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Coupling Robot Perception and Online Simulation
for Grounding Conversational Semantics

Deb Roy, Kai-Yuh Hsiao, and Nikolaos Mavridis

Abstract—How can we build robots that engage in fluid spoken  touch can be grounded in a visually-guided motor program

conversations with people, moving beyond canned responses and that enables the robot to move towards and touch ob-
towards actual understanding? Many difficult questions arise jects. This is an example of a procedural association

regarding the nature of word meanings, and how those meanings that d d tion t id i
are grounded in the world of the robot. We introduce an at deépends on perception 10 guide action.

architecture that provides the basis for grounding word meanings ~ heavy specifies a property of objects which involves

in terms of robot perception, action, and memory. The robot’s fordances[9]. A light object affords manipulation
perceptual system drives an online simulator that maintains a whereas a sufficiently heavy one does not. To rep-
virtual version of the physical environment in synchronization resent affordances, both procedural and perceptual

with the robot’s noisy and changing perceptual input. The simu- tati tb bined
lator serves as a “mental model” that enables object permanence repre_spn a |o_ns must be combined.
and virtual shifts of perspective. This architecture provides a blue specifies a visual property, an example of perceptual

rich set of data structures and procedures that serve as a basis grounding.
set for grounding lexical semantics, a step towards situated, thing must be grounded in terms of both perception and
conversational robots. affordances (one can see an object, and expect to
Index Terms— Robots, Natural language interfaces, Knowledge reach out and touch it).
representation, Active vision, Simulation. was triggers a shift of perspective in time. Words and in-
flections that mark tense must cue the robot to “look”
back in time to successfully ground the referent of
. INTRODUCTION the utterance.
my  triggers a shift of perspective in space. As opposed to
your leftor simplyleft (which would be ambiguous),
my tells the listener to look at the world from the
speaker’s point of view.
can be grounded in visual features that compute
linguistically-salient spatial relations between objects

ANGUAGE enables people to talk about the world.
Through language, we are able to refer to the past

and future, and to describe things as they are or how we
imagine them. For a robot to use language in human—likeI ft
ways, it must ground the meaning of words in its world as
mediated by perception, action, and memory. Many words within an appropriate frame of reference.
that refer to things in the world can be grounded through ) i _ )
sensory-motor associations. For instance, the meanimglof e have developed an architecture in which a robotic
includes perceptual associations that encode how balls IdBRNPUlator is coupled with a physical simulator. By virtue of
and predictive models of how balls behave. The representatith§ robot's sensory, motor control, and simulation processes,
of touch includes procedural associations that encode hcgz\,set of represeptatlons are obtained for grounding each of the
to perform the action, as well as perceptual encodings §81ds of words listed gbO\}e _ o _
recognize the action in others. Words thus serve as labels forf N€ robot, called Ripley (Figure 1), is driven by compliant
perceptual or action concepts that are anchored in sens@§tuators which enable it to manipulate small objects. Ripley
motor representations. When a word is uttered, the underlyiigS cameras, touch, and various other sensors on its “head".
concept is communicated to the degree that the speaker R§Ce and position sensors in each actuated joint provide a
listener maintain similar associations. This basic approagfnS€ Of proprioception. Ripley's visual and proprioceptive
underlies most work to date in building machines that grourRyStéms drive a physical simulator that keeps a constructed
language [1]-[8]. version of the world (including a representation of itself)

Not all words, however, can be grounded in sensory-motl} Synchronization with Ripley’s noisy perceptual input. An
representations. In even the simplest conversations about ®IECt Permanence module determines when to instantiate and
eryday objects, events, a-m-d relations, problems arise. ConSidq\rNe acknowledge that the words in this example, like most words, have
a person f’ind a ro_bot S|tt|ng_a_cro_ss a t_able from eac_h ot erous additional connotations that are not captur’ed by the represéntations
engaged in coordinated activity involving manipulation ofat we have suggested. For example, words sudouws heavyand blue

objects. After some interaction, the person says to the rob@gn be used metaphorically to refer to emotional actions and stiewys
are not always physical perceivable objects; usually indicates possession,
and so forth. Barwise and Perry use the phrase “efficiency of language” to
highlight the situation-dependent reusability of words and utterances [10].

. Giyen the utterance and context that we described, the groundings listed above
To understand and act on this command, the robot mlé# sufficient. Other senses of words may be metaphoric extensions of these

bind words of this utterance to a range of representations: embodied representations [11].

Touch the heavy blue thing that was on my left.
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Conversational robots may be of use in deep sea and space
exploration, remote handling of hazardous materials, and assis-
tive health care. Beyond conversational robots, the underlying
ideas of how to endow machines with a deeper sense of
word meaning may have numerous applications ranging from
guestion answering systems to language translation.

Il. BACKGROUND

Although robots may be connected to speech recognizers,
parsers, and speech synthesizers in various simple ways, the
results are typically limited to canned behavior. Attempts
to endow robots with linguistic capabilities introduces deep
theoretical issues that touch on virtually all aspects of artificial

) . . . intelligence (and cognitive science) including perception, ac-
Fig. 1. Ripley has 7 degrees of freedom powered by series elastic actuators 9 ( 9 ) gp P

enabling it to manipulate objects in a 3 foot radius workspace. The percept Qn, memory, and plannlr]g. Indeed, the_ proble_m_ (_)f Combm'_ng
system includes stereo vision, audition, touch and proprioceptive sensors, EaBots and language reminds us of the impossibility of treating

a sense of gravity. The camera and mictophanes are placed on Ripley's hefghguage in isolation from numerous non-linguistic processes.

Ripley is shown here looking up from the table. . .

