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ABSTRACT
Situated, spontaneous speech may be ambiguous along acous-
tic, lexical, grammatical and semantic dimensions. To un-
derstand such a seemingly difficult signal, we propose to
model the ambiguity inherent in acoustic signals and in lex-
ical and grammatical choices using compact, probabilistic
representations of multiple hypotheses. To resolve semantic
ambiguities we propose a situation model that captures as-
pects of the physical context of an utterance as well as the
speaker’s intentions, in our case represented by recognized
plans. In a single, coherent Framework for Understanding
Situated Speech (FUSS) we show how these two influences,
acting on an ambiguous representation of the speech signal,
complement each other to disambiguate form and content
of situated speech. This method produces promising results
in a game playing environment and leaves room for other
types of situation models.

Categories and Subject Descriptors: I.2.7 [Artificial
Intelligence]: Natural Language Processing
General Terms: Human Factors, Algorithms
Keywords: situated, speech, language, grounding, under-
standing, plan recognition.

1. INTRODUCTION
Naturally occurring speech is ambiguous in form (how it

was said) and in content (what was intended by the speaker).
This paper presents a Framework for Understanding Situ-
ated Speech (FUSS) that handles aspects of both kinds of
ambiguity, and integrates them to produce disambiguated
interpretations of situated speech acts. We first explain both
kinds of ambiguity and sketch the related components of the
FUSS and how they interact. The remainder of the paper
presents an experimental platform for collecting speech to-
gether with the embedding situation, and provides techni-
cal details on the FUSS components. We conclude with an
example showing how the FUSS resolves the meaning of a
specific utterance, and provide a preliminary evaluation that
suggests that the framework understands referential speech
across a larger dataset.

This paper makes two main contributions. First, we de-
scribe a new framework (FUSS), that maintains the am-
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biguity of form inherent in the acoustic speech signal and
syntactic parsing, while allowing for grounding of language
in complex situation models. We believe that while semantic
interpretation and composition should be driven by syntax,
it is important to acknowledge that understanding is cen-
tral, and thus that the semantic interpretation step may
well involve perception, situational modelling, plan recogni-
tion and acting on the world. FUSS therefore allows for ar-
bitrary grounding and composition actions during the pars-
ing process whenever a possible grammatical constituent is
completed, as long as the results can be expressed as proba-
bilities over a situational model. Secondly, we show how the
FUSS can be used to perform simple binding of referring
constituents to physical objects in the situational model,
and how such binding can be disambiguated successfully by
taking into account the speaker’s plans. To our knowledge
this is the first instance of speech understanding taking into
account both the physical and the intentional situation of
an utterance in a general framework.

1.1 Ambiguity of Form
Speech is an acoustically, lexically and grammatically noisy

signal. A speaker may convey the same message with wildly
different audio signals, select from an immense set of possi-
ble words, and put these words together in an infinite num-
ber of ways. We believe that in many cases of spontaneous
speech it is impossible to confidently transcribe the words
a speaker used based solely on the audio signal - and that
no human listener does this. Instead, we believe that much
of the message is disambiguated using the shared situation
of speaker and listener. The handling of form ambiguity in
our FUSS therefore does not so much focus on resolving the
ambiguity, but rather on compactly capturing and ranking
the possible grammatical parse trees for later disambigua-
tion through context. The ranking should be informed by
acoustic, lexical and grammatical knowledge.

The FUSS uses a Hidden Markov Model [14] based speech
recognizer to produce confusion networks, which concisely
capture a large number of different hypotheses and allow for
easy computation of the probability of a hypothesis based on
the speech recognizer’s acoustic and language models [11].
The framework then feeds these confusion networks into a
probabilistic context free grammar parser, which combines
the probabilities the speech recognizer assigns with those as-
sociated with a set of grammatical rules. It in turn generates
a probabilistically ranked list of parse trees that assign gram-
matical interpretations to the confusion networks. In this
way, the FUSS carries through ambiguity arising from each
interpretation step to the next, offering a set of parse trees to



the subsequent interpretation stages that take into account
probabilistic and structural information from all previous
steps.

