
 page 1: Proceedings of SIGGRAPH '01

BEAT: the Behavior Expression Animation Toolkit

 Justine Cassell, Hannes Vilhjálmsson, Timothy Bickmore

 MIT Media Lab 20 Ames St., E15-315

 Cambridge, MA 02139 USA

 +1 617 253 4899

 {justine, hannes, bickmore}@media.mit.edu

ABSTRACT

The Behavior Expression Animation Toolkit (BEAT) allows
animators to input typed text that they wish to be spoken by an
animated human figure, and to obtain as output appropriate and
synchronized nonverbal behaviors and synthesized speech in a
form that can be sent to a number of different animation systems.
The nonverbal behaviors are assigned on the basis of actual
linguistic and contextual analysis of the typed text, relying on
rules derived from extensive research into human conversational
behavior. The toolkit is extensible, so that new rules can be
quickly added. It is designed to plug into larger systems that may
also assign personality profiles, motion characteristics, scene
constraints, or the animation styles of particular animators.
Keywords

Animation Systems, Facial Animation, Speech Synthesis

1. INTRODUCTION
The association between speech and other communicative
behaviors causes particular challenges to procedural character
animation techniques. Increasing numbers of procedural
animation systems are capable of generating extremely realistic
movement, hand gestures, and facial expressions in silent
characters. However, when voice is called for, the issues of
synchronization and appropriateness render disfluent otherwise
more than adequate techniques. And yet there are many cases
where we may want to animate a speaking character. Cartoon
political rallies or cocktail party scenes, for example, demand a
crowd of speaking and gesturing virtual actors. While
spontaneous gesturing and facial movement occurs naturally and
effortlessly in our daily conversational activity, when forced to
think about such associations between nonverbal behaviors and
words in explicit terms a trained eye is called for. For example,
untrained animators, and autonomous animated interfaces, often
generate a pointing gesture towards the listener when a speaking
character says “you”. (“If you want to come with me, get your

coat on”). A point of this sort, however, never occurs in life (try
it yourself and you will see that only if “you” is being contrasted
with somebody else might a pointing gesture occur) and, what is
much worse, makes an animated speaking character seem stilted,
as if speaking a language not her own. In fact, for this reason,
many animators rely on video footage of actors reciting the text,
for reference or rotoscoping, or more recently, rely on motion
captured data to drive speaking characters. These are expensive
methods that may involve a whole crew of people in addition to
the expert animator. This may be worth doing for characters that
play a central role on the screen, but is not as justified for a
crowd of extras.

In some cases, we may not even have the opportunity to handcraft
or capture the animation. Embodied conversational agents as
interfaces to web content, animated non-player characters in
interactive role playing games, and animated avatars in online
chat environments all demand some kind of procedural
animation. Although we may have access to a database of all the
phrases a character can utter, we do not necessarily know in what
context the words may end up being said and may therefore not
be able to link the speech to appropriate context sensitive
nonverbal behaviors beforehand.

BEAT allows one to animate a human-like body using just text
as input. It uses linguistic and contextual information contained
in the text to control the movements of the hands, arms and face,
and the intonation of the voice. The mapping from text to facial,
intonational and body gestures is contained in a set of rules
derived from the state of the art in nonverbal conversational
behavior research. Importantly, the system is extremely
permeable, allowing animators to insert rules of their own
concerning personality, movement characteristics, and other
features that are realized in the final animation. Thus, in the
same way as Text-to-Speech (TTS) systems realize written text
in spoken language, BEAT realizes written text in embodied
expressive behaviors. And, in the same way as TTS systems are
permeable to trained users, allowing them to tweak intonation,
pause-length and other speech parameters, BEAT is permeable to
animators, allowing them to write particular gestures, define new
behaviors and tweak the features of movement.

The next section gives some background to the motivation for
BEAT. Section 3 describes related work. Section 4 walks the
reader through the implemented system, including explaining the
methodology of text annotation, selection of nonverbal behaviors,
and synchronization. An extended example is covered in Section

LEAVE BLANK THE LAST 3.81 cm (1.5”)
 OF THE LEFT COLUMN ON THE FIRST PAGE

 FOR THE COPYRIGHT NOTICE

page 2: Proceedings of SIGGRAPH '01

5. Section 6 presents our conclusions and describes possible
directions for future work.

2. CONVERSATIONAL BEHAVIOR
To communicate with one another, we use words, of course, but
we also rely on intonation (the melody of language), hand
gestures (beats, iconics, pointing gestures [23]), facial displays
(lip shapes, eyebrow raises), eye gaze, head movements and body
posture. The form of each of these modalities – a rising tone vs.
a falling tone, pointing towards oneself vs. pointing towards the
other – is essential to the meaning. But the co-occurrence of
behaviors is equally important. There is a tight synchrony among
the different communicative modalities in humans. Speakers
accentuate only the important words by speaking more forcefully,
gesture along with the word that a gesture illustrates, and turn
their eyes towards the listener when coming to the end of a
thought. Meanwhile listeners nod within a few hundred
milliseconds of when the speaker’s gaze shifts. This synchrony is
essential to the meaning of conversation. Speakers will go to
great lengths to maintain it (stutterers will repeat a gesture over
and over again, until they manage to utter the accompanying
speech correctly) and listeners take synchrony into account in
what they understand. (Readers can contrast “this is a stellar
siggraph submission” [big head nod along with “stellar”] with
“this is a . . . stellar siggraph submission” [big head nod during
the silence]). When synchrony among different communicative
modalities is destroyed, as in low bandwidth videoconferencing,
satisfaction and trust in the outcome of a conversation is
diminished. When synchrony among different communicative
modalities is maintained, as when one manages to nod at all the
right places during the Macedonian policeman’s directions,
despite understanding not a word, conversation comes across as
successful.

