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Energy dissipation experienced by vibrating microcantilever beams immersed in fluid is strongly
dependent on the mode of vibration, with quality factors typically increasing with mode number.
Recently, we examined energy dissipation in a new class of cantilever device that embeds a
microfluidic channel in its interior—the fundamental mode of vibration only was considered. Due
to its importance in practice, we examine the effect of mode number on energy dissipation in these
microfluidic beam resonators. Interestingly, and in contrast to other cantilever devices, we find that
the quality factor typically decreases with increasing mode number. We explore the underlying
physical mechanisms leading to this counterintuitive behavior, and provide a detailed comparison to
experimental measurements for which good agreement is found. © 2010 American Institute of
Physics. �doi:10.1063/1.3514100�

I. INTRODUCTION

The sensitivity of nanomechanical devices to environ-
mental changes, such as mass and force loading,1–4 is con-
trolled by numerous factors including device mass and en-
ergy dissipation �damping�. To enhance sensitivity to loading
by minute masses, significant effort has been directed at min-
iaturization to the nanoscale.1,2 These developments have re-
sulted in tremendous improvements,1,2,5 with recent measure-
ments demonstrating atomic resolution mass sensing of the
heavier elements.6,7 Such measurements monitor the change
in resonant frequency of an elastic beam �e.g., carbon nano-
tube in Refs. 6 and 7� upon mass loading. Critically, these are
typically performed in vacuum, which minimizes damping
experienced by the beam. This ensures that frequency noise
is kept to a minimum, leading to maximum mass
sensitivity.1,4–7

In contrast to vacuum, operation of cantilever beam de-
vices in liquid presents significant challenges, due to greatly
enhanced energy dissipation.8,9 This strongly decreases the
quality factor �which is proportional to the reciprocal of the
energy dissipation�, and hence degrades both frequency and
mass resolution. Such effects are especially problematic in
the context of biomolecular and single cell mass sensing,
where operation in liquid is essential for many cases of prac-
tical interest. In an attempt to overcome this impediment, a
number of schemes have been proposed for operation of can-
tilever beams and nanomechanical devices in liquid.10–12 One
approach utilizes detection of the higher order modes of con-
ventional cantilever beams,10 since it is known that the qual-
ity factor typically increases with increasing mode
number8,10,13—fluid compressibility can modify this behav-

ior in gases.14 While this presents significant improvements
in comparison to operation in the fundamental mode, mass
sensitivity remains dramatically lower than measurements in
vacuum.

Recently, Burg et al.15 developed a new type of cantile-
ver sensor that embeds a microfluidic channel in its interior,
with the region surrounding the cantilever evacuated—these
devices are commonly called suspended microchannel
resonators;15,16 see Fig. 1. This results in a dramatic reduc-
tion in energy dissipation, and hence improvement in both
quality factor and mass sensitivity. Quality factors similar to
those exhibited by conventional cantilevers in vacuum were
observed.15,16 Mass measurements in liquid with femtogram
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FIG. 1. �Color online� Illustration of fluid channel embedded microcantile-
ver. Perspective �top�: layout of the embedded fluid channel, which is nor-
mally closed and shown open here for illustration. Side view �bottom�:
cantilever structure �gray� showing cantilever length L and length of rigid
lead channel Lc. Fluid channel is completely filled with fluid.
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sensitivity were demonstrated originally,15 with a recent ar-
ticle reporting sensitivity in the attogram range upon minia-
turization to the nanoscale.16

Underpinning measurements using these microfluidic
beam devices are their inherently high quality factors in the
presence of liquid. Strikingly, it was observed15 that the fun-
damental mode quality factor was unaffected when air or
water was placed in the channel, with values of �15 000
being achieved in both cases, for a single device. This is in
direct contrast to conventional microcantilever devices im-
mersed in fluid, which exhibit a strong decrease in quality
factor upon immersion in air and liquid—typically, quality
factors in vacuum, air and water are in the range of �15 000,
�10–100, and �1–2, respectively.9,17,18 This unprecedented
and inherent property of microfluidic beam devices was re-
cently examined both experimentally and theoretically,19,20

and was found to originate from dramatically different flow
behavior in comparison to conventional cantilever
devices.9,10,13,14,21–24 In short, multiple flow regimes exist in
these microfluidic devices, which can result in either an in-
crease or decrease in energy dissipation with increasing fluid
viscosity. At low viscosity �high inertia�, a shear driven
mechanism leads to increasing energy dissipation with in-
creasing fluid viscosity. At intermediate to high viscosity, the
viscous boundary layers overlap which yields the opposite
behavior, i.e., energy dissipation falls with increasing viscos-
ity. At high viscosity �low inertia�, any off-axis placement of
the channel away from the neutral axis of the beam gives rise
to an additional pumping mechanism, which allows for the
effects of fluid compressibility to dominate. These comple-
mentary effects lead to rich flow behavior and thus an intri-
cate energy dissipation landscape.19,20

In this article, we provide the essential extension of these
studies to the higher order vibrational modes of microfluidic
beam devices. These modes are of critical importance in
practice, since they allow for novel flow control of particu-
lates and enhanced mass sensitivity, for example.25 Knowl-
edge of their dynamic characteristics is thus vital for future
developments and the resulting interpretation of measure-
ments. In contrast to conventional cantilever beams im-
mersed in liquid, the quality factor of microfluidic beam de-
vices typically decreases with increasing mode number.16,25

The underlying physical mechanisms giving rise to this be-
havior are explored. Critically, we find that the effects of
fluid compressibility are enhanced with increasing mode
number. This leads to the aforementioned high viscosity
pumping effects �for the fundamental mode� being exhibited
at moderate to low viscosities in the higher order modes.
Acoustic effects in the fluid are also found to be possible for
operation in the higher order modes, in contrast to the fun-
damental mode that is immune from such effects. This re-
sults in resonant energy dissipation properties not experi-
enced by the fundamental mode. The validity of these
findings is assessed by comparison to detailed measurements
as a function of fluid viscosity.