Pey gup The termgroundingis often used to refer to the process
of anchoring the meaning of words and utterances in terms

destroy objects in the model based on perceptual evideng};_non-linguistic representations that language users possess

Once instantiated, perception can continue to influence thECUgh @ combination of evolutionary and lifetime learn-

properties of an object in the model, but knowledge of physicjd: The issue of language grounding, in various forms and
world dynamics is built into the simulator and counterac@YiNg numerous labels, has been a central issue in the
‘unreasonable’ percepts. The simulator maintains a consistBRf!0SOPhY of language and mind since antiquity. In contrast,
and stable interpretation of sensory experience over time, MoSt work on natural language processing (NLP) by machine
Language can be grounded in terms of associations W}ﬁpds to fo_cus on .st.ructural / relational representa_uons of
elements of this perceptually driven world model. AIthoquOrd meaning, defining wordg through .typed relat|o_ns to
the world model directly reflects reality, the state of th8ther words (cf. [12]), much in the spirit of conventional

model is the result of an interpretation process that compilgg'ona”es' Jurafsky and Martin, authors of a recent text on

perceptual input into a stable registration of the environmehl-F» point out the fundamental limitation of such approaches:

As opposed to direct perception, the world model affords the This inherent circularity [of defining words in
ability to assume arbitrary points of view through the use of terms of other words] is evidence that dictionary
synthetic vision which operates within the simulator, enabling entries are often not definitions at all, but rather
a limited form of “out of body experience”. This ability is  descriptions of lexemes in terms of other lexemes.
essential to successfully differentiate the semanticswpfleft Such entries are useful when the user of the dic-
versusyour left Non-linguistic cues such as the visual location ~ tionary has sufficient grasp of these other terms to
of the speaker can be integrated with linguistic input to trigger Make the entry in question sensible. As is obvious
context-appropriate perspective shifts. Shifts of perspective in With lexemes likered andright, this approach will
time and space may be thought of ssmantic modulation fail without some ultimate grounding in the external
functions Although the meaning ofeft in one sense remains ~ World [13] (p. 591).
constant across usages, words likgandyour modulate their ~ For robots to understand and use language, we must turn
meaning by shifting frames of reference. We believe that fluld methods beyond the standard techniques of NLP so that
use of language requires constant modulation of groundiéese machines can connect words and utterances to actions
meanings. and percepts in the physical world. One approach would
In this paper, we describe the robot and simulator, af@ to connect words to perceptual classifiers so that the
mechanisms for real-time coupling. We then discuss mechlappearance of an object, event, or relation in the environment
nisms designed for the purpose of grounding the semantmn instantiate a corresponding word in the robot [8], [14],
of situated, natural spoken conversation. Although a laft5]. Crangle and Suppes [16] also take this approach, and
guage understanding system has not yet been construcfatthermore present a detailed approach to integrating syntactic
we conclude by sketching how the semantics of each wopdocessing of commands with robot control programs.
within the utterance discussed above can be grounded irDetailed models have been suggested for sensory-motor
data structures and processes provided by this architectuspresentations underlying color [6], and spatial relations [3],
This work provides a foundation for our long term goal of17]. Models for grounding verbs include grounding verb
developing robots and other machines that use languageniganings in the perception of actions [5], and in terms of
human-like ways by leveraging deep, grounded representationgtor control programs [1], [2]. Although object shape is
of meaning that hook into the world through robot perceptioimportant when connecting language to the world, it remains
action, and higher layers of cognitive processes. a challenging problem for computational models of language
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grounding. In previous work, we found histograms of locglerform that shape how language is used. To support acqui-

geometric features sufficient for grounding names of basition of verbs, Ripley has a gripper that can grasp objects

objects (dogs, shoes, cars, etc.) [18]. Landau and Jackendoffenable manipulation. As a result, the most natural class

provide a detailed analysis of additional visual shape feature$,verbs that Ripley will learn involve manual actions such

such as axes of orientation, that also play a role in language touching, lifting, pushing, and giving. To address human

[19]. directed training, Ripley is actuated with compliant joints, and
Clark observed that people speak and gesture to coordinass training handles (Figure 1).

joint actions[20]. Speakers and listeners use various aspects

of their physical environment to encode and decode utterange Mechanical Structure and Actuation

meanings. Communication partners are aware of each other’§2

. . . ipley has seven degrees of freedom (DOF'’s). At the base of

gestures and foci of attention and they integrate these sourges i .
; L . . € robot, two revolute joints are arranged along perpendicular
of information in conversation. Even young infants Ieveragaex

situational cues and knowledge of joint attention to facilitatﬁ
- : 0

language acquisition [21]. Recent work on social robots h
an

explored mechanisms that provide visual awareness of hu ) . - .
) : ; .base and the robot’s head, a single joint with an 180-degree
partner’s gaze and other facial cues relevant for interaction . . . ;
i : range of motion gives the robot the articulation necessary to
[22]-[24]. Although our current architecture does not includ . : L :
) . ; i ouch any point on a work surface in front of it. Ripley’s head
representations of social cues, Clark’s work highlights the

. ; . IS, connected to the body through three orthogonal DOF’s that
need for eventually incorporating such cues into a model of

language grounding (for a computational approach alon theeneable the gripper to orient freely within a 180-degree range
Iine%; sgeeg[25]) 9 P bp 9 N&Hout two axes at the end of the arm and to rotate 540 degrees

To understand language, it is often necessary for the Iister‘?(:kj)roUt the axis that runs glpng the arm. Finally, the gripper itself
opens and closes, providing the seventh DOF.

to assume the speaker’s point of view. Points of view ca Each DOF other than the gripper is actuated by series-

involve seeing something from a different physical Vantaggfastic actuators [26] in which all forces from electric motors

point, as well as less literal perspective shifts in order to s € transferred through torsion springs. Each motor drives
things from different social or cultural perspectives. Occasion- -~ : '
S ) a threaded shaft. A sliding nut fit on the shaft connects

ally, one communication partner carries more of the burd?n . T
0 a spring. The other end of the spring is connected to

of shifts of view than the other. When speaking to a young cable assembly that provides actuation to the robot. This

child, an adult is more likely to take the view of the child than bl he f lied by th b
vice versa. However, for all but the simplest interactions thaérangemeqt ena’es the force applie y the motors to be
. ) - . . . .~ controlled directly, in contrast to motors which are controlled
child must also recognize the divergence of viewpoints. If we . .
% speed. Compression sensors are placed on each spring

are to build robots that can interact naturally with people, the . ) .
. - ) d used to provide force feedback. The use of series-elastic
will need similar perceptual awareness of the environment an . ; .
L S . ' “actuators provides precise sensation of the amount of force
communication partners, and the ability to change points of . . .
view applied at each DOF, and leads to compliant motions. The
' springs in each DOF also act as natural shock absorbers that

dampen vibrations.