Although all of these communicative behaviors work together to
convey meaning, the communicative intention and the timing of
all of them are based on the most essential communicative
activity, which is speech. The same behaviors, in fact, have
quite different meanings, depending on whether they occur along
with spoken language or not, and similar meanings are expressed
quite differently when language is or is not a part of the mix.
Indeed, researchers found that when people tried to tell a story
without words, their gestures demonstrated entirely different
shape and meaning characteristics – in essence, they began to
resemble American Sign Language – as compared to when the
gestures accompanied speech [23].

Skilled animators have always had an intuitive grasp of the form
of the different communicative behaviors, and the synchrony
among them. Even animators, however, often turn to rotoscoping
or motion capture in cases where the intimate portrayal of
communication is of the essence.

3. RELATED WORK
Until the mid-1980s or so, animators had to manually enter the
phonetic script that would result in lip-synching of a facial model
to speech (c.f. [26]). Today we take for granted the ability of a
system to automatically extract (more or less beautiful)
“visemes” from typed text, in order to synchronize lip shapes to
synthesized or recorded speech [33]. We are even able to
animate a synthetic face using voice input [6] or to re-animate

actual videos of human faces, in accordance with recorded audio
[7]. [27] go further in the direction of communicative action and
generate not just visemes, but also syntactic and semantic facial
movements. And the gains are considerable, as “talking heads”
with high-quality lip-synching significantly improve the
comprehensibility of synthesized speech [22], and the willingness
of humans to interact with synthesized speech [25], as well as
decrease the need for animators to spend time on these time-
consuming and thankless tasks.

Animators also spend an enormous amount of effort on the
thankless task of synchronizing body movements to speech,
either by intuition, or by using rotoscoping or motion capture.
And yet, we still have seen no attempts to automatically specify
“gestemes” on the basis of text or to automatically synchronize
(“body-synch”) those body and face behaviors to synthesized or
recorded speech. The task is a natural next step, after the
significant existent work that renders communication-like human
motion realistic in the absence of speech, or along with text
balloons. Researchers have concentrated both on low-level
features of movement, and aspects of humans such as
intentionality, emotion, and personality. [5] devised a method of
interpolating and modifying existing motions to display different
expressions. [14] have concentrated on providing a tool for
controlling the expressive shape and effort characteristics of
gestures. Taking existing gestures as input, their system can
change the nature of how a gesture is perceived. [1] have
concentrated on realistic emotional expression of the body. [4]
and [3] have developed behavioral animation systems to generate
animations of multiple creatures with varying personalities
and/or intentionality. [8] constructed a system that portrays the
gestural interaction between two agents as they pass and greet
one another, and in which behavioral parameters were set by
personality attribute “sliders.” [29] concentrated on the
challenge of representing the personality of a synthetic human in
how it interacted with real humans, and the specification of
coordinated body actions using layers of motions defined relative
to a set of periodic signals.

There have also been a smaller number of attempts to synthesize
human behaviors specifically in the context of communicative
acts. [20] implemented a graphical chat environment that
automatically generates still poses in comic book format on the
basis of typed text. This very successful system relies on
conventions often used in chat room conversations (chat
acronyms, emoticons) rather than relying on the linguistic and
contextual features of the text itself. And the output of the
system depends on our understanding of comic book conventions
– as the authors themselves say “characters pointing and waving,
which occur relatively infrequently in real life, come off well in
comics.”

Synthesis of animated communicative behavior has started from
an underlying computation-heavy “intention to communicate”
[10], a set of natural language instructions [2], or a state machine
specifying whether or not the avatar or human participant was
speaking, and the direction of the human participant’s gaze [15].
However, starting from an intention to communicate is too
computation-heavy, and requires the presence of a linguist on
staff. Natural language instructions guide the synthetic human’s
actions, but not its speech. And, while the state of speech is

page 3: Proceedings of SIGGRAPH '01

essential, the content of speech must also be addressed in the
assignment of nonverbal behaviors.

In the current paper, we describe a toolkit that automatically
suggests appropriate gestures, communicative facial expressions,
pauses, and intonational contours for an input text, and also
provides the synchronization information required to animate the
behaviors in conjunction with a character's speech. This layer of
analysis is designed to bridge the gap between systems that
specify more natural or more expressive movement contours
(such as [14], or [28] and systems that suggest personality or
emotional realms of expression (such as [3] or [29]).

4. SYSTEM
The BEAT system is built to be modular and user extensible, and
to operate in real-time. To this end, it is written in Java, is based
on an input-to-output pipeline approach with support for user
defined filters and knowledge bases, and uses an XML tagging
scheme. Processing is decomposed into modules which operate
as XML transducers; each taking tagged text as input and
producing tagged text as output. XML provides a natural way to
represent information which spans intervals of text, and its use
facilitates modularity and extensibility. Each module operates by
reading in XML-tagged text (initially representing the text of the
character's script only), converting it into a parse tree,
manipulating the tree, then re-serializing the tree into XML
before passing it to the next module. The various knowledge
bases used in the system are also encoded in XML so that they
can be easily extended for new applications.

An overview of the system is shown in Figure 1. There are three
main processing modules: Language Tagging module, Behavior
Generation module and Behavior scheduling module. The
stages of XML translation produced by each of these modules are
shown in Figure 2. The Behavior Generation module is further
divided into a Suggestion module and a Selection module as our
approach to the generation process is to first suggest all plausible
behaviors and then use user modifiable filters to trim them down
to a set appropriate for a particular character. In Figure 1, user
definable data structures are indicated with dotted line boxes.
We will now discuss each of these components in turn.

Figure 1. BEAT System Architecture

4.1 Knowledge Base
A knowledge base adds some basic knowledge about the world to
what we can understand from the text itself, and therefore allows
us to draw inferences from the typed text, and consequently
specify the kinds of gestures that should illustrate it, and the

kinds of places where emphasis should be placed. Currently, the
knowledge base is stored in two XML files, one describing
objects and other describing actions. These knowledge bases are
seeded with descriptions of generic objects and actions but can
easily be extended for particular domains to increase the efficacy
of nonverbal behavior assignment.