We begin by reviewing the underlying assumptions of
the theoretical model of Refs. 19 and 20, and summarize its
key formulas. This model is generalized to allow for evalu-
ation at any mode number—provided the underlying as-

sumptions remain valid, which we shall discuss. Second, we
present a scaling analysis to explore the effect of increasing
mode number, and investigate how this affects flow proper-
ties in the microfluidic channel. Examination of the case
where the fluid channel is placed directly on the neutral axis
of the beam is then discussed, and followed by off-axis chan-
nel placement away from the neutral axis. A comprehensive
analysis and discussion of each case is given. Finally, a com-
parison to detailed measurements of the first and second
modes over a wide range of fluid viscosities is presented, for
which the theoretical model is found to be universally valid.

II. THEORETICAL MODEL

The principal aim of this article is to examine the effect
of mode number on the quality factor of microfluidic beam
devices. While results were given only for the fundamental
mode of vibration in Refs. 19 and 20, the theoretical model
presented in Ref. 20 is also applicable to higher order vibra-
tional beam modes. This is provided the underlying assump-
tions of Euler–Bernoulli beam theory and the commensurate
treatment of the fluid-structure problem, are maintained; see
Ref. 20 for details. Application to higher order modes then
simply requires use of the deflection function for each mode
under consideration, as specified by Euler–Bernoulli beam
theory.26 This extension is specifically addressed in the fol-
lowing outline of the theoretical model. The dimensions of
the device are illustrated in Fig. 2.

The theoretical model is derived under the following
geometric assumptions:

�A� Cantilever length L is much larger than its width bcant

and thickness hcant;
�B� Fluid channel thickness hfluid is much smaller than the

channel width bfluid—as a leading order approximation,
we take the formal limit hfluid /bfluid→0 throughout;

bcant
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bfluid

x

y
zL
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FIG. 2. Schematic illustration of rectangular cantilever �x�0� with embed-
ded fluid channel and rigid lead channel �x�0� showing dimensions. Place-
ment of the fluid channel away from the mid-plane �neutral axis� of the
cantilever beam, in the z-direction, is specified by z0. Origin of Cartesian
coordinate system is center-of-mass of clamped end.
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�C� Fluid channel spans the entire length L of the cantile-
ver;

�D� The lead channel of length Lc within the substrate of
the chip is rigid;

�E� The amplitude of oscillation is much smaller than any
geometric length scale of the beam so that the convec-
tive inertial term in the Navier–Stokes equation can be
ignored and linear motion and flow is ensured.9

See Ref. 20 for a detailed discussion of the implications
of these assumptions to practical devices. Next, we present a
summary of key formulas required to calculate the quality
factor using the theoretical model of Ref. 20. The quality
factor of mode n is defined by

Qn = 2�� Estored

Ediss/cycle
�

�=�R,n

, �1�

where Estored is the maximum energy stored in mode n,
Ediss/cycle is the energy dissipated per cycle in that mode, and
�R,n is the radial resonant frequency of the mode. The prin-
cipal equation for the quality factor of the microfluidic de-
vice due to the fluid only is

Qn = F��n�
�cant

�
� hcant

hfluid
	� bcant

bfluid
	� L

hfluid
	2

, �2�

where for an arbitrary mode of vibration described by W̄n�X�,
the normalized quality factor is given by

F��n� =
�n

16

−L̄c

1 
−1/2
1/2 �G�X,Z��2dZdX

, �3a�

and

G�X,Z� = �1 −
1 − i

2

�n

2

cosh��1 − i�
�n

2
Z�

sinh�1 − i

2

�n

2
	 � dW̄n

dX
+

i�nZ̄0

2 � sinh��1 − i�
�n

2
Z�

�1 − i�
�n

2
cosh�1 − i

2

�n

2
	 − 2 sinh�1 − i

2

�n

2
	�

��S�X� − h�X��� dW̄n

dX
�

X=1
, �3b�

X =
x

L
, Z =

z − z0

hfluid
, Z̄0 =

z0

hfluid
, L̄c =

Lc

L
. �3c�

where W̄n�X� is the normalized deflection function of a can-

tilever beam, such that W̄n�1�=1. Note that W̄n�X� is speci-
fied by the Euler–Bernoulli beam equation26 under clamped-
free boundary conditions, the solution of which for arbitrary
mode number n is

W̄n�X� =
�− 1�n

2
��cos CnX − cosh CnX�

+
cos Cn + cosh Cn

sin Cn + sinh Cn
�sinh CnX − sin CnX�	 , �4�

where Cn is the nth positive root of

cosh Cn cos Cn = − 1. �5�

The deflection functions for the first three modes, as speci-
fied by Eq. �4�, are illustrated in Fig. 3.

Several dimensionless parameters appear in Eq. �3�. The
parameter �n is defined by

�n =
��R,nhfluid

2

	
, �6�

and is commonly referred to as the Reynolds number.27 This
parameter indicates the importance of fluid inertia, where �
is the fluid density and 	 is the fluid shear viscosity. The

0 0.2 0.4 0.6 0.8 1

X

n = 1

n = 2

n = 3

FIG. 3. Deflection function of first three modes of a cantilever beam. Arbi-
trary amplitude units on the vertical axis.
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average density of the cantilever �with fluid� is specified by
�cant, and appears in Eq. �2�.

