean
distance, andds() is not computed (since the current version
of the simulator assumes all objects to be of equal size).
The same alignment process as the 2D-Objecter is used to
align projected objects to existing objects in ODE. If projected
objects have no existing counterparts in the simulator, new
objects are instantiated. Conversely, if an object exists in ODE
but no corresponding object has been projected based on visual
evidence, then the object in ODE is destroyed. There is no
hysteresis function required in the 3D-Objecter since all 2-D
regions have already passed through a hysteresis function in
the 2D-Objecter.

D. Dynamics in the Mental Model: Inference of Force Vectors

In the process of updating the position of moving objects,
the 3D-Objecter must infer the magnitude and direction of
forces which lead to observed motions. Inference of force
dynamics has been argued to be of fundamental importance
in grounding verb meanings [33], a direction we will pursue
in the future. Here, we explain how forces are inferred from
visual observation in the Objecter.

Consider a situation in which an object, such as a ball,
is on the workspace and in view. Once the 2D-Objecter has
registered the corresponding region, it will relay the region to
the 3D-Objecter which will instantiate an object in ODE. At
this point, Ripley is aware of the ball. Now, the ball begins to
slowly roll. Although the visual region corresponding to the
ball will be displaced from one time step to the next, the 2D-
Objecter will generally determine the correspondence between
regions over time steps and thus track the object. After the
correspondence process has been run by the 3D-Objecter,
a displacement in positions between projected and existing
objects in the simulator must be accounted for. This is where
the force inference step takes place. A force proportional to
the displacement and in the direction of the projected object
is applied within ODE to the corresponding object. As the
object (de)accelerates, the inferred forces will be de/increased
accordingly. To summarize, in the process of tracking objects,
the Objecter also generates a constant stream of inferred
forces acting on each object to account for their changes in
velocity. These force vectors may be used to classify self-
moving objects, and other aspects of force dynamics.



DRAFT: DO NOT QUOTE OR CITE 8

Fig. 5. By positioning a synthetic camera at the position approximating the
human’s viewpoint, Ripley is able to “visualize” the scene from the person’s
point of view, which includes a view of Ripley.

Fig. 6. Using virtual shifts of perspective, arbitrary vantage points may be
taken. The (fixed) location of the human partner is indicated by the figure on
the left.

E. Synthetic Vision and Imagined Changes of Perspective

The ODE simulator is integrated with a 3-D graphics
rendering environment [34]. The 3-D environment may be
rendered from an arbitrary viewpoint by positioning and
orienting a synthetic camera and rendering the scene from the
camera’s perspective. Changes in placement of the synthetic
camera are used to implement shifts in perspective without
physically moving Ripley. Figures 5 and 6 show examples of
two synthetic views of the situation also depicted in Figures 3
and 4. The visual analysis features described in Section III-C
can be applied to the images generated by synthetic vision.
We will return to this as the mechanism for groundingmy left
as a combination of a shift of perspective that modulates the
frame of reference of a spatial relation model.

F. Event-Based Memory

To support linguistic references to the past, memory must
be added to the mental model. Although all details of mental
model activity can be archived verbatim, humans do not
actually encode every detail of experience, but instead retain
only important or salient aspects of the past. What counts as
salient or important is an immensely difficult problem relating
to questions of attention, goals and so forth. We present a
simple model of memory encoding useful for representing past
events in ways congruent with how people are likely to refer
to them in natural language.

Run length encoding is used to compactly represent mental
model histories. Each time an object changes a property by
more than a set threshold using the distance measure in

Equation 1 (modified for 3-D simulated objects), an event
is detected in the mental model and recorded in memory.
Time periods during which no significant changes occur are
collapsed in memory. When an object changes properties, such
as its position, only the beginning and end points of the change
are retained. As a result, references to the past are discretized
in time along event boundaries.

V. PUTTING THE PIECESTOGETHER: FOUNDATIONS FOR

GROUNDING CONVERSATIONAL LANGUAGE

We began by asking how a robot might ground the meaning
of the utterance,Touch the heavy blue thing that was on my
left. We are now able to sketch an answer to this question
based on a set of sensory, motor, and simulation-grounded
representations that have been described in the preceding
sections.

The semantic grounding of each word in our example utter-
ance is defined using pseudo-algorithmic functions reminiscent
of the procedural semantics developed by Winograd [35] and
Miller & Johnson-Laird [36]. These functions ground lexical
semantics in terms of procedures and representations that are
implemented in Ripley. Rather than specify complete details
of how the words would be grounded (which must await future
implementation of a language processing module for Ripley),
we show how the various architectural features of the robotic
architecture might come together in grounding each word of
the utterance.