The object knowledge base contains definitions of classes and
instances of objects. Figure 3 shows two example entries. The
first defines a new object class CHARACTER as a type of person
(vs. object or place) with two features: TYPE, describing whether
the professional is REAL or VIRTUAL; and ROLE, describing the
actual profession. Each feature value is also described as being
"normal" or "unusual" (e.g., a virtual person would be considered
unusual), which is important since people tend to generate iconic
gestures for the unusual aspects of objects they describe [34].
Each feature value can also provide a gesture specification which
describes the type of hand gesture that should be used to depict it
(as described below). The second knowledge base entry defines
an object instance and provides values for each feature defined
for the class.

The action knowledge base contains associations between
domain actions and hand gestures which can depict them. An

example entry is

Behavior
Suggestion Behavior

Scheduling Language
Tagging

Discourse Model Knowledge Base
Word Timing

Animation

Generator Set Translator

Behavior
Selection

Filter Set

Behavior Generation

ext Input

It is some kind of a virtual actor.

UTTERANCE

a. Input to Language Tagging Module
 UTTERANCE

CLAUSE

THEME

OBJECT

 ACTION

it
 is

RHEME

OBJECT
 OBJECT=PUNK1

some
 kind

 of
 a

 virtual
 actor

NEW

 NEW
 NEW

b. Output from Tagging Module / Input to Generation
Module

c. Output from Generation Module / Input to Scheduling Module

is
 it

TONE=L - H%

GAZE AWAY

some
 ki nd

 of

ACCENT=H*

EYEBROWS

GESTURE BEAT

a virtual
 actor

ACCENT=H*
 ACCENT=H*

EYEBROWS

GESTURE ICONIC

TONE=L - L%

GAZE TOWARDS

SPEECH PAUSE

UTTERANCE

d. Output from Scheduling Module (flattened tree)

<AnimEvent: GAZE w=1 t=0.0spec=AWAY_FROM_HEARER>
<AnimEvent: GAZE w=3 t=0.517 spec=TOWARDS_HEARER>
<AnimEvent: R_GESTURE_START w=3 t=0.517 spec=BEAT>
<AnimEvent: EYEBROWS_START w=3 t=0.517 spec=null>
<AnimEvent: L_GESTURE_START w=7 t=1.338 spec=ICONIC VIRTUAL >
<AnimEvent: R_GESTURE_START w=7 t=1.338 spec=ICONIC VIRTUAL >
<AnimEvent: EYEBROWS_START w=7 t=1.338 spec=null>
<AnimEvent: L_GESTURE_END w=9 t=2.249 spec=null>
<AnimEvent: R_GESTURE_END w=9 t=2.249 spec=null>
<AnimEvent: EYEBROWS_END w=9 t=2.249 spec=null>

Figure 2. XML Trees Passed Among Modules

page 4: Proceedings of SIGGRAPH '01

<ACTION NAME="MOVE" GESTURE="R hand=5, moves
from CC towards L …">

which simply associates a particular gesture specification with
the verb to move.

As mentioned above, the system comes loaded with a generic
knowledge base, containing information about some objects and
actions, and some common gestures. Gestures are specified
using a compositional notation in which hand shapes and arm
trajectories for each arm are specified independently. This makes
the addition of new gestures easier, since existing trajectories or
hand shapes can be re-used.

4.2 Language Tagging
The language module of the Toolbox is responsible for
annotating input text with the linguistic and contextual
information that allows successful nonverbal behavior
assignment and scheduling. The toolkit was constructed so that
animators need not concern themselves with linguistic analysis.
However, in what follows we briefly describe the few essential
fundamental units of analysis used in the system. The language
module automatically recognizes and tags each of these units in
the text typed by the user. It should be noted that much of what
is described in this section is similar to or, in some places
identical, to the kind of tagging that allows TTS systems to
produce appropriate intonational contours and phrasing along
with typed text [17]. Additional annotations are used here,
however, to allow not just intonation but also facial display and
hand gestures to be generated. And, these annotations will allow
not just generation, but also synchronization and scheduling of
multiple nonverbal communicative behaviors with speech.

The largest unit is the UTTERANCE, which is operationalized as
an entire paragraph of input. The utterance is broken up into
CLAUSEs, each of which is held to represent a proposition. To

detect clause boundaries the tagging module looks for
punctuation and the placement of verb phrases.

Clauses are further divided into two smaller units of information
structure, a THEME and a RHEME. The former represents the
part of the clause that creates a coherent link with a preceding

clause and the latter is the part that contributes some new
information to the discussion [16]. For example in the mini-
dialogue "who is he?" "he is a student", the "he is" part of the
second clause is that clause's theme and "student" is the rheme.
Identifying the rheme is especially important in the current
context since gestural activity is usually found within the rheme
of an utterance [9]. The language module uses the location of
verb phrases within a clause and information about which words
have been seen before in previous clauses to assign information
structure, following the heuristics described in [18].

The next to smallest unit is the word phrase, which in the current
implementation either describes an ACTION or an OBJECT.
These two correspond to the grammatical verb phrase and noun
phrase, respectively. Actions and objects are linked to entries in
the knowledge base whenever possible, as follows. For actions,
the language module uses the verb head of the corresponding
verb phrase as the key to look up an action description in the
action database. If an exact match for that verb is not found, it is
sent to an embedded word ontology module (using WordNet
[24]), which creates a set of hypernyms and those are again used
to find matching descriptions in the knowledge base. A
hypernym of a word is a related, but a more generic -- or broader
-- term. In the case of verbs, one can say that a certain verb is a
specific way of accomplishing the hypernym of that verb. For
example “walking” is a way of “moving”, so the latter is a
hypernym of the former. Expanding the search for an action in
the action database using hypernyms makes it possible to find
and use any descriptions that may be available for a super-class
of that action. The database therefore doesn’t have to describe
all possible actions, but can focus on high-level action categories.
When an action description match is found, a description
identifier is added to the ACTION tag.