Other dimensionless parameters in Eq. �3� are connected
to compressibility of the fluid,


n = ��R,nL

c
	2

, �n =

n

�n
, �7�

where 
n is the normalized wave number and indicates the
importance of acoustic effects, whereas �n is related to the
dilation of a fluid element due to compressibility and is
termed the compressibility number. The speed of sound of
the fluid is denoted c.

Additional functions required in Eq. �3� are

S�X� =�− 1 +

dW̄n

dX

� dW̄n

dX
�

X=1

: 0 � X � 1

− 1: − L̄c � X � 0

� , �8a�

h�X� = −
�n

M cos�M�1 + L̄c��
�sin�M�1 − X���

−L̄c

X

�iBS�x�� − �n�cos�M�x� + L̄c��dx� + cos�M�X + L̄c���
X

1

�iBS�x��

− �n�sin�M�1 − x���dx�� , �8b�

where

B =

− 2i�n sinh�1 − i

2

�n

2
	

�1 − i�
�n

2
cosh�1 − i

2

�n

2
	 − 2 sinh�1 − i

2

�n

2
	 , �9a�

M = 
�n��n + iB� . �9b�

A complete description and derivation of the above model is
given in Ref. 20, along with explicit results for the fluid
velocity, energy dissipation and pressure distribution in the
device for the fundamental mode of vibration.

III. RESULTS AND DISCUSSION

Next, we examine results arising from this theoretical
model as a function of mode number n. We commence with
a scaling analysis, which is followed by a detailed discussion
complete with numerical results. Finally, a comprehensive
comparison with experimental measurements on three sepa-
rate devices over a wide range of fluids is presented.

A. Scaling behavior with mode number

Importantly, the resonant frequency increases with in-
creasing mode number n, and is given by26

�R,n =
Cn

2

L2
EI



, �10�

where EI is the beam flexural rigidity, 
 is its mass per unit
length and L is the cantilever length. The coefficient Cn is

specified by Eq. �5�, and well approximated by

Cn �
2n − 1

2
�, n � 2. �11�

As such, the dimensionless parameters specified in Eqs. �6�
and �7� for arbitrary mode number n can be expressed in
terms of parameters for the fundamental mode �n=1�,

�n = �Cn

C1
	2

�1, 
n = �Cn

C1
	4


1, �n = �Cn

C1
	2

�1, �12�

where the subscripts denote the mode number under consid-
eration.

From Eq. �12�, we observe that as the mode number n
increases, all dimensionless parameters also increase. Since
Cn increases approximately linearly with n �see Eq. �11��, the
above scaling relations indicate a strong enhancement of in-
ertial, acoustic and compressibility effects as mode number
increases. Importantly, we find that the normalized wave
number 
n increases much more rapidly with increasing
mode number n than other dimensionless parameters, indi-
cating that acoustic effects are most strongly enhanced. The
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practical implications of these findings will be discussed in
detail in the following sections.

To begin, we consider the case where the fluid channel is
placed directly on the neutral axis of the beam, i.e., z0=0.
This shall henceforth be termed on-axis channel placement.

B. On-axis channel placement

Here, the model simplifies dramatically and from Eq. �3�
we obtain the following result for the normalized quality
factor

F��n� = An�n�16�
−1/2

1/2 �1 −
1 − i

2

�n

2

cosh��1 − i�
�n

2
Z	

sinh�1 − i

2

�n

2
	 �

2

dZ�
−1

, �13a�

where

An = ��
0

1 �dW̄n

dX
�2

dX	−1

. �13b�

From Eq. �13�, we observe decoupling of the fluid properties
and deflection function, as characterized by the Reynolds
number �n, and mode parameter An, respectively. Varying the
mode number n thus only rescales the magnitude of F��n�,
leaving its functional dependence on �n unaffected. The un-
derlying mechanism for this decoupled behavior is the local-
ized nature of the fluid flow for the on-axis problem—the
fluid is driven only by the local rigid body displacement and
rotation of the beam at a given value of X, i.e., position along
the beam axis.

The mode parameter An decreases monotonically with
increasing n, see Fig. 4, and for large n possesses the
asymptotic form

An =
4

n2�2 , n → � , �14�

which is also shown in Fig. 4. This feature results in an
overall decrease in F��n�, and hence quality factor Qn, with
increasing mode number n at fixed �n—the effect of varying
�n is examined below. The decrease in quality factor with
increasing n is strong, varying as the inverse square of the

mode number at large n; the effect is even stronger for small
n.

This pronounced decrease in the quality factor is due to
higher gradients in the deflection function along the beam
length, which in turn drive the fluid motion; see Refs. 19 and
20. This enhances energy dissipation in the fluid and hence
lowers the quality factor.

For comparison, conventional cantilevers immersed in
fluid yield flows that are generated by the beam displacement
rather than the displacement gradient9,13—this gives rise to
the observed increase in quality factor with increasing mode
number in those complementary systems.9,10,13

From Eq. �13�, we find that in the limits of small and
large �n, the normalized quality factor has the asymptotic
forms

F��n� = An�
45

�n
: �n � 1

1

4

�n

2
: �n � 1� . �15�

As such, the quality factor decreases monotonically, reaches
a minimum value, and then increases monotonically, as �n

increases. This is identical behavior to that reported for the
fundamental mode in Ref. 20.

Importantly, the global minimum in F��n� occurs at a
single value of �n

min=46.434, regardless of the mode number
n, at which point the normalized quality factor is F��n

min�
=2.1118An. This feature is illustrated in Fig. 5, where the
normalized quality factor F��n� for the first three modes is
given.