We begin by introducing a data structure calledcontext that
contains two components:

context {
point-of-view
working-memory

}

By default, the point-of-view is set to Ripley’s first-person
perspectve, and the contents of working memory are set to be
the contents of the mental model. As we shall see, semantic
procedures are able to modulate the contents ofcontext.

The meaning of the wordblue may be defined as:

blue(x): fblue(GetColorModel(x))

Wherefblue() encodes an expected region of color space using
an appropriately tuned color histogram (Section III-C), and
GetColorModel() returns a color histogram of the object x:

GetColorModel(x) {
if model exists in working memorythen

fetch and return
else

LookAt(x)
return (BuildColorModel(x))

end if
}

GetColorModel(x) first checks working memory, and if the
color model is not built, it causes the robot to look at the
objectx and return a model. The resulting color model is also



DRAFT: DO NOT QUOTE OR CITE 9

stored in working memory. In effect, the semantics ofblueare
grounded not only in the visual system, but also Ripley’s motor
system through theLookAt() function. The grounding occurs
by virtue of the direct connections between each function
and Ripley’s sensory-motor system;fblue() specifies expected
values of pixels captured by Ripley’s cameras;LookAt()
specifies control procedures for Ripley’s actuators to bring an
object into view.

We can groundheavyin much the same way asblue:

heavy(x): fheavy(GetWeight(x))

Where fheavy() encodes an expected region of one-
dimensional weight space using an appropriately tuned prob-
ability density function, andGetWeight() returns the weight
of x:

GetWeight(x) {
if weight known in working memorythen

fetch and return
else

return (weigh(x))
end if

}

weigh() corresponds to the functionality described in Section
III-E and may be defined here as:

weigh(x) {
grasp(x)
resistance← 0
while lift(x) do

resistance← resistance + joint forces
end while
return resistance

}

The grounding ofheavy mirrors that of blue in the use
of a tuned function (fheavy / fblue). These tuned functions
represent sensory expectations, each of which are linked to
appropriate motor functionality (lifting / looking).

In general, the use ofheavymust be scaled dependent on
context (e.g., a heavy chair is lighter than a light car). Vari-
ous schemes including within-category rescaling, and within-
working memory rescaling might be used. Similar rescaling
must performed on other modifier terms including color (con-
sider the difference in color models forred when applied to
paint, wine, hair, wood, and skin).

Touch can be grounded in the perceptually-guided motor
procedure described in Section III-D. This reaching gesture
terminates successfully when the touch sensors are activated
and the visual system reports that the targetx remains in view
(as it should given Ripley’s head-mounted camera):

touch(x) {
repeat

ReachTowards(x)
until touch sensor(s) activated
if x in view then

return success
else

return failure
end if

}

Left is grounded in a visual property model which computes
a geometric spatial function (Section III-C) relative to the
assumed point of view:

left(x) {
trajector← GetPosition(x)
returnfleft(trajector, point-of-view)

}

GetPosition(), like GetColorModel(), would use the least
effortful means for obtaining the position ofx. The function
fleft() evaluates how well the position ofx fits a spatial model
relative to the point of view determined fromcontext.

Thing can be grounded as a pair of affordances:

thing(x): IsTouchable(x) and IsViewable(x)

This definition states that forx to be a thing, it must be
touchable and viewable. Touchability would be grounded using
Touch() and viewability based on whetherx has appeared in
the mental model based on visual perception.

Was triggers a transfer of contents from the mental model
memory (Section IV-F) into working memory, making them
accessible to other processes.

was(context): working memory← mental model history

My triggers a shift in spatial perspective and may thus be
grounded in the synthetic visual perspective shift operation
described in Section IV-E:

my(context): point-of-view← GetPointOfView(speaker)

WhereGetPointOfV iew(speaker) obtains the spatial posi-
tion and orientation of the speaker. In the current implemen-
tation, the position of the speaker is set to a fixed location in
Ripley’s mental model (i.e., at a fixed location and orientation
in the ODE simulator). In general, however, various sensing
methods such as face detection and sound localization might
be used to dynamically ascertain the point of view of the
speaker. The function ofmy() is to shift the point of view
in context to assume the speaker’s perspective.

The determinerthe indicates the selection of a single
referent from working memory, which in turn is constructed
from Ripley’s mental model and memory system:

the(context): Select most salient item from working memory

In summary, we have shown how each word in the sample
sentence can be grounded in Ripley’s sensory-motor and
mental model representations and processes. All primitives
used to ground the words build on perceptual, motor, and
simulation processes of Ripley, along with simple bookkeeping
using thecontext data structure.