1.2 Ambiguity of Content
Imagine two people working together to solve a problem.

One of them says “Can you help me with this?”. Likely,
the other person will understand what is asked of them.
You, the reader, however, cannot know the full meaning of
this utterance. You do not know what problem they are
working on, which part of the problem they are currently
tackling, what each person’s abilities are, what they have
said and done so far, and what they plan to do next. In
short, you need to be informed of the situation embedding
the utterance to understand it, because people rarely specify
the full situation explicitly in what they say. We can express
different meanings with the same words by leveraging shared
context. For example, “can you help me with this?” may
be a request to jointly lift a heavy object in one situation,
and an order to connect a laptop to a projector in another.
Barwise and Perry call this the efficiency of language [2].

Most speech we would like machines to understand, be it
for interacting with mobile devices, for autonomous robots
or for desktop speech interfaces, is efficient and situated in
this manner when the human speaker can speak naturally.
Current systems that attempt to understand the user via
natural language often force a more explicit style of lan-
guage than is natural (type “the place I visited yesterday”
into Google to see what a powerful but non-situated natural
language processing engine will do).

In the work presented here, we are specifically interested
in models that capture two aspects of the situation: the
physical context, including location of the speaker and ob-
jects nearby, as well as the functional aspect of what the
speaker is trying to achieve with his or her utterance. Both
aspects go some way towards disambiguating an efficient
utterance, but only integrating them into a single under-
standing process will leads towards human level flexibility in
natural language understanding. The FUSS presented here
is a first step towards integrating a situation model that in-
cludes both the physical context and the functional context
(by modelling the users plans) into speech understanding.
Such a situation model must be dynamically coupled with
and grounded in the world the speaker acts in, meaning that
it must be able to make predictions about how the situation
will evolve over time, which in turn can be verified against
the model’s predictions. For our current focus, we will use
’grounding’ to denote the process of using such dynamically
predictive situation models to understand and produce lan-
guage. Grounding thus links language to the world and the
world to language via a situation model.

1.3 Related Work
Work that takes into account the situation during speech

understanding has until now limited itself to the immedi-
ate physical (usually visual) context [15],[16]. Aside from
speech, some language understanding work involves aspects
of grounded situation models, for example Narayanan’s in-
terpretation of news stories using an action representation
[12], and our own grounding of spatial language in visual
scenes [7]. All of these handle some aspects of language ef-
ficiency by maintaining situational models. In contrast to
dealing solely with visual scenes or abstract action models,
we here particularly focus on language efficiency that oc-
curs when speakers share a common history and common

future plans, making anaphora and reliance on shared in-
tentions a common occurrence. Of these related works, only
Schuler also uses a speech recognizer as input (as opposed
to transcribed speech or text), but does not maintain am-
biguities all the way down to semantic interpretation as we
do here. Roy and Mukherjee integrate visual priming di-
rectly into the speech understanding process, whereas we
utilize speech confusion networks as a compact represen-
tation of ambiguous speech recognizer output. Confusion
networks and probabilistic Earley parsing are well known
in the speech recognition literature [11, 17], and stochastic
context free grammars have recently been proposed for plan
recognition in other domains [3, 13]. Plans and intentions
have long been recognized as important elements of natu-
ral language understanding, but related work is restricted
to non-situated language systems that assume all necessary
information is available from the words themselves [4, 1].

2. DOMAIN AND DATA COLLECTION
Current day multi-user graphical role playing games pro-

vide a rich interaction environment that includes rooms and
exterior areas, everyday objects like chairs, doors and chests,
possessions, character traits and other players’ avatars. All
of these can be acted upon by a player, be it through tak-
ing direct action on the world or through speaking with
other players. We are using a commercial game, Never-
winter Nights (http://nwn.bioware.com), that includes an
editor allowing the creation of custom game worlds.

Chest
Lever Door

Fire Bowl

Figure 1: A diagram of the map used for data col-
lection, with dashed lines indicating dependencies
between objects.

For the work presented here, we designed a two player
game module structured around a puzzle. To simplify dia-
logue aspects of the data, we only allow one of the players
to speak. The other (played by the experimenter), is in the
same real-world room as the first player (the study partic-
ipant), but does not speak and does not act autonomously
- he or she only does as instructed. In this way we re-
strict interaction to be similar to what commanding an in-
telligent but passive machine controlled character would be
like. However, we do not restrict the language used in any
way (except indirectly through the choice of puzzle), and
the speaking study participant knows that a human being
is listening to his or her commands. The game, puzzle and
annotation methods are described in more detail in [6].