Data in this figure allows for examination of how the
quality factor varies with mode number n for a given device
and fluid, while accounting for any variation in �n due to
increasing resonant frequency with mode number. For ex-
ample, consider two separate devices whose fundamental
modes possess Reynolds numbers in the low and high inertia

1 2 3 4 5 6 7 8 9 10

0.01

0.03

0.1

0.3

n

A n

FIG. 4. Plot of mode parameter An as a function of mode number n. Exact
solution �dots�. Asymptotic solution for large n �dashed line�.
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regimes: �1=1 and �1=100, respectively. Using Eq. �12�, we
then find the following results for these two devices:

�1� �1=1 device: first, second, and third modes exhibit nor-
malized quality factors F��1�=39, F��2�=0.91, F��3�
=0.16.

�2� �1=100 device: first, second, and third modes exhibit
normalized quality factors F��1�=2.1, F��2�=0.62,
F��3�=0.41.

Since the material and geometric properties of the canti-
lever and hence normalization in Eq. �2� remain unchanged
as the mode number n increases, these variations in the nor-
malized quality factor F��n� reflect true variations in the ac-
tual quality factor Qn. As such, we find that a low inertia
device exhibits a much stronger decrease in quality factor as
the mode number increases, in comparison to a high inertia
device. Significantly, the low and high inertia regimes can be
achieved using small and large devices, respectively. We
therefore conclude that small devices are more susceptible to
strong reductions in quality factor with increasing mode
number.

We emphasize, however, that these findings are for de-
vices whose fluid channel is placed precisely on the neutral
axis of the beam, i.e., z0=0. Next, we examine the important
practical case of off-axis channel placement �z0�0�, which
can dramatically affect the quality factor.9,20

C. Off-axis channel placement

Off-axis channel placement induces pumping of fluid
into and out of the reservoir, due to net axial strain experi-
enced by the fluid channel as the beam vibrates.20 This en-
hances energy dissipation and hence lowers the quality fac-
tor. In Ref. 20 it was shown that this pumping mechanism
dominates the on-axis flow only in the low inertia regime
��n��n

min�, for typical devices operating in their fundamen-
tal mode. We now examine this behavior as a function of
mode number n.

1. Acoustic resonances

Importantly, the effects of compressibility due to off-axis
placement are enhanced with increasing mode number n, as
discussed in Sec. III A. This can have a dramatic effect on
the flow and hence the quality factor, as we now discuss. In

Ref. 20, it was reported that acoustic resonances can occur in
the off-axis flow; see Fig. 6. From Eq. �8b�, the correspond-
ing normalized wave numbers 
n= 
̄n,m at which these occur
can be easily calculated in the asymptotic limit of high fluid
inertia, i.e., �n�1:


̄n,m = � �2m − 1��

2�1 + L̄c�
�2�1 +
 2

�n
	−1

. �16a�

The corresponding acoustic resonance quality factor is

Qn,m
acoustic = 1 +
�n

2
, �16b�

where n is the mode number of the beam, and m is the order
of the acoustic resonance. The first and second indices in
both 
̄n,m and Qn,m

acoustic thus refer to the orders of the beam
mode and acoustic resonance, respectively.

Note that the quality factor Qn,m
acoustic is connected to the

width of the acoustic resonance in wave number 
n-space
�see Fig. 6�—it is not the quality factor Qn of the entire
device that is in frequency �-space. Importantly, from Eq.
�16b� we find that the acoustic quality factor Qn,m

acoustic does
not depend explicitly on the order m of the acoustic reso-
nance, i.e., the “width” of each acoustic resonance is identi-
cal for fixed �n. This salient feature is borne out in Fig. 6,
where the width of each acoustic resonance peak appears
similar on a logarithmic scale.

In the limit of zero viscous dissipation, i.e., �n→�, Eq.
�16a� yields


̄n,m = � �2m − 1��

2�1 + L̄c�
�2

, �16c�

which is simply the result for an inviscid acoustic standing
wave in a rigid channel/cantilever system. Here, Eq. �16b�
gives Qn,m

acoustic→�, thus yielding impulse functions for the
acoustic resonances, as required.

Note that Eqs. �16� do not depend explicitly on the mode
number n, with this dependence appearing implicitly via the
Reynolds number �n. This establishes that the position and
width of the acoustic resonances in 
n-space are independent
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FIG. 5. Plot of normalized quality factor F��n� as a function of �n for the
first three modes of vibration, n=1,2 ,3. Mode number n increases down the
page.
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FIG. 6. Normalized magnitude of volumetric flux into rigid lead channel as
a function of the normalized wave number 
1 for fundamental mode with
�1=100. Volumetric flux scale is qs=ushfluidbfluid where us

= i�R,nz0dW /dx �x=L �Ref. 20�.
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of the deflection function of the mode, and arise from the
geometry of the beam, its frequency of vibration and the
fluid properties.

For the fundamental acoustic resonance �m=1� of the
fundamental beam mode �n=1�, Eq. �16c� yields normalized
wave numbers of 
̄1,1�O�1�, as expected. Importantly, for
the fundamental �beam� mode of practical devices, 
1

�
̄1,1�O�1�, and thus acoustic resonances cannot be mani-
fest normally.