For objects, the module uses the noun head as well as any
accompanying adjectives to find a unique instance of that object
in the object database. If it finds a matching instance, it adds the
unique identifier of that instance to the OBJECT tag.

The smallest units that the language module handles are the
words themselves. The tagger uses the EngLite parser from
Conexor (www.conexor.fi to supply word categories and lemmas
for each word. It also keeps track of all previously mentioned
words and marks each incoming noun, verb, adverb or adjective
as NEW if it has not been seen before. This “word newness”
helps to determine which words should be emphasized by the
addition of intonation, eyebrow motion or hand gesture [18].

Words can also stand in contrast to other words (for example “I
went to buy red apples but all they had were green ones”), a
property often marked with hand gesture and intonation and
therefore important to label. The language module currently
labels contrasting adjectives by using WordNet to supply
information about which words might be synonyms and which
might be antonyms to one another [18]. Each word in a contrast
pair is tagged with the CONTRAST tag.

In sum, the language tags that are currently implemented are:

• Clause

• Theme and rheme

• Word newness

<FEATURE NAME="TYPE">

<VALUEDESC NAME="REAL" ISNORMAL="TRUE">

<VALUEDESC NAME="VIRTUAL" ISNORMAL="FALSE"
 GESTURE="gesture specification goes here">
</FEATURE>

</CLASS>

Figure 3. Example Object Knowledge Base

<CLASS NAME="CHARACTER" ISA="PERSON">

<FEATURE NAME="ROLE">

<VALUEDESC NAME="ACTOR" ISNORMAL=”TRUE">

<VALUEDESC NAME="ANIMATOR" ISNORMAL="TRUE">

<INSTANCE NAME="PUNK1">

<VALUE FEATURE="ROLE" VALUE="ACTOR">

<VALUE FEATURE="TYPE" VALUE="VIRTUAL">

page 5: Proceedings of SIGGRAPH '01

• Contrast

• Objects and actions

4.3 Behavior Suggestion
The Behavior Suggestion module operates on the XML trees
produced by the Language Tagging module (such as the one
shown in Figure 2b) by augmenting them with suggestions for
appropriate nonverbal behavior. This augmentation is intended to
be liberal and all-inclusive; any nonverbal behavior that is
possibly appropriate is suggested independent of any other. The
resulting over-generated behaviors will be filtered down in the
next stage of processing to the final set to be animated. This
independence of behavior suggestions allows filters to be defined
for different personality types, situations, and scenes.

Behavior suggestion proceeds by applying each of an extensible
set of nonverbal behavior generators to all nodes in the XML tree
which meet criteria specified by each generator. When the
criteria are completely satisfied a suggestion is added to the
appropriate node. The pseudocode for the generator which
suggests beat gestures is shown in Figure 4 (behavior generators
are actually implemented in Java).
 FOR each RHEME node in the tree
 IF the RHEME node contains at least
 one NEW node
 THEN Suggest a BEAT to coincide
 with the OBJECT phrase

Figure 4. Example Behavior Generator

This pseudocode states that beat gestures are appropriate during
the description of objects (noun phrases), but only when those
objects are part of the rheme (new information) and contain new
words.

Behavior suggestions are specified with a tree node (defining the
time interval they are active for), priority (used for conflict
resolution), required animation degrees-of-freedom, and any
specific information needed to render them (e.g., gesture
specification). Suggestions also specify whether they can co-
articulate, i.e., occur during other behaviors which use the same
degrees of freedom. For example, beat gestures can co-articulate
with other gestures through the addition of a relative hand
displacement [10].

The current set of behavior generators implemented in the toolkit
includes the following:

4.3.1 Beat GestureGenerator
Beats, or formless handwaves, are a "default" gesture, in that
they are used when no additional form information is available to
generate a more specific kind of gesture, and they account for
roughly 50% of the naturally occuring gestures observed in most
contexts [23]. Thus, they are typically redundantly generated
when other types of gestures are appropriate, but they are given a
low priority relative to other types of gestures so that they will
only be selected when no other gestures are available. Like all
gestures that occur during speech, beats occur primarily during
the introduction of new material (rheme).

4.3.2 Surprising Feature Iconic Gesture Generator
A study of individuals describing house floor plans showed that
gestures representing some feature not described in
accompanying speech were used 80% of the time during the
description of house features which were "surprising" or unusual
in some way, [34]. Following these results, this generator
determines if any of the OBJECTS identified by the Tagger
within the RHEME have unusual features (based on information
in the object knowledge base), and for each generates an iconic
(representational) gesture based on the gesture specification
defined on the unusual feature value in the knowledge base.

4.3.3 Action Iconic Gesture Generator
This generator determines if there are any actions (verb phrase
roots) occurring within the RHEME for which gestural
descriptions are available in the action knowledge base. For each
such action, an iconic gesture is suggested with the gesture
specification used from the knowledge base.

4.3.4 Contrast Gesture Generator
The tagger identifies objects which contrast with other nearby
objects (e.g., "Are you a good witch or a bad witch?"). Such
objects (even if they occur within a THEME) are typically
marked with either beats or a "contrastive gesture" if there are
exactly two such objects being contrasted (gestures literally of
the form "on the one hand…on the other hand") [11]. This
generator suggests beats for contrast items unless there are
exactly two items being contrasted, in which case the special
contrast gesture is suggested.

4.3.5 Eyebrow Flash Generator
Raising of eyebrows can also be used to signal the introduction of
new material [27]. This generator suggests raising the character's
eyebrows during the description of OBJECTs within the
RHEME.