es, giving the robot 180 degrees of motion about the two
a erizontal axes at its base and serving as a waist for the torso
rl{or shoulder if thought of as an arm). Halfway between the

IIl. RIPLEY: AN INTERACTIVE ROBOT

Ripley has been designed to explore questions of ground®@d Motion Control
language and interactive language acquisition. The robot ha?vlotion control in Ripley is inspired by studies of motor

a range of motions that enable it to examine and manlpul%qce fields in frogs [27]. In essence, frogs use a sequence
objects on a tabletop qukspace. Ripley can also Ioo_k % control points to control motions. Local disturbances to
and _make_eye contact_wnh a humgn partner. Three PrMaRbtion are compensated by internal force fields which exhibit
F:on3|derat|pns ha\{e driven the design of the robot. We Weorﬁonger pull towards control points as a function of distance
interested in studying: between actual and desired location. As a rough approximation
« The effects of changes of visual perspective and thel this method, a position-derivative control loop is used to

effects on language and conversation. track target points that are sequenced to move smoothly from
« Sensory-motor grounding of manipulation verbs (€.gie starting point of a motion gesture to the end point. Natural
touch, lift, push, takeetc.). motion trajectories are learned from human teachers through

« Human-directed training of motion. For example, to teaghanual demonstrations.
Ripley the sensory-motor meaningtolich exemplars of  The robot's motion control is organized in a layered ar-
the word can be demonstrated by a human trainer whiliitecture. The lowest level of control is implemented in
labeling the behavior. hardware and consists of a continuous control loop between
To address the issue of visual perspective, Ripley has videmtor amplifiers and force sensors of each DOF. At the
cameras placed on its head so that all motions of the bodgxt level of control, a dedicated microcontroller running
lead to changes in view points. This design decision leadsdoreal-time operating system executes a position-derivative
challenges in maintaining stable perspectives in a scene, (RID) control loop with a 5 millisecond cycle time. The
reflects the type of corrections that people must also constantlicrocontroller controls a set of digital-to-analog converters
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state, the robot still responds perfectly to other external forces,
resulting in remarkable pliability. By leading the seemingly

lightweight robot through gestures, it is possible for human
trainers to easily generate motion trajectories.

Motion trajectories are created by recording the outputs of
the position sensors during training. These control points can
then later be sent to the microcontroller for motion playback.
Motion trajectories can be interrupted and smoothly revised
to follow new trajectories as determined by higher level
control. We have also implemented interpolative algorithms
that blend trajectories to produce new motions beyond the
training set. In Section D below, we describe how motion
trajectory demonstrations are combined to teach Ripley how
to reach for objects in arbitrary positions.

C. Sensory System and Visual Processing
Fig. 2. Ripley’s motions can be trained through direct manipulation. The __. , . .
motor controllers are placed in a “anti-gravity” mode so that a human trainer Ripley’s perceptual system is based on several kinds of

can effortlessly guide Ripley through natural motions. Motion trajectoriesensors. Two color video cameras, a two-axis tilt accelerometer
recorded during training are processed by interpolation algorithms that z(lfsr sensing gravity), and two microphones are mounted on the
combined with visual guidance to generate novel motion trajectories. y ! . .
head. Force sensitive resistors provide a sense of touch on the
inside and outside surfaces of the gripper. In the work reported

<) th level h i here, we make use of the visual, touch, and force sensors. The
(DACs) that set target force levels for each motor amp 'f'eFemaining sensors will be used in future applications.

The microcontroller also accepts target positions from a mastelg, e of the most important sensors are embedded in the

controller (host computer) and translates these targets MQuators which are force-controlled, meaning that the control

force commands via the PD control loop. The resu_lt_lng forqg p adjusts the force that is output by each actuator. Thus
commands are sent downstream to the motor amplifier contmi amount of force being applied at each joint is known

loop. The same force commands are _also sgnt UP_StreamAHbitionally, each DOF is equipped with position sensors that
the master controller, serving as dynamic proprioceptive forg?e used for all levels of motion control and for maintaining

information. the anti-gravity mode.

The master controller is responsible for providing target The vision system is responsible for detecting objects in
point trajectories to the microcontroller. A set of seven targgle robot's field of view. A Gaussian mixture model is
positions, one for each DOF, are sent to the micr_o_controllgged to detect the background based on color, providing
every 20 milliseconds. We refer to a stream of position targgfreground/background classification. Connected regions with
points as amotion trajectory Motion trajectories can be yniform color are extracted from the foreground regions.
created by manual demonstration. A human trainer simplyjhile this simple approach has several limitations, including
grasps Ripley’s training handles and demonstrates a motigf requirement that objects be of uniform color, as well as
much like the way an adult might show a child how to performgecasional errors due to shadows, it is sufficient for our current
an action by guiding his/her hand along an ideal trajectopy,moses. The output of the visual analysis module is a set
(Figure 2). This approach provides a simple and intuitivgs ' connected regions. We denote the output of the visual
means for specifying fluid, natural motions which takes im@ystem at time stepasV[t] = {RV[t], Ry[t], ...R% [t]}. Each
account the natural affordances of the robot's mECha”i%bionR;’[t] consists of a list of member pixels and their RGB
design, as well as introducing “puppeteer” instincts of humapyes. The vision system generates region vectors with an
trainers to capture the aesthetics of smooth, natural motior@pdate rate of 15Hz. These region sets are passed to an object