DRAFT: DO NOT QUOTE OR CITE 10

The final step in interpreting the utterance is to compose
the semantics of the individual words in order to derive the
semantics of the whole utterance. We assume that a syntactic
parser is able to parse the utterance and translate it into a
nested set of function calls2:

Touch(The(Left(My(Heavy(Blue(Thing(Was(context)))))))))

Consider how this nested set of functions might be inter-
preted. The innermost argument iscontext which includes
the assumed point of view and contents of working memory.
Each nested function call modifies the contents ofcontext
by either shifting points of view, loading new contents into
working memory, or sorting / highlighting contents of working
memory. Touch() finally acts on the specified argument to
execute the command.

Starting from the innermost function call,was() loads
partial history from the mental model into working mem-
ory. Thing() selects the subset of elements in working
memory which possess the affordancesIsTouchable() and
IsV iewable(). In operation, obtaining trustworthy values for
these affordances may be impractical. For every visible object,
Ripley would have to reach out and touch the object to make
sure it IsTouchable() and thus not an optical illusion. In
lieu of this costly exercise, the affordances may be assigned
default values. For instance, a reasonable rule is that three-
dimensionally visible objects that persist over time should
by default be consideredIsTouchable(). If during attempted
manipulation this turns out to be false, that knowledge would
be updated in Ripley’s knowledge base3.

The next two functions,blue() andheavy(), sort objects in
Ripley’s working memory according to how well they match
the property models of each function. Objects that receive very
poor evaluations by either property function would be removed
from further consideration.My() updates the point of view
in context to take the speaker’s point of view.Left() sorts
objects based on the frame of reference supplied bycontext.
The() selects the single most salient object from working
memory. Finally,Touch() is executed, causing Ripley to touch
the specified object. The precise sequence of function nesting
is this example is not critical (e.g.,blue() andheavy() could
be interchanged without effect,my() can be applied at any
point beforeleft() but does not need to be adjacent to it,
etc.).

The semantic procedures as spelled out here are skeletal in
nature and will require further refinements as our implementa-
tion proceeds. Although the strict use of a procedural notation
forces a linear, recipe-like definition of word meaning, the no-
tation serves our current expository purpose for demonstrating
how elements of the architecture provide a basis for language
grounding. Our intent has been to convey an overall gist of
how language would be coupled to Ripley. Our current work
is focused on the realization of this approach using spoken
language input.

2We address the problem of grounded semantic composition in detail
elsewhere [37].

3This is similar to Minsky’s suggestion for frame based representations in
which slots can have weakly attached default values which can be overridden
based on contrary evidence [38]

VI. CONCLUSIONS

We believe that the best way to build a conversational robot
is to take a holistic approach to semantics in which the robot’s
perception, motor control, memory, and planning mechanisms
are all seamlessly tied to linguistic representations. We have
described a robotic architecture that provides contextually-
derived perceptual, procedural, and affordance representations
suitable for grounding word meanings. First steps towards
grounding social and temporal words such asmy and was
have been taken through the use of a perceptually-coupled
mental model and memory system. Ongoing work includes
implementation of a conversational module for Ripley, and
further development of physical and social representations in
service of grounding word meaning.

ACKNOWLEDGMENTS

Ben Krupp and Chris Morse implemented and helped with
modifications to the hardware components of Ripley. Niloy
Mukherjee implemented the visual object detection algorithms
used in Ripley.

REFERENCES

[1] D. Bailey, “When push comes to shove: A computational model of
the role of motor control in the acquisition of action verbs,” Ph.D.
dissertation, Computer science division, EECS Department, University
of California at Berkeley, 1997.

[2] S. Narayanan, “Karma: Knowledge-based active representations for
metaphor and aspect,” Ph.D. dissertation, University of California Berke-
ley, 1997.

[3] T. Regier and L. Carlson, “Grounding spatial language in perception:
An empirical and computational investigation,”Journal of Experimental
Psychology, vol. 130, no. 2, pp. 273–298, 2001.

[4] D. Roy and A. Pentland, “Learning words from sights and sounds: A
computational model,”Cognitive Science, vol. 26, no. 1, pp. 113–146,
2002.

[5] J. Siskind, “Grounding the Lexical Semantics of Verbs in Visual Per-
ception using Force Dynamics and Event Logic,”Journal of Artificial
Intelligence Research, vol. 15, pp. 31–90, 2001.

[6] J. M. Lammens, “A computational model of color perception and color
naming,” Ph.D. dissertation, State University of New York, 1994.

[7] L. Steels, “Language games for autonomous robots,”IEEE Intelligent
Systems, vol. 16, no. 5, pp. 16–22, 2001.

[8] P. McGuire, J. Fritsch, J. Steil, F. Roethling, G. Fink, S. Wachsmuth,
G. Sagerer, and H. Ritter, “Multi-modal human-machine communication
for instructing robot grasping tasks,” inProceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2002.