However, increasing the mode number n also increases
the normalized wave number, 
n, since the frequency of vi-
bration is enhanced; see Eq. �12�. Consequently, fluid flow
generated by higher order vibrational modes of the beam can
be strongly affected by acoustic effects, with a commensu-
rate variation in the quality factor Qn. Operation at one of the
acoustic resonances of the off-axis flow can result in a strong
increase in the volumetric flux into the fluid channel from the
reservoir. This increases the velocity gradients in the channel
and thus results in a strong enhancement in energy dissipa-
tion, i.e., reduction in quality factor Qn. Critically, this acous-
tic resonance behavior only exists provided viscous damping
is not strong, i.e., �n�1, otherwise the system is over
damped.

In Fig. 7, we present results for a typical microfluidic
cantilever device operating in modes 1 and 2, whose rigid
lead channel is of identical length to the cantilever section,

i.e., L̄c=1. A value of 
1 �for mode 1� is chosen so that mode
2 operates at its fundamental acoustic resonance �m=1�.
From Eq. �16c�, which corresponds to the inviscid limit, the
fundamental acoustic mode �m=1� resonance of beam mode
2 �n=2� occurs at 
̄2,1= �� /4�2�0.62, which yields 
̄1,1

= 
̄2,1�C1 /C2�4�0.016; these are excellent approximations

for high �n. The value of the normalized wave number 
n is
also swept around this value in Fig. 7. The lower-most
curves in Figs. 7�a� and 7�c� correspond to the incompress-
ible solutions �
n=0�, whereas the upper-most curves in
Figs. 7�b� and 7�d� correspond to infinite compressibility
�
n→��. The latter case eliminates any effect due to off-axis
placement of the fluid channel—the volumetric flux into the
channel is zero, since the fluid simply dilates as the channel
extends and contracts along its axis.

Next, we examine how increasing the mode number n
affects energy dissipation. We remind the reader that fluid
compressibility and acoustic effects manifest themselves
only in the off-axis flow problem.20 We therefore focus our
discussion on energy dissipation arising from this off-axis
problem, while presenting complete numerical results that
incorporate both on-axis and off-axis flow mechanisms.

2. Fundamental beam mode „mode 1…

From Figs. 7�a� and 7�b� it is evident that for mode 1 of
the cantilever beam �n=1�, increasing the normalized wave
number 
1 increases the normalized quality factor monotoni-
cally for nearly all values of Reynolds number �1. Since
finite compressibility allows the fluid to dilate, the volumet-
ric flux into the channel induced by the off-axis pumping
mechanism decreases. This reduces the shear velocity gradi-
ents and hence energy dissipation, resulting in an increase in
quality factor in comparison to the incompressible case. Im-
portantly, we find that the off-axis flow has very little effect
on the quality factor for �1��1

min=46.434, where the on-
axis flow problem dominates energy dissipation, as was re-
ported in Ref. 20.
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FIG. 7. Normalized quality factor F��n� vs �n for modes 1 and 2 showing variation as normalized wave number 
n is varied around the critical values

̄2,1= �� /4�2�0.62, which yields 
̄1,1= 
̄2,1�C1 /C2�4�0.016; these values are calculated in the inviscid limit using Eq. �16c�. Normalized wave number 
n

increases up the left hand side of each graph. Results for Z̄0=0.1.
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3. Second beam mode „mode 2…

The behavior for mode 2 of the beam �n=2� differs
greatly from that observed for mode 1; cf. Figs. 7�a� and 7�c�
and Figs. 7�b� and 7�d�. As fluid compressibility increases
from zero �
2=0�, we observe an enhancement in the quality
factor Q2 for �2��2

min=46.434, similar to the fundamental
mode. However, we now find that the quality factor can also
be strongly affected in the high inertia region �2��2

min

=46.434—this coincides with the region where acoustic
resonance effects occur, which were discussed above. The
result is a dramatic decrease in the quality factor Q2 near the
fundamental acoustic resonance of mode 2, i.e., 
2= 
̄2,1

��� /4�2�0.62. This feature is due to strong enhancement
of the volumetric flux into the device, which greatly en-
hances viscous dissipation. Note that at the acoustic reso-
nance point 
2= 
̄2,1��� /4�2�0.62, the quality factor de-
creases with increasing �2, in stark contrast to the on-axis
�incompressible� solution that displays the reverse behavior.

Physically, an increase in �2 can be realized by decreas-
ing the fluid viscosity. We thus find the apparently unintui-
tive result that a decrease in viscosity enhances energy dis-
sipation, i.e., the quality factor decreases. This phenomenon
is due to competition between a strong enhancement in the
volumetric flux into the device near the acoustic resonance,
and a reduction in viscosity. The increase in volumetric flux
enhances the shear velocity gradients, which dominates other
effects, and results in a strong increase in the total energy
dissipation.

Increasing the mode number thus allows for excitement
of acoustic resonances, which can strongly modify the en-
ergy dissipation landscape, particularly at high inertia; in the

low inertia regime, acoustic resonances are over damped and
hence not significant. We emphasize that this acoustic effect
differs to nonacoustic �quasistatic� dilational compressibility
effects reported for the fundamental mode n=1 �see Sec.
III C 2�, which are prevalent in the low inertia regime.

4. Maximum pressure

The presence of acoustic resonances can also dramati-
cally enhance the pressure within the fluid channel. In Fig. 8,
we present results for the maximum pressure in the channel
due to the off-axis pumping mechanism, at the operating
conditions considered in Fig. 7; pressure contribution from
the off-axis flow problem dominates that from the on-axis
flow.20 For mode 1, we observe a monotonic change in the
maximum pressure as the normalized wave number in-
creases; see Figs. 8�a� and 8�b�. This is to be expected, since
this beam mode operates well below the fundamental acous-
tic resonance of the device. In contrast, from Figs. 8�c� and
8�d� we observe that mode 2 exhibits a striking enhancement
in the maximum pressure as the fundamental acoustic reso-
nance is approached, i.e., 
2= 
̄2,1. This enhancement in-
creases with increasing Reynolds number �2, since �i� the
acoustic quality factor, Q2,1

acoustic, is also enhanced in this situ-
ation, i.e., the acoustic resonance becomes more under
damped, and �ii� the acoustic resonance condition used in the
results, as specified in Eq. �16c�, is for zero damping, i.e.,
�2→�.