4.3.6 Gaze Generator
[12] studied the relationship between eye gaze, theme/rheme,
and turn-taking, and used these results to define an algorithm for
controlling the gaze behavior of a conversational character. The
gaze generator implements this algorithm is shown in Figure 5.
 FOR each THEME
 IF at beginning of utterance OR
 70% of the time
 Suggest Gazing AWAY from user
 FOR each RHEME
 If at end of utterance OR 73% of the time
 Suggest Gazing TOWARDS the user

Figure 5. Algorithm for controlling conversational gaze

4.3.7 Intonation Generator
The intonation generator implements three different strategies for
controlling a Text-To-Speech (TTS) engine. The first strategy
assigns accents and boundary tones based on a theme-rheme
analysis, as described by [30] and shown in Figure 6.
 Within THEME:
 Suggest L+H* accent for NEW objects
 Suggest LH% boundary tone at end of THEME
 Within RHEME:
 Suggest H* accent on NEW objects
 Suggest LL% boundary tone at end of RHEME
Figure 6. Algorithm for accent and boundary tone generation

page 6: Proceedings of SIGGRAPH '01

The second intonation strategy suggests H* accents for all
CONTRAST objects identified by the Tagger, following [30].
The final intonation strategy simply suggests TTS pauses at
CLAUSE boundaries.

4.4 Behavior Selection
The Behavior Selection module analyzes the tree that now
contains many, potentially incompatible, gesture suggestions, and
reduces these suggestions down to the set that will actually be
used in the animation. The selection process utilizes an
extensible set of filters which are applied to the tree in turn, each
of which can delete behavior suggestions which do not meet its
criteria. In general, filters can reflect the personalities, affective
state and energy level of characters by regulating how much
nonverbal behavior they exhibit. Currently, two filter strategies
are implemented: conflict resolution and priority threshold.

4.4.1 Conflict Resolution Filter
The conflict resolution filter detects all nonverbal behavior
suggestion conflicts (those which physically cannot co-occur) and
resolves the conflicts by deleting the suggestions with lower
priorities. Conflicts are detected by determining, for each
animation degree-of-freedom, the suggestions which co-occur and
require that degree-of-freedom, even if specified at different
levels of the XML tree. For each pair of such conflicting
suggestions (in decreasing order of priority) the one with lower
priority is deleted unless the two can be co-articulated (e.g., a
beat gesture on top of an iconic gesture).

4.4.2 Priority Threshold Filter
The priority threshold filter simply removes all behavior
suggestions whose priority falls below a user-specified threshold.

4.5 Behavior Scheduling and Animation
The last module in the XML pipeline converts its input tree into
a set of instructions which can be executed by an animation
system, or edited by an animator prior to rendering. In general,
there are two ways to achieve synchronization between a
character animation subsystem and a subsystem for producing the
character's speech (either through a TTS engine or from recorded
audio samples). The first is to obtain estimates of word and
phoneme timings and construct an animation schedule prior to

execution (see Figure 7). The second approach is to assume the
availability of real-time events from a TTS engine--generated
while the TTS is actually producing audio--and compile a set of
event-triggered rules to govern the generation of the nonverbal
behavior. The first approach must be used for recorded-audio-
based animation or TTS engines such as Festival [32], while the
second must be used with TTS engines such as Microsoft's
Whistler [19]. We have used both approaches in our systems, and
the current toolkit is capable of producing both kinds of
animation schedules, but we will focus our discussion here on
absolute-time-based scheduling with a TTS engine such as
Festival.

The first step in time-based scheduling is to extract only the text
and intonation commands from the XML tree, translate these into
a format for the TTS engine, and issue a request for word and
phoneme timings. In our implementation, the TTS runs as a
separate process. Thus part of the scheduling can continue while
these timings are being computed.

The next step in the scheduling process is to extract all of the
(non-intonation) nonverbal behavior suggestions from the tree,
translate them into an intermediate form of animation command,
and order them by word index into a linear animation proto-
schedule.

Once the word and phoneme timings become available, the
proto-schedule can be instantiated by mapping the word indices
into execution times (relative to the start of the schedule). The
schedule can then also be augmented with facial animation
commands to lip-sync the phonemes returned from the TTS
engine. Figure 8. shows a fragment of an animation schedule at
this stage of compilation.
<VISEME time=0.0 spec="A">
<GAZE word=1 time=0.0 spec=AWAY_FROM_HEARER>
<VISEME time=0.24 spec="E">
<VISEME time=0.314 spec="A">
<VISEME time=0.364 spec="TH">
<VISEME time=0.453 spec="E">
<GAZE word=3 time=0.517 spec=TOWARDS_HEARER>
<R_GESTURE_START word=3 time=0.517 spec=BEAT>
<EYEBROWS_START word=3 time=0.517>

Figure 8. Example Abstract Animation Schedule
Fragment

T=0: Begin Speech
T=27: Begin Behavior-1
T=32: Begin Behavior-2
T=44: End Behavior-2

Absolute Time Animation Plan

Begin Speech
IF Word-1-Event THEN Begin Behavior-1
IF Word-3-Event THEN Begin Behavior-2
IF Word-4-Event THEN End Behavior-2

Event-based Animation Plan

Behavior-1 Behavior-2

Utterance

Word-1 Word-2 Word-3 Word-4

Final Gesture Suggestions Event-based

Scheduling

Time-based

Scheduling

Text-To-Speech

Timing Estimates

Recorded Audio

Timing Analysis
-OR-

Figure 7. Scheduling Process

-OR-

page 7: Proceedings of SIGGRAPH '01

The final stage of scheduling involves compiling the abstract
animation schedule into a set of legal commands for whichever
animation subsystem is being used. This final compilation step
has also been modularized in the toolkit. In addition to simply
translating commands it must concern itself with issues such as
enabling, initializing and disabling different animation
subsystem features, gesture approach, duration and relax times
(the abstract schedule specifies only the peak time at start of
phrase and the end of phrase relax time), and any time offsets
between the speech production and animation subsystems.