Figure 1 shows the map of the puzzle used for data col-
lection. Both players’ avatars start in the large room in the
bottom half of the map. The coloured symbols in the map
represent objects (explained in the map legend), whereas
the dashed arrows indicate the dependencies between ob-
jects that must be followed to solve the puzzle. The overall
goal is to light both fire bowls at the same time. The players
were only told about this overall goal, without knowing how
to accomplish it. One chest contains a key that unlocks the
second chest, which in turn contains a key that unlocks one
of the doors. One of the levers opens the door to the second
chest, whereas the other two levers (one behind the second
door) light a fire bowl each. The puzzle cannot be solved by
a single player due to timing constraints: the right door on
the map can be opened with one of the levers, but it closes
again after a short time, making it impossible for the same
person to pull the lever and run through the door. Similarly,
each fire bowl extinguishes itself after a few seconds unless
both are lit, making it impossible for a single person to light
both quickly enough. Participants usually solved the puzzle
within 15 minutes.

During data collection, we recorded player’s in-game ac-
tions, and his or her speech using a head-worn microphone.
We ran an utterance segmenter on the recorded audio, which
produced 554 speech segments across 6 sessions [19]. We
manually transcribed the utterances, yielding 200 utterances
that were not pure noise, off topic (such as requests for help
with playing the game), or commands (such as self-reporting
by some players). The average length of these utterances is
7 words. For each session we built a closed vocabulary tri-
gram language model for the speech recognizer using the
transcripts from the other sessions. The confusion networks
generated by the speech recognizer have on average 23 con-
fusion sets (explained in Section 3.1). Most of the extra
hypothesized word slots stem from silences and noise within
or around the actual speech utterance. In this paper, we
only concentrate on a specific subset of 90 utterances that
contain noun phrases directly referring to a physical object
in the game world, such as “activate the lever for me” or
“can you come over here and pick this”, but not “do that
again” or “on the left”.

To train a probabilistic context free grammar, we pre-
parsed the transcripts with the Stanford Parser [10] using a
standard grammar for written English that does not handle
many aspects of the spontaneous speech in our utterances.
We then corrected the produced parse trees manually and
used the trees of five sessions to learn a grammar for the re-
maining one. Finally, we abstracted the event traces of each
data collection session into a higher level description that
only contains the crucial events such as object interactions
and room changes. We hand-crafted a grammar that cap-
tures the sequence of events necessary to solve the puzzle in
a hierarchical fashion, including multiple ways to solve the
puzzle (e.g. opening a door to let the other character into
a room vs. asking him to open the door). The grammar
also includes sets of rules that have NOOP (a ’skip’ symbol)
as a symbol to handle exploration by the player. We then
estimated probabilities for this grammar using rule counts
from the sessions other than the one being tested.

3. HANDLING AMBIGUITY OF FORM

3.1 Speech Recognition
We use the Sphinx 4 speech recognizer as a front end

for FUSS (http://cmusphinx.sourceforge.net/sphinx4/ ). We
have augmented this speech recognizer with confusion net-
work generation facilities. Sausages are compact representa-
tions of possible hypotheses [11]. Each confusion set spans
exactly one word slot, containing all words that might have
occurred over that period based on the speech recognizer’s
acoustic and language models. Each word hypothesis is as-
sociated with a corresponding posterior probability, where
the posteriors of all possible hypotheses in one set sum to
one. We call the confusion sets C0...Cn. For the results
reported here we used an efficient network construction al-
gorithm based on the maximum a posteriori path [9]. The
resulting source code is now publicly available as part of
the Sphinx 4 distribution. Figure 2 shows part of a net-
work from the data for the spoken utterance “Can you open
the gate again.” Nodes are shown in order of decreasing
probability from top to bottom with the correct node high-
lighted in each confusion set. “<noop>” and “<sil>” are
special words that stand for a possible word skip and a si-
lence word, respectively. The example shows that the cor-
rect word is often not the one with the highest probability,
and that confusion varies from a single word choice to more
than 10 choices.

3.2 Probabilistic Parsing
We use a probabilistic Earley parser to syntactically parse

confusion networks [5, 17]. This parser defines parsing states
Si = i : kX → λ.µ [α, γ], indicating that before word i of the
utterance the parser has predicted and advanced grammar
rule X → λµ beyond the (possibly empty) string of sym-
bols λ in the tail (position indicated by the dot), starting
at word k in the utterance. The state carries the forward
probability α, representing P (C0...Ci−1, S|G) the probabil-
ity of the utterance up to position i−1 and the parser being
in state Si at position i given the probabilistic context free
grammar G being used for parsing. Similarly, γ is the inner
probability P (Ck...Ci−1, Si|G). These quantities are analo-
gous to the quantities of the same name defined for Hidden
Markov Models [14], and the forward probability for most
states is not technically a probability, see Stolcke [17]. An
Earley parser starts with an initial state that produces a top
level symbol (such as “S”) for the grammar, and parsing is
successful if the parser produces a final state for the same
rule, with the tail completed. Both the forward an backward
probability of this state correspond to P (C0...Cn|G, i.e. the
probability of the confusion network given the grammar.