To support training, we have implemented a special mogermanence module which integrates region sets over time to
of motor control referred to aanti-gravity mode This allows determine the presence and properties of objects in the scene.
Ripley to remain active and hold its own weight, while being The three-dimensional shape of an object is represented us-
responsive to light touch from the human trainer. This easgg a set of histograms, each of which represents the silhouette
the physical force that the trainer must exert to move Ripleyf the object from a different viewpoint [28]. We assume
resulting in more natural movement trajectories. that with sufficient stored viewpoints, a novel viewpoint of

To achieve anti-gravity motor control, joint position infor-an object may be matched by interpolation. A 2-D shape
mation is used to estimate the force of gravity on each DUfistogram is created using image pixels that correspond to
of the robot. An approximate model of the mass distributioan object based on figure-ground segmentation. First, all the
of the robot is used to estimate the effects of gravity. Since tbater edge points of the object are found. For each pair of
robot’s actuators compensate with an equal force on each D@#ge points, two values are computed: the distance between
the robot can be made to stay perfectly still in any positiothe points, normalized by the largest distance between any
effectively canceling the effect of gravity. However, in such awo edge points, and the angle between the tangents to the
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edge of the object at the edge points. A 2-D histogram odquired. This is precisely how Ripley perceives weight. When
all {distance, angle values is accumulated for all pairs ofan object is placed in Ripley’s gripper, a motor routine tightly
edge points. The resulting histogram representation of theasps the object and then lifts and lowers the object. While
object silhouette is invariant to rotation (since all angles atkis motor program is running, the forces experienced in each
relative) and object size (since all distances are normalize®OF (Section 1lI-B) are monitored. In initial word learning
Histograms are compared using thé divergence metric. experiments, Ripley is handed objects of various weights and
Three dimensional shape is represented by bundling a set opgsvided word labels such agery light or heavy A simple
D histograms that represent different views of an object. THBayes classifier was trained to distinguish the semantics of
shape representation provides a basis for grounding words thatty light, light, heavy andvery heavy Similarly, we ground
refer to 3-D objects (e.ghall). the semantics ohard and soft in terms of grasping motor
The color of regions is also represented using histogrammutines that monitor pressure changes at each fingertip as a
[28]. To compensate for lighting changes, the réd,(green function of grip displacement.
(G), and blue ) components of each pixel are divided by
the sum of all three component® (- G + B) resulting in IV." A PERCEPTUALLY-DRIVEN MENTAL MODEL
a set of “illumination-normalized” values. Since all triplets Ripley integrates real-time information from its visual and
of illumination-normalized values must add to 1.0, there ai@oprioceptive systems to construct an internal replica, or
only two free parameters for each pixel. For this reason, tReental modebf its environment that best explains the history
normalized blue value of all pixels are not stored. A 2-Df sensory data that Ripley has observed. The mental model
color histogram is generated by accumulating illuminatiors built upon the ODE rigid body dynamics simulator [29].
normalized red and green values for each pixel in the tard@PE enables modeling the dynamics of 3-D rigid objects
region. They? divergence metric is also used to compare coléased on Newtonian physics. As Ripley’'s physical environ-
histograms. ment changes, perception of these changes drives the creation,
To enable grounding of spatial terms suctasveandleft, updating, and destruction of objects in the mental model.
the set of three spatial features suggested in [17] is measufédnough simulators are typically used in place of physical
between pairs of objects. The first feature is the angle (relatiggstems, we found physical simulation to be an ideal substrate
to the horizon) of the line connecting the centers of area of &1 implementing Ripley’s mental model (for other uses of
object pair. The second feature is the shortest distance betweeupled online simulation, see [30]-[32]). Our motivations for
the edges of the objects. The third feature measures the angleoducing a perceptually-aligned simulator were to provide:
(relative to the horizon) of the line which connects the two « RegistrationPerceptual data provides evidence for deter-
most proximal points of the objects. mining when an object is believed to be “out there” in the
The representations of shape, color, and spatial relations de- objective world. When an object is determined to exist,
scribed above can also be generated from virtual scenes based it is instantiated in the internal mental model.
on Ripley’'s mental model as described below. Thus, the visuals TrackingObjects must be tracked across time to establish
features can serve as a means to ground words in either real- persistent referents for language.
time, camera-grounded vision, or simulated synthetic vision. « Stabilization Knowledge of Newtonian physics is used
to enforce consistency of dynamics within the model.
D. Visually-Guided Reaching Early-stage visual processing errors that lead to phys-
ically impossible interpretations are overcome through
stabilization in the simulator.
Compensating For Vantage Shif@ompensation is nec-
essary for shifts in physical point of view as Ripley
mechanically moves its view, because movements in
Ripley’'s body cause changes (often radical changes) in
perspective. To accomplish this, a physical model of
Ripley’s own body is maintained in the internal model,
and used to estimate the position of its cameras, thus
providing a basis for perspective correction.
« Enabling Virtual (Imagined) Shifts in Perspectivgy
E. EnC.Oding Environmental Affordances: ObJeCt Welght and moving the p|acement of a Synthetic camera, R|p|ey is
Compliance able to assume arbitrary points of view, including that of
Words such asieavyandsoft refer to properties of objects its human communication partner.
that cannot be passively perceived, but require interaction withe Event-based Memoryrhe mental model maintains a
the object. Following Gibson [9], we refer to such properties history of events, enabling Ripley to refer back in time.
of objects asaffordances highlighting what an object affords  Partial knowledgeObjects in the simulator may be rep-
to an agent who interacts with it. For instance, a lightweight resented with only partial knowledge of their properties
object can be lifted with ease as opposed to a heavy object. To through the use of confidence values.
assess the weight of an unknown object, an agent must actuallfhe mental model mediates between perception of the
lift (or at least attempt to lift) it and gauge the level of efforbbjective world on one hand, and the semantics of language

Ripley can reach out and touch objects by interpolating
between recorded motion trajectories. A set of sample trajec-
tories are trained by placing objects on the tabletop, pIacing'
Ripley in a canonical position so that the table is in view, and
then manually guiding the robot until it touches the object.
A motion trajectory library is collected in this way, with each
trajectory indexed by the position of the visual target. To reach
objects in new positions, the appropriate linear interpolation
between trajectories is computed.
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on the other. Although the mental model reflects the objecti
environment, it is biased as a result of a projection throug
Ripley’s sensory system and built-in perceptual represen
tions.