Our current compilation target is a humanoid animation system
we have developed called Pantomime [13]. Pantomime animates
one or more VRML-defined characters (adhering to the H-ANIM
standard [31]) using a variety of motor skill modules, and
resolves any remaining conflicts in character degrees-of-freedom.
Pantomime can receive an animation schedule for the character,
with the schedules specifying motor skills to be executed at
specific times relative to the start of the schedule. Hand and arm
commands are treated specially, however, in that complete
motions for each hand and arm are computed prior to the start of
the schedule. As a result, motions through all specified keyframe
positions can be spline-smoothed for more natural looking
behavior. Overlayed onto all commanded motion is a tailorable
amount of Perlin noise on each character joint [28], and idle
motor skills (such as eye blinking) to provide a more life-like
character. Pantomime renders the final set of character joint
angles using OpenInventor.

4.6 EXTENSIBILITY
As described in the introduction, BEAT has been designed to fit
into a number of existent animation systems, or to exist as a layer
between lower-level expressive features of motion and higher-
level specification of personality or emotion. It has also been
designed to be extensible in several significant ways. First, new
entries can easily be made in the knowledge base to add new
hand gestures to correspond to domain object features and
actions. Second, the range of nonverbal behaviors, and the
strategies for generating them, can easily be modified by defining
new behavior suggestion generators. Behavior suggestion filters
can also be tailored to the behavior of a particular character in a
particular situation, or to a particular animator’s style. Animation
module compilers can be swapped in for different target
animation subsystems. Finally, entire modules can be easily re-
implemented (for example, as new techniques for text analysis
become available) simply by adhering to the XML interfaces.

One additional kind of flexibility to the system derives from the
ability to override the output from any of the modules simply by
including appropriate tags in the original text input. For
example, an animator could force a character to raise its
eyebrows on a particular word simply by including the relevant
EYEBROWS tag wrapped around the word in question, and this
tag will be passed through the Tagger, Generation and Selection
modules and compiled into the appropriate animation commands
by the Scheduler.

5. EXAMPLE ANIMATION
To demonstrate how the system works, in this section we walk
through a couple of example utterances. The full animated
example can be found on the accompanying video tape.

As a first example, we trace what happens when BEAT receives
as input the two subsequent sentences "It is some kind of a
virtual actor" and "You just have to type in some text, and the
actor is able to talk and move by itself". Lets look at each
sentence in turn.

The language tagging module processes the input first, and
generates an XML tree, tagged with relevant language
information as described in section 4.1. The output of the
language tagger is shown in Figure 2b. Of particular interest in
Sentence 1 is the classification of “a virtual actor” as an object
and the ability of the system to give it the unique identifier
PUNK1. This is because when looking for the object in the
knowledge base, it found under a user-defined type
CHARACTER, an instance of an ACTOR that in fact is of the
virtual type, this was the only instance matching on this attribute,
so the instance name PUNK1 was copied into the value of ID in
the object tag.

When the behavior generator receives the XML tree from the
language tagger, it applies generator rules to annotate the tree
with appropriate behaviors as described in section 4.3. Beats are
suggested for the object “some kind of” and the object “a virtual
actor” (previously identified as PUNK1) because these objects
are inside a rheme and contain new words. Eyebrow raising is
also suggested for these same objects and intonational accents
are suggested for all the new lexical items (words) contained in
those two objects (i.e. “kind”, “virtual” and “actor”). Eye gaze
behavior and intonational boundary tones are suggested based on
the division into theme and rheme. Of particular interest is the
suggestion for an iconic gesture to accompany PUNK1. This
suggestion was generated because, upon examining the database
entry for PUNK1, the generator found that one of its attributes,
namely the type, did not hold a value within a typical range.
That is, the value ‘virtual’ was not considered a typical actor
type. The form suggested for the gesture is retrieved from the
database entry for the value virtual; in this way the gesture
highlights the surprising feature of the object.

When the behavior selection module receives the suggestions
from the generator module, it notices that both a beat and an
iconic gesture were suggested for PUNK1. Using the rule of
gesture class priority (beats being the lowest class in the gesture
family), the module filters out the beat and leaves in the iconic.
No further conflicts are noticed and no further filters have been
included in this example. The resulting tree is shown in Figure
2c.

Lastly the behavior scheduling module compiles the XML tree,
including all suggestions not filtered out, into an action plan
ready for execution by an animation engine as described in
section 4.4. The final schedule (without viseme codes) is shown
in Figure 2d.

The second sentence is processed in much the same way. Part of
the output of the behavior generator is shown in Figure 9. Two
particular situations that arise with this sentence are of note.
The first is that the action, “to type in”, is identified by the

page 8: Proceedings of SIGGRAPH '01

 UTTERANCE
SPEECH PAUSE

GAZE AWAY

Are you a good

CONTRST=L

a bad

TONE=L - H%
GAZE TOWARDS
TONE=L - L%

CONTRST=R
EYEBROWS

witch witch
ACCT=H* H* H*

or

EYEBROWS

U T T E R A N C E
S P E E C H P A U S E

G A Z E A W A Y

Are you a good

C O N T R S T = L

a bad

T O N E = L -H %
G A Z E T O W A R D S
T O N E = L -L %

C O N T R S T = R
E Y E B R O W S

w itchw itch

A C C T = H * H * H *

or

language module because an action description for typing is
found in the action database. Therefore the gesture suggestion
module can suggest the use of an iconic gesture description,
because the action occurs within a rheme. See Figure 10. for a
snapshot of the generated “typing” gesture. The second one is
that although PUNK1 (“the actor”) was identified again, no
gesture was suggested for this object at this time because it is
located inside a theme as opposed to a rheme part of the clause.