[9] J. J. Gibson,The Ecological Approach to Visual Perception. Erlbaum,
1979.

[10] J. Barwise and J. Perry,Situations and Attitudes. MIT-Bradford, 1983.
[11] G. Lakoff and M. Johnson,Metaphors We Live By. Chicago: University

of Chicago Press, 1980.
[12] G. Miller, “Wordnet: A lexical database for english,”Communications

of the ACM, vol. 38(11), pp. 39–41, 1995.
[13] D. Jurafsky and J. Martin,Speech and Language Processing: An

Introduction to Natural Language Processing, Speech Recognition, and
Computational Linguistics. Prentice-Hall, 2000.

[14] M. K. Brown, B. M. Buntschuh, and J. G. Wilpon, “SAM: A perceptive
spoken language understanding robot,”IEEE Transactions on Systems,
Man, and Cybernetics, vol. 22 . IEEE Transactions 22, pp. 1390–1402,
1992.

[15] D. Perzanowski, A. Schultz, W. Adams, K. Wauchope, E. Marsh, and
M. Bugajska, “Interbot: A multi-modal interface to mobile robots,” in
Proceedings of Language Technologies 2001, Carnegie Mellon Univer-
sity, 2001.

[16] C. Crangle and P. Suppes,Language and Learning for Robots. Stanford,
CA: CSLI Publications, 1994.



DRAFT: DO NOT QUOTE OR CITE 11

[17] T. Regier,The human semantic potential. Cambridge, MA: MIT Press,
1996.

[18] D. Roy, “Learning words from sights and sounds: A computational
model,” Ph.D. dissertation, Massachusetts Institute of Technology, 1999.

[19] B. Landau and R. Jackendoff, “”What” and ”where” in spatial language
and spatial cognition,”Behavioral and Brain Sciences, vol. 16, pp. 217–
265, 1993.

[20] H. Clark, Using Language. Cambridge University Press, 1996.
[21] P. Bloom,How Children Learn the Meanings of Words. Cambridge,

MA: MIT Press, 2000.
[22] C. Breazeal, “Towards sociable robots,”Robotics and Autonomous

Systems, vol. 42, no. 3-4, 2003.
[23] B. Scassellati, “Theory of mind for a humanoid robot,”Autonomous

Robots, vol. 12, pp. 13–24, 2002.
[24] C. Sidner and M. Dzikovska, “Hosting activities: Experience with

and future directions for a robot agent host,” inACM International
Conference on Intelligent User Interfaces, 2002, pp. 143–150.

[25] T. Paek and E. Horvitz, “Conversation as action under uncertainty,”
in Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence, 2000.

[26] J. Pratt, B. K. B, and C. Morse, “Series elastic actuators for high fidelity
force control,” Industrial Robot, vol. 29, no. 3, pp. 234–241, 2002.

[27] F. Mussa-Ivaldi and E. Bizzi, “Motor learning through the combination
of primitives,” Philosophical Transactions of the Royal Society of
London, vol. 355, pp. 1755–1769, 2000.

[28] D. Roy, B. Schiele, and A. Pentland, “Learning audio-visual associations
from sensory input,” inProceedings of the International Conference
of Computer Vision Workshop on the Integration of Speech and Image
Understanding, Corfu, Greece, 1999.

[29] R. Smith, “ODE: Open dynamics engine,” 2003. [Online]. Available:
http://q12.org/ode/

[30] F. Cao and B. Shepherd, “Mimic: a robot planning environment inte-
grating real and simulated worlds,” inIEEE International Symposium
on Intelligent Control, 1989, p. 459464.

[31] W. J. Davis, “On-line simulation: Need and evolving research require-
ments,” inHandbook of Simulation: Principles, Methodology, Advances,
Applications and Practice, J. Banks, Ed. Wiley, 1998.

[32] J. R. Surdu, “Connecting simulation to the mission operational environ-
ment,” Ph.D. dissertation, Texas A&M, 2000.

[33] L. Talmy, Toward a Cognitive Semantics. Cambridge, MA: MIT Press,
2000.

[34] “OpenGL.” [Online]. Available: www.opengl.org
[35] T. Winograd,A Process model of Language Understanding. Freeman,

1973, pp. 152–186.
[36] G. Miller and P. Johnson-Laird,Language and Perception. Harvard

University Press, 1976.
[37] P. Gorniak and D. Roy, “Grounded semantic composition for visual

scenes,” forthcoming, 2003.
[38] M. Minsky, “A framework for representing knowledge,” inThe Psy-

chology of Computer Vision, P. Winston, Ed. New York: McGraw-Hill,
1975, pp. 211–277.