We now discuss a few modifications we applied to the
standard Earley algorithm, some covered by Stolcke [17].
As indicated above, we offer each word in a confusion set at
position i as a possible word in that position, and multiply
a state’s probabilities by the probability of the word in the
confusion set. This incorporates the speech recognizer hy-
potheses directly into the parsing process and weighs them
by the speech recognizer’s acoustic and language model, ef-
fectively conditioning all probabilities produced during pars-
ing on these models.

As speech is often noisy and grammatically incorrect, we
also seed each parse position with an initial state, effectively
causing the parser to work like a bottom-up parser so that
it finds any grammatical substrings of the input. Currently,
this modification is necessary because we only ground sen-
tence fragments in the situation model, as opposed to com-
plete sentences. We do not make this modification for our
later use of the parser in plan recognition, because we are
specifically interested in predicted probabilities in that case.



Figure 2: A part of a confusion network produced by Sphinx 4 for the utterance “Can you open the gate
again”.

At the end of a parse we search through the states produced
for the most probable top level state that covers the largest
portion of the confusion network. When performing seman-
tic grounding, we also require such a state to have valid
grounding probabilities (see below).

Finally, we automatically augment the grammar by split-
ting each rule N → t, where t is a terminal, into three
rules using a new non-terminal NOOP: the original rule,
N → NOOP t and N → tNOOP. We add rules NOOP →
<noop> and NOOP → NOOP NOOP, and estimate the
probabilities of all these rules by counting the number of in-
dividual and pairs of <noop> symbols along the best paths
of all confusion networks. In effect, this allows every termi-
nal to be replaced with any number of skips preceding or
following the terminal.

4. HANDLING AMBIGUITY OF CONTENT

4.1 Aspects of a Situation Model
A situation model for language grounding must capture

many aspects of the context of an utterance. The physical
context is important, as it provides possible referents such
as objects as well as spatial features such as distance to dis-
ambiguate expressions such as “to the left of” or “near”. As
important as the physical context is the intentional context,
which includes the speakers’ plans and goals. An utterance
like “can you help me with this?” can likely not be under-
stood without both of these aspects of a situation model.

The situation model we use for the game setting includes
information about the physical objects within the game,
such as their location and type (whether the object is, for
example, a chest or a lever). On the intentional level, the
model currently consists of a set hierarchical plan fragments
as provided by a probabilistic context free grammar parser
parsing the event trace of the game session up to the cur-
rent time. These plan fragments let us capture the past and
predict the future of the current game session and indicate
the goals held by a player on several levels of abstraction.
Actions and intentions thus range from the physical action
of activating a lever, to the intention of gaining access to
the chest that is behind the door the lever opens, to the
goal of having both fires lit at the same time by any means
necessary.

4.2 Semantic Grounding
Similar to other work on incremental semantic interpre-

tation during context free parsing [8], we let syntactic pars-
ing drive semantic interpretation and derive a (possibly in-

complete) interpretation for each syntactic constituent com-
pleted by the parser. As opposed to other approaches that
force the situation model to be uniform and symbolic [16],
the FUSS presented here makes no strong requirements of
the situation model, except that its binding to any given
constituent be expressible as a probability distribution (we
currently work with discrete distributions, but an extension
to continuous ones should be possible, just as it has been
for other probabilistic models). Of course, using a context
free grammar parser as the driver for semantic composition
does make strong assumptions about the independence of
semantic grounding and composition operations as well as
the incremental nature of language understanding.