Figure 9. Part of the output XML tree for first example

Figure 10. “You just have to type in some text…”

As an example of a different kind of a nonverbal behavior
assignment, let’s look at how the system processes the sentence
“Are you a good witch or a bad witch?”. The output of the
behavior generation module is shown in Figure 11. As well as
suggesting the typical behaviors seen in the previous examples,
here the language tagger has identified two contrasting adjectives
in the same clause, “good” and” bad.” They have been assigned
to the same contrast group. When the gesture suggestion module
receives the tagged text, generation rules suggest a contrast
gesture on the “a good witch” object and on the “a bad witch”
object. Furthermore, the shape suggested for these contrast
gestures is a right hand pose for the first object and a left hand
pose for the second object since there are exactly two members of
this contrast group. When filtering, the gesture selection module
notices that the contrasting gestures were scheduled to peak at
exactly the same moment as a couple of hand beats. The beats
are filtered out using the gesture class priority rule, deciding that
contrasting gestures are more important than beats. See Figure
12. for a snapshot of the contrast gesture.

Figure 12. “Are you a good witch or a bad witch?”

6. CONCLUSIONS / FUTURE WORK
The BEAT toolkit is the first of a new generation (the beat
generation) of animation tool that extracts actual linguistic and
contextual information from text in order to suggest correlated
gestures, eye gaze, and other nonverbal behaviors, and to
synchronize those behaviors to one another. For those animators
who wish to maintain the most control over output, BEAT can be
seen as a kind of “snap-to-grid” for communicative actions: if
animators input text, and a set of eye, face, head and hand
behaviors for phrases, the system will correctly align the
behaviors to one another, and send the timings to an animation
system. For animators who wish to concentrate on higher level
concerns such as personality, or lower level concerns such as
motion characteristics, BEAT takes care of the middle level of
animation: choosing how nonverbal behaviors can best convey
the message of typed text, and scheduling them.

While the automated specification of nonverbal behavior
demonstrated here is no doubt inferior to rotoscoping, motion
capture, or the skilled eye of a trained animator, it may be

UTTERANCE

SPEECH PAUSE

GAZE AWAY

You just have to type

GESTURE BEAT

some and the actor …

TONE=L-H%
GAZE TOWARDS
TONE=L-L%

GESTURE ICONIC
EYEBROWS EYEBROWS

SPEECH PAUSE

GAZE AWAY
TONE=L-H%

ACCT=H* ACCT=H*

textin

Figure 11. The output XML tree for second example

page 9: Proceedings of SIGGRAPH '01

adequate for many purposes. Certainly, this kind of automated
specification improves over the hand-animated associations
between language and nonverbal behavior used in many current
web-based agents, or other autonomous systems. It also provides
a first pass at the desired behaviors in those cases where manual
improvement can follow up. The system is meant to suggest a
baseline that without any tweaking will at least appear plausible,
but it invites the input of an animator at any stage to affect the
final output.

Future work includes more extensive automatic linguistic tagging
and additional inferencing, relying further on WordNet or even
on a database of common sense knowledge, such as Cyc [21]. In
addition further work is needed on the notion of the gesture
ontology, including some basic spatial configuration gesture
elements. As it stands, hand gestures cannot be assembled out of
smaller gestural parts, nor can they be shortened. When gesture
descriptions are read from the knowledge base, they are currently
placed in the animation schedule unchanged. The Behavior
Scheduler makes sure the stroke of the gesture aligns with the
correct word, but does not attempt to stretch out the rest of the
gesture, for instance to span a whole phrase that needs to be
illustrated. Similarly, it does not attempt to slow down or pause
speech to accommodate a complex gesture, a phenomenon
observed in people. Finally, additional nonverbal behaviors
should be added: wrinkles of the forehead, smiles, ear wiggling.
The system will also benefit from a visual interface that displays
a manipulatable timeline where either the scheduled events
themselves can be moved around or the rules behind them
modified.
In the meantime, we hope to have demonstrated that the
animator's toolbox can be enhanced by the knowledge about
gesture and other nonverbal behaviors, turntaking, and linguistic
structure that are incorporated and (literally) embodied in the
Behavior Expression Animation Toolkit.

7. REFERENCES

[1] Amaya, K., Bruderlin, A., and Calvert, T., Emotion
from motion. Proc. Graphics Interface'96, pp. 222-229,
, 1996.

[2] Badler, N., Bindiganavale, R., Allbeck, J., Schuler, W.,
Zhao, L., and Palmer., M., Parameterized Action
Representation for Virtual Human Agents., in
Embodied Conversational Agents, J. Cassell, J.
Sullivan, S. Prevost, and E. Churchill, Eds. Cambridge,
MA: MIT Press, 2000, pp. 256-284.

[3] Becheiraz, P. and Thalmann, D., A Behavioral
Animation System for Autonomous Actors personified
by Emotions, Proc. of the1st Workshop on Embodied
Conversational Characters, 57-65, 1998.

[4] Blumberg, B. and Galyean, T. A., Multi-Level
Direction of Autonomous Creatures for Real-Time
Virtual Environments. Proc. SIGGRAPH '95, pp. 47-
54, Los Angeles, CA, 1995.

[5] Bodenheimer, B., Rose, C., and Cohen, M., Verbs and
Adverbs: Multidimensional Motion Interpolation, IEEE

Computer Graphics and Applications, vol. 18 (5), pp.
32-40, 1998.

[6] Brand, M., Voice Puppetry. Proc. SIGGRAPH '99, pp.
21-28, Los Angeles CA, 1999.

[7] Bregler, C., Covell, M., and Slaney, M., Video
Rewrite: driving visual speech with audio. Proc.
SIGGRAPH '97, pp. 353-360, Los Angeles, CA, 1997.