A. Physical Simulation

The ODE simulator provides facilities for creating ang
destroying rigid objects with arbitrary polyhedron geometri
placed within a 3-D virtual world. Forces can be applied {
move them, and other properties such as color and mass
be updated during simulation. Based on laws of Newtoni{
physics, ODE updates object positions at discrete time ste
Objects in Ripley’s workspace (the tabletop) are constrain
to be spheres of fixed size. Ripley’s body is modeled with
the simulator as a configuration of four connected cylindricar
links terminated with a rectangular head that approximate thg 3. Ripley looks down at the tabletop with four objects in view.
dimensions and mass of the physical robot.

B. Coupling Proprioception to the Mental Model

The model of the robot’s body is controlled by a virtual
motor controller that operates within the physical simulator. At
each update cycle in the simulator, joint angles of the virtua
robot are compared to the angles of the physical robot. Fg
each joint, if the difference in angles is greater than a preset
threshold, then an appropriate force is applied to align thé. 4. Visual regions and corresponding simulated objects in Ripley’s mental
corresponding virtual joint. In effect, the virtual joint track{"2%e seiespondng to i view fom Fgure 3 he uie elbsce 1 e et
the associated DOF of the physical robot. Since only angtge objects in the simulator on the right are actually spherical, but appear
differences above a threshold lead to virtual forces, low levelliptical due to optical warp of the synthetic viewpoint generated by the

jitter in the physical robot are filtered in the simulator. simulator.

C. Coupling Visual Perception to the Mental Model the 2D-Objecter, which are brought into correspondence with

A primary motivation for introducing the mental model wag full 3-D physical model which is maintained by ODE.
to register, stabilize, and track visually observed objects e 3D-Objecter performs projective geometry calculations
Ripley’s environment. An object permanence module, callé@l approximate the position of objects in 3-D based on 2-
the Objecter was developed as a bridge between raw visuRl region locations combined with the position of the source
analysis and the physical simulator. When a visual regidfifeo camera (i.e., the position of Ripley’s head). As Ripley
is found to stably exist for a sustained period of time, afoves (and thus changes its vantage point), the 2D-Objecter
object is instantiated by the Objecter in the ODE physic&pntinues to track visual regions until they leave the field
simulator. It is only at this point that Ripley becomes “awareof view. However, updates to the 3-D mental model are not
of the object and is able to talk about it. If Ripley lookgerformed while Ripley is in motion. While this assumption
away from an object such that the object moves out of vieaimplifies the process of tracking objects, it will be relaxed
a representation of the object persists in the mental modél.the future work. Both the 2-D and 3-D Objecter maintain
When a physical object is removed from Ripley’s workspac€orrespondence of objects across time, enabling tracking and
persistent perceptual evidence of its disappearance will ca@§4ect persistence in spite of perceptual gaps and noise.

the object to be deleted from the model. Recall from Section IlI-C that the output of the vision
Figure 3 shows an example of Ripley looking over theystem at each time step is a setMfvisual regionsV[t] =
workspace with four objects in view. In Figure 4, the left imagéR?{[t], R5[t], ..., R} [t]}. In general, the ordering of regions

shows the output from Ripley’s head-mounted camera, and thighin V' is arbitrary since the vision system finds regions in
right image shows corresponding simulated objects that haach frame of video independent of knowledge of previous
been registered and which are being tracked. frames. Thus, there is no guarantee tR{t] will correspond
The Objecter consists of two interconnected components. R} [t + 1].

The first component, theD-Objecter tracks two-dimensional To obtain correspondence of regions over time, the 2D-
visual regions generated by the vision system. The 2Dbjecter maintains its own set of regions which are candidates
Objecter also implements a hysteresis function which deteéts being output to the 3D-Objecter. We denote the candidate
visual regions that persist over time. The second componemgion set a®)[t] = { R{[t], R3[¢], ..., R$,[t]}. In contrast to

the 3D-Objecter takes as input persistent visual regions froriy, the purpose of the 2D-Objecter is to maintain correspon-



DRAFT: DO NOT QUOTE OR CITE 7

dence betwee®?[t] and R?[t]. Each candidate region has ar{which are derived from the body model described in Section

associated confidence vald|t].conf. IV-B), the 2-D regions are linearly projected in 3-D until the
A tunable distance metric between two visual regions [@ojection lines intersect Ripley’s work surface. The location
defined as: of the surface, a round tabletop, is built into the ODE sim-