To illustrate the strong enhancement in pressure due to
acoustic resonance effects, consider the case of �2=1000.
From Figs. 8�c� and 8�d�, we find that the maximum pressure
increases by a factor of �10 as the normalized wave number
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FIG. 8. Normalized maximum pressure �P̄max� vs �n for modes 1 and 2 showing variation as normalized wave number 
n is varied around the critical values


̄2,1= �� /4�2�0.62, which yields 
̄1,1= 
̄2,1�C1 /C2�4�0.016; these values are calculated in the inviscid limit using Eq. �16c�. Results for Z̄0=0.1. Pressure
scale is Ps=��R,nusL where us= i�R,nz0dW /dx �x=L, and is appropriate for the high inertia incompressible regime �Ref. 20�.
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increases from 
2=0.5
̄2,1 to 
2= 
̄2,1. In contrast, as 
2 in-
creases further from 
2= 
̄2,1 to 
2=2
̄2,1 the maximum pres-
sure displays a strong reduction by a factor of �15. Such
clear resonance behavior is totally absent in mode 1, which
always operates in the quasistatic �nonacoustic� regime.
These results serve to illustrate the potential of higher order
beam modes to enhance the maximum pressure, which may
be important in applications where cavitation or other high-
pressure phenomena may be desirable. See Ref. 20 for a
discussion of the potential importance of such modes of op-
eration.

Operation in beam modes higher than mode 2 yields
similar results to the above, since such acoustic mechanisms
are identical.

D. Experimental measurements

We now present a detailed comparison of the above the-
oretical model to measurements on a series of microfluidic

cantilever devices. Three devices are chosen for this com-
parison, whose dimensions allow for both low and high in-
ertia regimes to be probed. The geometric and mechanical
properties of these cantilevers are given in Table I. Measure-
ments were taken using a glycerol/water mixture, allowing
for the viscosity to be varied over three orders of magnitude;
mixtures ranging from pure water to 96% glycerol �by
weight� were utilized. A fixed pressure difference of
�34.5 kPa was applied across the inlets of the microfluidic
channel in all measurements, resulting in a constant �steady�
flow rate; increasing viscosity reduced the flow rate. Varying
this pressure difference had negligible effect on measure-
ments of the frequency response. A wash step was performed
between measurements on different fluids, for which the
pressure was increased to a fixed value �103 kPa for all
fluids. The resonant frequencies and quality factors of modes
1 and 2 of these devices with air and glycerol/water mixtures
in the fluid channel are given in Table I and Fig. 9. Measure-

TABLE I. Dimensions and beam resonance properties for three devices used in comparison. Resonant frequencies are given for air. The specified fluid channel
width is the sum of both parallel channel widths in the actual devices, as required in the theoretical model.

Device

Dimensions
�	m�

Resonances

Mode 1 Mode 2

hfluid bfluid hcant bcant L Lc

f1
res

�kHz� Q1
air

f2
res

�kHz� Q2
air

A 3 16 7 33 210 207.5 218.9 17 919 1354.1 7092
B 8 16 12 33 210 207.5 411.6 8 583 2476.0 4739
C 15 40 19 57 321 240 275.1 4 068 1663.9 5093

(a) (b)

(c)
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FIG. 9. Measured resonant frequencies of devices for modes 1 and 2 as a function of liquid density. Similar frequency sensitivities are obtained for modes 1
and 2 for a single device. Frequency sensitivities for modes 1, 2: Device A �3.83�0.02, 3.88�0.03� % /g /cm−3; Device B
�6.24�0.05, 6.45�0.03� % /g /cm−3; Device B �13.89�0.16, 14.57�0.06� % /g /cm−3. Percentage frequency shifts relative to that in water given.

114507-9 Sader, Lee, and Manalis J. Appl. Phys. 108, 114507 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



ment of beam modes higher than the second was not possible
due to technical limitations.

1. Preliminary discussion

To begin, we examine dependence of the resonant fre-
quency on liquid density. Importantly, the resonant frequency
is expected to depend primarily on fluid density since the net
force exerted by the fluid on the cantilever, in the cantilever
direction of motion �z-direction; see Fig. 2�, is insensitive to
viscosity20—the effective mass of the cantilever is therefore
insensitive to viscosity, within the framework of Euler-
Bernoulli beam theory. This contrasts to a conventional mi-
crocantilever immersed in fluid, whose resonant frequency
depends strongly on fluid viscosity.9 This feature of micro-
fluidic beam resonators is borne out in measurements of the
resonant frequency for various glycerol/water mixtures,
where all devices show excellent linear dependence on liquid
density; see Fig. 9—this behavior is in the presence of a
viscosity change spanning three orders of magnitude. The
resonant frequency sensitivities of modes 1 and 2 for each
device are also similar, with the slight differences consistent
with the fluid channel not spanning the full length of the
cantilever beam; see Fig. 1. These results indicate that the
devices perform as expected.

In contrast, the measured quality factors display a strik-
ing nonmonotonic dependence on liquid viscosity, as was
previously reported for the fundamental mode;20 see Fig. 10.
Interestingly, mode 2 is found to exhibit lower quality factors
than those found for the fundamental mode �mode 1�, in
qualitative agreement with predictions of the theoretical
model; see Sec. III B. Furthermore, we also note that

maxima and minima in the quality factors for modes 1 and 2
appear to be displaced along the viscosity axis. This behavior
is in stark contrast to the resonant frequency, which exhibits
a simple linear variation, cf. Figs. 9 and 10.