The parser driven semantic grounding and composition
strategy discussed here derives from our prior work on vi-
sual grounding for referring expression [7]. We enrich the
lexicon to specify the words’ bindings to a situational model
and their compositional behaviour. The grammar stays un-
changed. Each time the parser completes a state with a rule
that contains in its tail a terminal symbol, it calls on the
bindings stored in the lexicon to ground this word in the
situation model. For example, a word like “lever” would at
this point bind itself to the levers in the world by producing
a probability distribution over possible referents in which
levers are more likely than other objects. In the virtual
world of computer games we know a priori which objects
are levers, but in many real world applications such infor-
mation might be estimated from camera images or touch
sensors and will include a degree of uncertainty. The word’s
binding is assigned as a grounding for the head of the rule of
the completed state. In the case that a lexical item specifies
an argument structure that cannot be satisfied yet (e.g. for
“activate”, which needs an argument specifying what to ac-
tivate), the parser simply copies the potential binding with-
out attempting to ground the word in the situation model at
this stage. Lexical items can have any number of potential
bindings and argument structures specified, and each one
will be considered by the parser.

Every time the parser completes a higher level state that
has non-terminals in its tail, it searches through the bindings
of each symbol in the tail, looking for pending compositions
that use all symbols in the tail of the rule. For example, a
rule such as NP → DT NN that might be completed after
the fragment “this lever” would find an argument structure
for “this” that expects one argument to its right. As a first
pass, we have implemented an egocentric distance based in-
terpretation of “this”, that takes the bindings from “lever”
and scores them according to Tenenbaum’s word generaliza-
tion model [18]. This example also shows how the dynamic



bindings to the situation model allow for the interpretation
of efficient utterances such as “this chest”, which refers to
different objects given different player locations.

Using the situation model bindings of words, the parser
now effectively calculates P (R|Ck...i−1), the probability that
a segment of the confusion network refers to an entity R
in the situation model. Note that while our examples so
far have equated model entities with physical (or at least
in-game physical) objects, they can be arbitrarily complex
constructs in the model such as the action of a certain player
activating a certain lever, past or future actions of players
or players’ beliefs. We can now calculate

P (Ck...i−1|R) = P (R|Ck...i−1)P (Ck...i−1)/P (R)

where we calculate the prior term from the confusion net-
work path fragments used during semantic interpretation of
this segment. With appropriate independence assumptions
this can be used to combine parsing probabilities with ref-
erence probabilities:

P (Ck...i−1, Si|R, G) = P (Ck...i−1|R)P (Ck...i−1, Si|G)

, which with one more application of Bayes’ theorem yields
the sought after

P (R|Ck...i−1, Si, G) =
P (Ck...i−1, Si|R, G)P (R)

P (Ck...i−1, Si|G)

namely the probability that a fragment of the confusion net-
work produced at a certain point in the parse refers to an
entity in the situation model, incorporating all available in-
formation. If Si is the final state corresponding to the initial
seed state, this represents the probability of a fragment of
the confusion network referring to a specific entity. We will
show a use for non-uniform reference priors in the next sec-
tion.

4.3 Plan Recognition
The puzzle described in Section 2 encourages the use of

efficient language: there are few objects with easily identi-
fiable functionality that are used repeatedly and towards a
known goal. Interestingly, due to the tight spatial arrange-
ment and the fact that players often have to be in different
rooms leading to lack of visual contact between the avatars,
there were relatively few egocentric spatial descriptions with
respect to either character (such as “the lever next to you”).
In fact, despite there being at least two possible referents for
every simple noun, participants often underspecified as in
“pull the lever”. Our hypothesis for how successful commu-
nication is possible in spite of ambiguous speech utterance
relies on player’s knowledge of past actions and future plans.
After a short time, players know the function of the differ-
ent objects and incorporate them into partial plans. When
engaged in such a shared plan fragment, there is no need
to spatially disambiguate object references, because they al-
ready are disambiguated due to plan knowledge.

To test this hypothesis, and to show that the FUSS pre-
sented here not only successfully resolves object references
given a noisy speech signal, but can also incorporate pri-
ors due to more sophisticated situation modelling, we re-use
the Earley parser described above in its predictive mode to
recognize a player’s plan.

Due to the predictive nature of the Earley parser it is
possible to estimate the probability of a symbol being parsed
at the next step by summing the forward probabilities of all
states with a dot to the left of that symbol in the current

Accuracy
Full Understanding 50/90 (56%)
Physical Baseline 27/90 (30%)
Plan Recognition Baseline 21/90 (23%)
Random Baseline 1/7 (14%)

Table 1: Understanding Results and Baselines

parsing slot. During plan recognition, this lets us predict
which objects the player will likely want the other character
interact with next, namely those that are involved in actions
estimated as likely in the next steps of the plans currently in
progress. We use these predictions, summed and normalized
across objects, as priors P (R) for semantic parser.