[8] Calvert, T., Composition of realistic animation
sequences for multiple human figures, in Making Them
Move: Mechanics, Control, and Animation of
Articulated Figures, N. Badler, B. Barsky, and D.
Zeltzer, Eds. San Mateo, CA: Morgan-Kaufmann, pp.
35-50, 1991.

[9] Cassell, J., Nudge, Nudge, Wink, Wink: Elements of
Face-to-Face Conversation for Embodied
Conversational Agents, in Embodied Conversational
Agents, J. Cassell, J. Sullivan, S. Prevost, and E.
Churchill, Eds. Cambridge: MIT Press, pp. 1-27, 2000.

[10] Cassell, J., Pelachaud, C., Badler, N., Steedman, M.,
Achorn, B., Becket, T., Douville, B., Prevost, S., and
Stone, M., Animated Conversation: Rule-Based
Generation of Facial Expression, Gesture and Spoken
Intonation for Multiple Conversational Agents. Proc.
Siggraph '94, pp. 413-420, Orlando, 1994.

[11] Cassell, J. and Prevost, S., Distribution of Semantic
Features Across Speech and Gesture by Humans and
Computers. Proc. Workshop on the Integration of
Gesture in Language and Speech, pp. 253-270,
Newark, DE, 1996.

[12] Cassell, J., Torres, O., and Prevost, S., Turn Taking vs.
Discourse Structure: How Best to Model Multimodal
Conversation, in Machine Conversations, Y. Wilks,
Ed. The Hague: Kluwer, pp. 143-154, 1999.

[13] Chang, J., Action Scheduling in Humanoid
Conversational Agents, M.S. Thesis in Electrical
Engineering and Computer Science. Cambridge, MA:
MIT, 1998.

[14] Chi, D., Costa, M., Zhao, L., and Badler, N., The
EMOTE model for effort and shape. Proc. SIGGRAPH
'00, pp. 173-182, New Orleans LA, 2000.

[15] Colburn, A., Cohen, M. F., and Drucker, S., The Role
of Eye Gaze in Avatar Mediated Conversational
Interfaces, MSR-TR-2000-81. Microsoft Research,
2000.

[16] Halliday, M. A. K., Explorations in the Functions of
Language. London: Edward Arnold, 1973.

[17] Hirschberg, J., Accent and Discourse Context:
Assigning Pitch Accent in Synthetic Speech. Proc.
AAAI 90, pp. 952-957, 1990.

[18] Hiyakumoto, L., Prevost, S., and Cassell, J., Semantic
and Discourse Information for Text-to-Speech
Intonation. Proc. ACL Workshop on Concept-to-Speech
Generation, Madrid, 1997.

page 10: Proceedings of SIGGRAPH '01

[19] Huang, X., Acero, A., Adcock, J., Hon, H.-W.,
Goldsmith, J., Liu, J., and Plumpe, M., Whistler: A
Trainable Text-to-Speech System. Proc. 4th Int'l. Conf.
on Spoken Language Processing (ICSLP '96), pp.
2387-2390, Piscataway, NJ, 1996.

[20] Kurlander, D., Skelly, T., and Salesin, D., Comic Chat,
Proc. of SIGGRAPH '96, pp. 225-236, 1996.

[21] Lenat, D. B. and Guha, R. V., Building Large
Knowledge-Based Systems: Representation and
Inference in the Cyc Project. Reading, MA: Addison
Wesley, 1990.

[22] Massaro, D. W., Perceiving Talking Faces: From
Speech Perception to a Behavioral Principle.
Cambridge, MA: MIT Press, 1987.

[23] McNeill, D., Hand and Mind: What Gestures Reveal
about Thought. Chicago, IL/London, UK: The
University of Chicago Press, 1992.

[24] Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D.,
and Miller, K., Introduction to Wordnet: An On-line
Lexical Database, 1993.

[25] Nagao, K. and Takeuchi, A., Speech Dialogue with
Facial Displays: Multimodal Human-Computer
Conversation. Proc. ACL-94, pp. 102-109., , 1994.

[26] Pearce, A., Wyvill, B., Wyvill, G., and Hill, D., Speech
and expression: a computer solution to face animation.
Proc. Graphics Interface, pp. 136-140, 1986.

[27] Pelachaud, C., Badler, N., and Steedman, M.,
Generating Facial Expressions for Speech, Cognitive
Science, 20(1), pp. 1–46, 1994.

[28] Perlin, K., Noise, Hypertexture, Antialiasing and
Gesture, in Texturing and Modeling, A Procedural
Approach, D. Ebert, Ed. Cambridge, MA: AP
Professional, 1994.

[29] Perlin, K. and Goldberg, A., Improv: A System for
Scripting Interactive Actors in Virtual Worlds,
Proceedings of SIGGRAPH '96, pp. 205-216, 1996.

[30] Prevost, S. and Steedman, M., Specifying intonation
from context for speech synthesis, Speech
Communication, vol. 15, pp. 139-153, 1994.

[31] Roehl, B., Specification for a Standard Humanoid,
Version 1.1, H. A. W. Group, Ed.
http://ece.uwaterloo.ca/~h-anim/spec1.1/, 1999.

[32] Taylor, P., Black, A., and Caley, R., The architecture of
the Festival Speech Synthesis System. Proc. 3rd ESCA
Workshop on Speech Synthesis, pp. 147-151, Jenolan
Caves, Australia, 1998.

[33] Waters, K. and Levergood, T., An Automatic Lip-
Synchronization Algorithm for Synthetic Faces. Proc.
of the 2nd ACM international conference on
Multimedia, pp. 149-156, San Francisco CA, 1994.

[34] Yan, H., Paired Speech and Gesture Generation in
Embodied Conversational Agents, M.S. thesis in the
Media Lab. Cambridge, MA: MIT, 2000.