Before making a quantitative comparison between the
measured quality factors in Fig. 10 and numerical results of
the theoretical model, we present some general observations
regarding the hydrodynamic regimes in which these devices
operate. Values for the three dimensionless variables of each
device are given in Tables II and III, for water in the fluid
channel.

Results for the fundamental mode �mode 1� are pre-
sented in Table II, where we observe that all three devices
operate in the low to high inertia regime—Reynolds number
14��1

water�378. Increasing the viscosity of the liquid
through addition of glycerol reduces the Reynolds number �1

and hence decreases inertial effects. Importantly, we find that
the normalized wave numbers of all devices lie well below
those of the predicted fundamental acoustic resonances for
each device, i.e., 
1

water�
̄1,1; compare italicized numbers in
Table II. Since �i� the addition of glycerol increases the speed
of sound �decreases the compressibility�, and �ii� the normal-
ized wave numbers are inversely proportional to the square
of the sound speed, this then establishes that acoustic effects
are totally absent in all three devices when operated in their
fundamental modes. Finally, we note that the compressibility
numbers �1

water are small �for water�. However, by adding
glycerol to the solution, these values can be substantially
increased and approach unity. This indicates that compress-
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FIG. 10. Measured quality factors of devices for modes 1 and 2 as a function of liquid viscosity. A glycerol/water mixture is used to vary the viscosity—the
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ibility effects are not important for water but can strongly
affect the flow for a glycerol/water mixture of high glycerol
concentration.

From Table III, it is clear that operation in mode 2
strongly enhances the effects of compressibility, while also
increasing fluid inertia. Note that the Reynolds numbers,
�2

water, in Table III �for mode 2� are approximately an order
of magnitude larger than those in Table II �for mode 1�—the
devices now operate in the moderate to very high inertia
regime. This is due to the increase in resonant frequencies in
going from mode 1 to mode 2. Second, we find that acoustic
effects may now reveal themselves strongly in mode 2 of all
devices, with all normalized wave numbers, 
2

water, lying be-
tween the fundamental and next higher harmonic acoustic
resonances of the devices—compare the italicized numbers
in Table III. Note that the normalized wave numbers are
weakly affected as the glycerol/water concentration is
varied—they decrease by at most a factor of �2 as the glyc-
erol concentration is enhanced, due to the increase in sound
speed. Even so, we observe that none of these devices oper-
ate directly at the predicted acoustic resonances, i.e., 
2

� 
̄2,1, 
̄2,2. Furthermore, the large acoustic quality factors
Q2,1

acoustic establish that operation in the immediate vicinity of
the acoustic resonances is required for manifestation of sub-
stantial acoustic resonance effects. Such acoustic effects are
thus not expected to present themselves in these devices.
Finally, the compressibility numbers, �2

water, are found to be
an order of magnitude larger than those for the fundamental
mode �mode 1�. As such, dilational effects due to compress-
ibility in the off-axis flow are expected to be even stronger
for mode 2. However, since fluid inertia is large for mode 2
and acoustic effects are absent, this can weaken such dila-

tional compressibility effects because the on-axis flow domi-
nates in this high inertia regime. This will be examined in
detail below.

2. Quantitative comparison to theoretical model

With this initial discussion in hand, we now present a
quantitative comparison of the measured normalized quality
factor F��n� to the theoretical model, Eq. �3a�. The experi-
mental normalized quality factors F��n� were obtained from
measurements of the quality factors Qn, using Eq. �2�. These
values were then compared to theoretical predictions. Speeds
of sound of the water/glycerol mixtures vary linearly with
mass fraction,28 and were calculated accordingly in the the-
oretical model. Theoretically, the only unknown parameter in
the model is the off-axis placement of the fluid channel,

Z̄0—this was used as a fitting parameter.20 Since Z̄0 is a fixed
geometric property of each device, its value cannot vary be-

tween mode number. As such, Z̄0 was obtained by fitting
results for the fundamental mode only of each device; theo-
retical results for mode 2 were then calculated using this
fixed value. This provides a further consistency check and
assessment on the validity of the theoretical model.

a. Fundamental beam mode (mode 1). Results for the fun-
damental mode normalized quality factors F��1� of each de-
vice are given in Fig. 11, where a quantitative comparison
between theory and measurement is presented. Correspond-

ing values for the fitted off-axis placement, Z̄0, of the fluid
channel are given in the caption; these are obtained from fits
to the fundamental beam mode only of each device, as dis-
cussed above. Theoretical results are given for the �full� the-
oretical model that includes the effects of compressibility,
and results in the incompressible limit. Note the good agree-

TABLE II. Mode 1 device parameters for water. Dimensionless parameters of measured devices along with
theoretical predictions of acoustic resonances. Note that all devices operate well below the expected acoustic
resonances �compare italicized numbers�, i.e., 
1

water�
̄1,1.

Device

Mode 1

Experimental dimensionless parameters Theoretical acoustic resonance n=1, m=1
�1

water 
1
water �1

water 
̄1,1 Q1,1
acoustic

A 14 0.034 0.002 5 0.29 3.6
B 179 0.11 0.000 64 0.47 10
C 378 0.096 0.000 25 0.67 15

TABLE III. Mode 2 device parameters for water. Dimensionless parameters of measured devices along with
theoretical predictions of acoustic resonances. Note that devices operate above the expected fundamental acous-
tic resonance m=1 but are in the vicinity of the second acoustic resonance m=2 �compare italicized numbers�,
i.e., 
2

water� 
̄2,2.