5. RESULTS
Figure 3 shows the disambiguation of the confusion net-

work in Figure 2. The relevant words of the network are at
the top of the figure, followed by a few of the constituents
the linguistic parser assigns to them (the full chart contains
thousands of states). The parser finds the long and highly
probably phrase shown here, and the physical binding of
“gate” produces the highly skewed probability distribution
on the left, where the two bars correspond to the two doors
in the puzzle. At the bottom of the figure is another partial
parse, this time of the event stream. The solidly outlined
boxes correspond to the last few events and constituents
found, whereas the boxes with dashed outlines are predicted
constituents. Thus, the player has just asked for the first
chest (chest 4) to be unlocked, and has retrieved the Chest
Key from it. It stands to reason that he or she will now at-
tempt to access the second chest to use this key (and acquire
the Door Key in the process), and the plan parser properly
predicts this. To do so, the player must enter the East room,
and the parser thus predicts that he or she will next ask the
other player to pull the lever that opens the door. Whether
this will be expressed by referring to the lever or the door
itself is arbitrary, thus the probability distribution produced
by the plan recognizer at this stage is confused between the
two objects as likely referents. Merging the two distributions
as described above yields a clear target.

The speech recognizer has a 50% word error rate due to
the spontaneous nature of the speech, and the very small
training set for the language model. The oracle, the path
through each confusion network that produces the fewest
word errors, achieves about 23% word error rate. As can
be expected from the small training set, the speech recog-
nizer performs somewhat worse than currently state-of-the-
art spontaneous speech recognition at 50%. However, be-
cause we are using the full confusion network during pars-
ing the oracle, which yields a better word error rate than
current spontaneous speech recognition results, is in many
ways the more important recognizer performance measure.

As baselines, we predicted an utterance’s referent using
only the parsing and binding to the physical game world
and using only the predictions made by the plan recognizer.
If any prediction methods produced indistinguishable num-
bers for any referents, we counted the result according to
a hypothetical random guess between the offered referents.
Table 1 shows the percentages of correct referents achieved
by the full understanding system, the two partial baselines,
and a purely random baseline (choosing with equal likeli-
hood amongst the 7 possible referents of three levers, two
chest and two doors). Clearly, neither the primitive lin-
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Figure 3: An example linguistic and plan parse fragment showing disambiguation of the network in Figure 2.

guistic and physical reference we used nor the guesses pro-
duced by plan recognition alone suffice to make good ref-
erent choices. Combining them shows a large improvement
(about 50% improvement over either partial baseline) in cor-
rect referent determination, especially in the face of the very
noisy speech signal used and the poverty of linguistic binding
to the physical situation. This improvement supports our
argument for the importance of combining functional and
referential elements during speech understanding. Many re-
maining errors are due to mis-recognition by the speech rec-
ognizer and would be helped by a larger training set, some
errors could be addressed with more sophisticated semantic
composition while grounding in the physical world along the
lines of our previous work [7] and some need a richer inte-
gration of the intentional model, such as those that refer to
plan fragments.

6. CONCLUSION
We have presented FUSS, a framework that handles both

ambiguity of form and ambiguity of content in understand-
ing spontaneous speech. Using speech confusion networks
and probabilistic parsing, we have shown that the frame-
work can capture and concisely represent the ambiguities of
form inherent in the speech signal. On the content side, we
have argued for the importance of taking into account refer-
ence as well as functional and intentional meaning of speech.
Within FUSS, we have demonstrated the beginnings of a sit-
uational model that touches both on the physical situation
and the currently held plans of the speaker, and uses both to
disambiguate efficient speech. Our preliminary results show
an improvement in reference resolution when using these
combined influences.

Beyond more linguistically and referentially sophisticated
parsing and situation models, which are lacking in the work
presented here (for example, many of the remaining utter-
ances could be disambiguated by properly interpreting the
spatial language used in them), there are many open ques-
tions in the plan recognition side of this work and its inte-
gration into the understanding process. For example, plan
fragments often seem to serve not only as predictive tools,
but also as direct speech reference as in “do that again”. In
other cases, players smoothly go from utterances like “pull
the lever for me” to “open the door” to “hit me again” to
“let me out” (all asking the other player to perform the same
action), a progression touching on the physical and planning
realms mentioned here, but also including aspects of spatial
confinement and change of language due to shared expe-
rience and repetition. We hope to address many of these
elements in making the next iteration of a FUSS.
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