ulator. Thus, Ripley's perceptual input is not necessary for
establishing the presence of the table.
d(R;, Rj) = ady(Ri, Rj)+Bds(R;, Rj)+(1—a—B)d.(Ri, Rj)  Interaction between the 2D- and 3D-Objecter proceeds as
(1) follows. Each time Ripley moves, the 3D-Objecter ignores
Whered,,() is the Euclidean distance between the centroids efitput from the 2D-Objecter, and when Ripley stabilizes its
the regionsd, () is the difference in size (number of pixels) ofposition, the 3D-Objecter waits 0.5 seconds to ensure that the
regions, andl..() is the difference in average RGB color of the2D-Objecter’s region report is stable, and then resumes 3-D
regions. The tuning parametexsand3 are scalar values suchprocessing. When the 3D-Objecter processes a 2-D region
that(a+3) < 1. They are used to set the relative emphasis gét, it projects each region to a corresponding 3-D object
the position, size, and color properties in comparing regiongcation. Then, the projected objects are then placed into
When Ripley moves to a new vantage point, the 2D-Objectesrrespondence with existing objects in ODE. To compare
candidates are initialized by copying the output of the visigprojected and existing objects, a modified version of Equation
system Q « V) so that a candidate is created correspondirigis used in whichi,,() measures three dimensional Euclidean
to each region in the current visual analysis frame. Thiistance, andis() is not computed (since the current version
confidence of each candidate is set to 0. At each successifethe simulator assumes all objects to be of equal size).
time step, a new region set is generated by the vision systefhe same alignment process as the 2D-Objecter is used to
The 2D-Objecter attempts to put each regionVininto one- align projected objects to existing objects in ODE. If projected
to-one correspondence with each candidat® isuch that the objects have no existing counterparts in the simulator, new
total distance between paired regions is minimized. In generabjects are instantiated. Conversely, if an object exists in ODE
the number of visual regiond’ and 2D-Objecter candidatebut no corresponding object has been projected based on visual
regions M will not be equal. The alignment process alignevidence, then the object in ODE is destroyed. There is no
the min(N, M) subset of regions. However, after the optimahysteresis function required in the 3D-Objecter since all 2-D
alignment is found, only those whose distances resulting fragions have already passed through a hysteresis function in
the match that are below a maximum allowable distantke 2D-Obijecter.
threshold are accepted. The confidence of candidate regions
that are aligned to regions froi is updated (increased) usingD. Dynamics in the Mental Model: Inference of Force Vectors
a rule similar to an infinite impulse response filter, assuming In the process of updating the position of moving objects,
positive input of unit magnitude. Thus, effectively, confidencge 3D-Objecter must infer the magnitude and direction of
values never reach an upper bound of oneNIf> M, at forces which lead to observed motions. Inference of force
most (N — M) new candidates are instantiated in the 2Ddynamics has been argued to be of fundamental importance
Objecter, each with confidence set to 0.Nf < M, then in grounding verb meanings [33], a direction we will pursue
the confidence of the at leaél/ — N) unaligned candidate in the future. Here, we explain how forces are inferred from
regions is updated (decreased) by a similar rule, driven by/gual observation in the Objecter.
negative input of unit magnitude. At the end of this alignment Consider a situation in which an object, such as a ball,
and confidence update process, the properties of the matclkedn the workspace and in view. Once the 2D-Objecter has
or newly instantiated regions froi}, are copied inta°. The registered the corresponding region, it will relay the region to
unmatched candidate regions retain their previous propertigg 3D-Objecter which will instantiate an object in ODE. At
and any of them for whichR¢[t].conf < 0 are destroyed. this point, Ripley is aware of the ball. Now, the ball begins to
The output of the 2D-Objecter at each time step is theowly roll. Although the visual region corresponding to the
subset of candidate regions for which the confidence leusdll will be displaced from one time step to the next, the 2D-
is greater thanConfyrny. In the current implementation, Objecter will generally determine the correspondence between
Confarn = 0.9. Each newly instantiated candidate region isegions over time steps and thus track the object. After the
assigned a unique ID. These IDs are persistent over time, tlwagrespondence process has been run by the 3D-Obijecter,
implementing region tracking. Smoothly moving objects ara displacement in positions between projected and existing
tracked by the 2D-Objecter. When an object is removed fronohjects in the simulator must be accounted for. This is where
scene, the confidence value of the corresponding candidatethe- force inference step takes place. A force proportional to
gion will drop steadily from a maximum value 6fonfirax. the displacement and in the direction of the projected object
As soon as the confidence drops bel@wn fi N, it stops is applied within ODE to the corresponding object. As the
being output. This use of confidence values and thresholdsiect (de)accelerates, the inferred forces will be def/increased
implements a hysteresis function that requires persistent visaatordingly. To summarize, in the process of tracking objects,
evidence before either instantiating or destroying regions. the Objecter also generates a constant stream of inferred
The 3D-Objecter uses projective geometry to infer therces acting on each object to account for their changes in
position of objects in three-dimensional space based on 2Blocity. These force vectors may be used to classify self-
regions. Given the position and orientation of Ripley’s cameraoving objects, and other aspects of force dynamics.
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Equation 1 (modified for 3-D simulated objects), an event
is detected in the mental model and recorded in memory.
Time periods during which no significant changes occur are
collapsed in memory. When an object changes properties, such
as its position, only the beginning and end points of the change
are retained. As a result, references to the past are discretized
in time along event boundaries.

V. PUTTING THE PIECESTOGETHER FOUNDATIONS FOR
GROUNDING CONVERSATIONAL LANGUAGE

' S . o o We began by asking how a robot might ground the meaning
Fig. 5. By positioning a synthetic camera at the position approximating thPT h T h the h bl hi h
human'’s viewpoint, Ripley is able to “visualize” the scene from the person% the utterancefouch the heavy blue thing that W_as on my

point of view, which includes a view of Ripley. left. We are now able to sketch an answer to this question

based on a set of sensory, motor, and simulation-grounded
representations that have been described in the preceding
sections.

The semantic grounding of each word in our example utter-
ance is defined using pseudo-algorithmic functions reminiscent
of the procedural semantics developed by Winograd [35] and
Miller & Johnson-Laird [36]. These functions ground lexical
3] semantics in terms of procedures and representations that are
B implemented in Ripley. Rather than specify complete details
of how the words would be grounded (which must await future
Fig. 6. Using virtual shifts of perspective, arbitrary vantage points may B’g’lplementation of a Ianguage processing module for Ripley),
taken. The (fixed) location of the human partner is indicated by the figure W€ show how the various architectural features of the robotic
the left. architecture might come together in grounding each word of

the utterance.