Device

Mode 2

Experimental dimensionless parameters
Theoretical acoustic resonances n=2

m=1 m=2
�2

water 
2
water �2

water 
̄2,1 Q2,1
acoustic 
̄2,2 Q2,2

acoustic

A 85 1.3 0.015 0.42 7.5 3.8 7.5
B 1078 4.1 0.0038 0.55 24 4.9 24
C 2291 3.5 0.0015 0.74 35 6.6 35
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ment between the full compressible theory and measure-
ments, for all devices; the incompressible solution does not
describe measurements well in the high viscosity �low iner-
tia� regime. Devices A and B are of the same types as those
studied in Refs. 19 and 20. Similarities between the results in
Figs. 11�a� and 11�b� and Refs. 19 and 20 are notable, and
for a possible explanation of the discrepancies between ex-
periment and theory, the reader is referred to Ref. 20. Device
C is new, and the agreement between the full compressible
theory and measurement is also good. This device possesses
a large channel thickness, and thus operates in the highest

inertial regime. The minimum in the quality factor at �

�46 due to the on-axis flow is clearly visible in devices B
and C; device A operates in an inertial regime below this
expected minimum. Note that in all cases, consideration of
fluid compressibility is essential in predicting the overall
measured responses.

b. Second beam mode (mode 2). Next, we turn our atten-
tion to the second mode �mode 2� for which comparisons
between theory and measurement are given in Fig. 12. The
striking agreement between the full compressible theoretical
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model and measurements provides further verification of the
validity of the model. We again emphasize that the off-axis

placements, Z̄0, are identical to those used for the fundamen-
tal mode, and are thus independent of measurements for
mode 2. The dramatic decrease in the measured quality fac-
tors of the second mode in comparison to the fundamental
mode for all devices �see Fig. 10�, is also accurately pre-
dicted by the �full� compressible model �see Fig. 12�. The
theoretical model thus naturally accommodates these
variations.

For device A, we find that fluid compressibility is essen-
tial in predicting the measured response; see Fig. 12�a�. Un-
like the fundamental mode, the incompressible model does
not accurately predict measurements over any �2-range,
yielding a gross underestimate of the quality factor; the in-
compressible model diverges strongly away from the mea-
sured results in Fig. 12�a�. Note that the effects of compress-
ibility are vital even for water, which contrasts strongly to
the fundamental mode. This is expected, since �i� compress-
ibility effects are strong for the fundamental mode and are
enhanced by increasing the mode number, and �ii� both
modes 1 and 2 operate in the moderate to low inertia re-
gimes, thus ensuring that the off-axis flow �which contains
the compressibility effects� dominates the response. The ex-
pected minimum in the quality factor at �2�46 is not ob-
served for mode 2, however, since the off-axis channel place-
ment is very large. Thus, off-axis effects spill over into the
higher inertia regime and eliminate the expected minimum
due to the on-axis flow.

For device B, we also find good agreement between
theory and measurement; see Fig. 12�b�. In the discussion
above, it was theoretically predicted that the minimum in
quality factor in �n-space �due to the on-axis flow� is inde-
pendent of mode number n. In agreement with this predic-
tion, we find a minimum at �2�46 for mode 2. This feature
explains the displaced nature of the �true� quality factor Qn

versus viscosity data in Fig. 10; the minimum in the true
quality factor occurs at a higher viscosity for mode 2 in
comparison to mode 1—see Fig. 10�b�. Compressibility ef-
fects are also important for mode 2 of this device but only in
the low inertia regime, i.e., at the highest fluid viscosities.
This is due to higher inertial effects in this device, which
serve to weaken the influence of the off-axis �compressible�
flow unless acoustic effects are presented; see discussion of
theoretical model in Sec. III C. This also provides evidence
for the absence of acoustic effects, which would be manifest
by a decrease in the quality factor with increasing Reynolds
number �2, at high �2; see Fig. 7�d�.

Device C exhibits similar behavior to device B, with a
minimum in the normalized quality factor occurring at the
expected value of �2�46 for mode 2; see Fig. 12�c�. This
accurately accounts for the displaced minimum in the true
quality factor with respect to viscosity, as was observed for
device B; cf. Figs. 10�c� and 12�c�. The effects of compress-
ibility are also present at low inertia, and are essential to
predicting the response in this regime.

In summary, all variations in the measured quality fac-

tors of devices A, B, C are naturally captured by the full
compressible theoretical model, which yields self-consistent
predictions for both modes 1 and 2.

IV. CONCLUSIONS

We have examined the effect of mode number on energy
dissipation in microfluidic beam resonators. In contrast to
conventional cantilevers immersed in fluid, these devices
typically exhibit a reduction in quality factor with increasing
mode number. The underlying physical mechanism driving
this feature is larger displacement gradients in the higher
order beam modes, which enhance energy dissipation. Fur-
thermore, it was found that the effects of fluid compressibil-
ity are also enhanced in the higher order modes. This leads to
the possibility of probing acoustic resonances of the device,
which can dramatically decrease the quality factor and en-
hance the maximum pressure. Finally, a detailed comparison
between the theoretical model and experimental measure-
ments on a range of devices was presented. These measure-
ments span the low to high inertia regimes. Good agreement
was found in all cases, thus demonstrating the validity and
robust nature of the theoretical model. These results are ex-
pected to be of particular value in future developments that
focus on higher order beam modes of oscillation for novel
applications, such as enhanced mass sensitivity and flow
control of particulates.25
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