. . . . We begin by introducing a data structure caliedtext that
E. Synthetic Vision and Imagined Changes of Perspective contains two components:

The ODE simulator is integrated with a 3-D graphics
rendering environment [34]. The 3-D environment may hkgontext {
rendered from an arbitrary viewpoint by positioning and point-of-view
orienting a synthetic camera and rendering the scene from thavorking-memory
camera’s perspective. Changes in placement of the syntheétic
camera are used to implement shifts in perspective without ] ] ) ) )
physically moving Ripley. Figures 5 and 6 show examples &y default, the point-of-view is set to Ripley’s first-person
two synthetic views of the situation also depicted in FiguresPgrspectve, and the contents of working memory are set to be
and 4. The visual analysis features described in Section I11t€ contents of the mental model. As we shall see, semantic
can be applied to the images generated by synthetic visiGiocedures are able to modulate the contentsontext.
We will return to this as the mechanism for grounding left "€ meaning of the worblue may be defined as:
as a combination of a shift (_)f persp_ective that modulates tgﬁje(x): Forue (GetColorModel(x))
frame of reference of a spatial relation model.

Where f,1.. () encodes an expected region of color space using
F. Event-Based Memory an appropriately tuned color histogram (Section I11I-C), and

T GetColorModel() returns a color histogram of the object x:
To support linguistic references to the past, memory must

be added to the mental model. Although all details of menigltColorModel(x) {
model activity can be archived verbatim, humans do notjf model exists in working memorghen
actually encode every detail of experience, but instead retain tgtch and return
only important or salient aspects of the past. What counts ag|ge
salient or important is an immensely difficult problem relating | 5okAt(x)
to questions of attention, goals and so forth. We present a ety (BuildColorModel(x))
simple model of memory encoding useful for representing pastanqg if
events in ways congruent with how people are likely to ref§r
to them in natural language.
Run length encoding is used to compactly represent menfadtColor Model(x) first checks working memory, and if the
model histories. Each time an object changes a property tglor model is not built, it causes the robot to look at the
more than a set threshold using the distance measureobjectz and return a model. The resulting color model is also
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stored in working memory. In effect, the semanticdbhfe are return success

grounded not only in the visual system, but also Ripley’s motor else

system through thé&ook At() function. The grounding occurs return failure

by virtue of the direct connections between each functionend if

and Ripley’s sensory-motor systerfii...() specifies expected }

values of pixels captured by Ripley’s camerdsyokAt()

specifies control procedures for Ripley’s actuators to bring anLeftis grounded in a visual property model which computes

object into view. a geometric spatial function (Section I11I-C) relative to the
We can grouncheavyin much the same way dsue assumed point of view:
heavy(X): fheavy (GetWeight(x)) left(x) {

trajector«— GetPosition(x)
Where freany() encodes an expected region of one- return fig(trajector, point-of-view)
dimensional weight space using an appropriately tuned prdb-
ability density function, and7etWeight() returns the weight

of GetPosition(), like GetColor Model(), would use the least
effortful means for obtaining the position af The function
GetWeight(x) { fieri() evaluates how well the position offits a spatial model
if weight known in working memoryhen relative to the point of view determined fronontext.
fetch and return Thing can be grounded as a pair of affordances:
else
return (weigh(x)) thing(x): IsTouchable(x) and IsViewable(x)
end if . I . :
} I This definition states that fox to be a thing, it must be

touchable and viewable. Touchability would be grounded using
weigh() corresponds to the functionality described in Sectioh?uch() and viewability based on whetherhas appeared in

III-E and may be defined here as: the mental model based on visual perception.
Wastriggers a transfer of contents from the mental model
weigh(x) { memory (Section IV-F) into working memory, making them
grasp(x) accessible to other processes.
resistance— 0
while lift(x) do wagcontext): working memory— mental model history
resistance— resistance + joint forces

end while My triggers a shift in spatial perspective and may thus be
return resistance grounded in the synthetic visual perspective shift operation
described in Section IV-E:
}

The grounding ofheavy mirrors that of blue in the use my(context): point-of-view«— GetPointOfView(speaker)

of a tuned function freavy / foiue)- These tuned funclions \yhereGet PointO fView(speaker) obtains the spatial posi-
represent sensory expectations, each of which are linkedgigh and orientation of the speaker. In the current implemen-
appropriate motor functionality (lifting / looking). tation, the position of the speaker is set to a fixed location in
In general, the use dieavymust be scaled dependent orRjpley’s mental model (i.e., at a fixed location and orientation
context (e.g., a heavy chair is lighter than a light car). Varin the ODE simulator). In general, however, various sensing
ous schemes including within-category rescaling, and withirethods such as face detection and sound localization might
working memory rescaling might be used. Similar rescalinge used to dynamically ascertain the point of view of the
must performed on other modifier terms including color (corspeaker. The function ofuy() is to shift the point of view
sider the difference in color models foed when applied t0 i context to assume the speaker’s perspective.
paint, wine, hair, wood, and skin). The determinerthe indicates the selection of a single
Touchcan be grounded in the perceptually-guided motegferent from working memory, which in turn is constructed

procedure described in Section IlI-D. This reaching gestufdm Ripley’s mental model and memory system:
terminates successfully when the touch sensors are activated

and the visual system reports that the targe¢mains in view the(context): Select most salient item from working memory

(as it should given Ripley's head-mounted camera): )
In summary, we have shown how each word in the sample

touch(x) { sentence can be grounded in Ripley’s sensory-motor and
repeat mental model representations and processes. All primitives
ReachTowards(x) used to ground the words build on perceptual, motor, and
until touch sensor(s) activated simulation processes of Ripley, along with simple bookkeeping

if X in view then using thecontext data structure.
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The final step in interpreting the utterance is to compose VI. CONCLUSIONS
the semantics of the individual words in order to derive the
semantics of the whole utterance. We assume that a synta
parser is able to parse the utterance and translate it int
nested set of function cafis

We believe that the best way to build a conversational robot
%t'fo take a holistic approach to semantics in which the robot’s
?Jé"}ceptlon motor control, memory, and planning mechanisms
are all seamlessly tied to linguistic representations. We have

Touch(The(Left(My(Heavy(BIue(Thlng(Was(context)))))))))descr'bed a robotic architecture that provides contextually-

derived perceptual, procedural, and affordance representations

Consider how this nested set of functions might be integyijtable for grounding word meanings. First steps towards
pretEd. The innermost argument dsntext which includes grounding social and tempora| words such rag and was
the assumed point of view and contents of working memonyave been taken through the use of a perceptually-coupled
Each nested function call modifies the contentscoftext mental model and memory System_ Ongoing work includes
by either shifting points of view, loading new contents intgmplementation of a conversational module for Ripley, and
working memory, or sorting / highlighting contents of workingyrther development of physical and social representations in
memory. Touch() finally acts on the specified argument tGervice of grounding word meaning.
execute the command.

Starting from the innermost function callpas() loads
partial history from the mental model into working mem-
ory. Thing() selects the subset of elements in working Ben Krupp and Chris Morse implemented and helped with
memory which possess the affordanded ouchable() and modifications to the hardware components of Ripley. Niloy
IsViewable(). In operation, obtaining trustworthy values fotMukherjee implemented the visual object detection algorithms
these affordances may be impractical. For every visible objesged in Ripley.

Ripley would have to reach out and touch the object to make
sure it IsTouchable() and thus not an optical illusion. In REEERENCES
lieu of this costly exercise, the affordances may be assigned

] D. Bailey, “When push comes to shove: A computational model of
default values. For instance, a reasonable rule is that thre@ the role of motor control in the acquisition of action verbs,” Ph.D.

dimensionally visible objects that persist over time should dgissertation, Computer science division, EECS Department, University
by default be considerefisTouchable(). If during attempted of California at Berkeley, 1997.

; : ; ] S. Narayanan, “Karma: Knowledge-based active representations for
manlpulatlon this turns out to be false, that knOWIedge WOUI&Z metaphor and aspect,” Ph.D. dissertation, University of California Berke-

be updated in Ripley’s knowledge bése ley, 1997.
The next two functionshiue() andheavy(), sort objects in  [3] T. Regier and L. Carlson, “Grounding spatial language in perception:

; ) : : An empirical and computational investigatiodg@urnal of Experimental
Ripley’s working memory according to how well they match Psychology vol. 130, no. 2, pp. 273-298, 2001.

the property models of each function. Objects that receive very) p. Roy and A. Pentland, “Learning words from sights and sounds: A
poor evaluations by either property function would be removed computational model,Cognitive Sciengevol. 26, no. 1, pp. 113-146,

; : ; ; 2002.
from further conS|derat|onMy() uDdateS the point of view [5] J. Siskind, “Grounding the Lexical Semantics of Verbs in Visual Per-

in context to take the speaker’s point of vievLeft() sorts ception using Force Dynamics and Event Logidgurnal of Artificial
objects based on the frame of reference supplieddoyext. Intelligence Researchvol. 15, pp. 31-90, 2001.

; ; ; 6] J. M. Lammens, “A computational model of color perception and color
The() selects the smgle most salient ObJeCt from Workmd ] naming,” Ph.D. dissertatlijon, State University of Ngw Yoprk, 1994,

memorY-.Fina”y’.TOUCh() is exe_CUtedv causing Ripley.to tOUCh_ [7] L. Steels, “Language games for autonomous robd&EE Intelligent
the specified object. The precise sequence of function nesting Systemsvol. 16, no. 5, pp. 16-22, 2001.

is this example is n ritical (e. n | [8] P. McGuire, J. Fritsc_h, J. Steil,_ F. Roethling, G. Fin_k, S. Wach;mu_th,
s this example is not critical (e.ghjue() and heavy() could G. Sagerer, and H. Ritter, “Multi-modal human-machine communication

be interchanged without effectay() can be applied at any for instructing robot grasping tasks,” iRroceedings of the IEEE/RSJ
point beforeleft() but does not need to be adjacent to it, International Conference on Intelligent Robots and Systems (IROS)

etc.). 2002.
J. J. Gibson;The Ecological Approach to Visual PerceptiorErlbaum,

The semantic procedures as spelled out here are skeletal |}1 19709,
nature and will require further refinements as our implementae] J. Barwise and J. Perr@ituations and Attitudes MIT-Bradford, 1983.
tion proceeds. Although the strict use of a procedural notatiétl G- Lakoff and M. Johnsorietaphors We Live By Chicago: University

f i . like definiti n d . h of Chicago Press, 1980.
orces a linear, recipe-like definition of word meaning, the nchZ] G. Miller, “Wordnet: A lexical database for englishCommunications

tation serves our current expository purpose for demonstrating of the ACM vol. 38(11), pp. 39-41, 1995.
how elements of the architecture provide a basis for languag@ D: Jurafsky and J. MartinSpeech and Language Processing: An
. . - Introduction to Natural Language Processing, Speech Recognition, and
grounding. Our intent has been to convey an overall gist of Computational Linguistics Prentice-Hall, 2000.
how language would be coupled to Ripley. Our current work4] M. K. Brown, B. M. Buntschuh, and J. G. Wilpon, “SAM: A perceptive
is focused on the realization of this approach using spoken spoken language understanding rob¢dEEE Transactions on Systems,
. Man, and Cyberneti¢csvol. 22 . IEEE Transactions 22, pp. 1390-1402,
language input. 1992.
[15] D. Perzanowski, A. Schultz, W. Adams, K. Wauchope, E. Marsh, and
2We address the problem of grounded semantic composition in detail M. Bugajska, “Interbot: A multi-modal interface to mobile robots,” in
elsewhere [37]. Proceedings of Language Technologies 200&rnegie Mellon Univer-
3This is similar to Minsky’s suggestion for frame based representations in  sity, 2001.
which slots can have weakly attached default values which can be overridd&é] C. Crangle and P. Suppdsanguage and Learning for RobotsStanford,
based on contrary evidence [38] CA: CSLI Publications, 1994.
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