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I. THEORY AND MODELING

A. Governing Equations

The equations of motion for an incompressible Newtonian fluid are

ρ(
∂ ~u′

∂t′
+ ~u′ · ∇~u′) = −∇p′ + µ∇2~u′ (1)

∇ · ~u′ = 0 (2)

where t′ is time, ρ is the local fluid density, ~u′ is the local fluid velocity, p′ is the local pressure within in the fluid.
Here, a prime denotes that a variable possesses dimensionality; the absence of a prime will indicate that a variable is
dimensionless. The first equation is the Navier-Stokes equation, which is a continuum expression for the conservation
of fluid momentum. The second equation is a continuum expression for the conservation of mass for an incompressible
fluid. These equations must be solved simultaneously to calculate the velocity and pressure fields.

We model a 2-dimensional cross section of the channel for the simulations. The 2-D model assumes that wall
effects that alter the velocity field in the width direction are negligible; this assumption is valid when Wc � H.
Unidirectional pressure-driven flow through a 2-D channel has a parabolic velocity profile

~u′(y′) =
G

2µ
y′(H − y′) ~ex, (3)

where G is the axial pressure gradient, H is the channel height, and ~ex is the unit normal vector in the x-direction.
The volumetric flow rate per unit width is found by integrating the velocity field across the channel height to yield

Q/Wc =

H∫
0

~u(y)dy = GH3/12µ. (4)

which can be inserted into the velocity field expression, equation (3), to obtain

~u′(y′) =
6Q

WcH3
y′(H − y′) ~ex. (5)

Concentration of a species that diffuses and is advected by a fluid flow obeys the partial differential equation

∂c′

∂t′
= D∇′2c′ − ~u′ · ∇c′ +R, (6)

the conservation equation for analyte with concentration c′ and diffusivity D in a fluid flowing with velocity ~u′ and
bulk reaction rate R. In our system, R = 0 since the reaction only occurs at the sensor surface. The left-hand side
represents local concentration changes and the right-hand side represents transport due to diffusion and convection.

We assume that the chemical kinetics can be described via the Langmuir binding model

∂b′

∂t′
= konc

′|y=0(bmax − b′)− koffb
′, (7)
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Supplementary Figure 1: Model system with labeled boundaries. The origin of the coordinate system is placed at
the center of the sensor.

where kon is the binding constant, koff is the disassociation constant, b′ is the surface concentration of bound analyte,
and bmax is the density of binding sites on the sensor.

To solve for the analyte concentration field, equations (6) and (7) must be solved simultaneously. We have solved
for the velocity field (equation 5), which can be inserted directly into equation (6); for more complicated geometries
one would solve for the fluid velocity numerically.

The 2-D model system is depicted in Supplementary Figure 1. Defining the length of the channel as s (whose
specific length must be chosen carefully, as discussed in section C), we define six boundaries as

surface (1) → 0 ≤ y′ ≤ H, x′ = −s/2 (8)
surface (2) → 0 ≤ y′ ≤ H, x′ = s/2 (9)
surface (3) → −s/2 ≤ x′ ≤ s/2, y′ = H (10)
surface (4) → −L/2 ≤ x′ ≤ L/2, y′ = 0 (11)
surface (5) → 0 ≤ y′ ≤ H, x′ = s/2 (12)
surface (6) → L/2 ≤ x′ ≤ s/2, y′ = 0. (13)

Defining ~n as the unit normal vector directed out of a surface, the boundary conditions to be satisfied on each
boundary are given by:

c′ = c0 at surface (1) (14)
~n ·D∇′c′ = 0 at surfaces (2), (3), (4), (6) (15)
∂b′

∂t′
= −D∂c′

∂y′
at surface (4). (16)

Boundary condition (14) ensures that the solution entering the system has concentration c0. Boundary conditions
(15) ensure no analyte diffuses out through solid walls. The reaction/flux boundary condition (16) dictates the binding
kinetics at the sensor surface. Assuming (first-order) Langmuir binding kinetics, eq. (16) is given by

∂c′

∂y′
= − 1

D
[konc

′|y′=0(bmax − b′)− koffb
′]. (17)

B. Non-Dimensionalization of Governing Equations

By using appropriate scales for the system variables to non-dimensionalize the governing equations, we obtain
dimensionless groups of parameters that characterize the important physics of the system. These dimensionless ratios
typically represent competing processes (e.g. the Peclet number is the ratio of diffusive to convective flux, the Reynolds
number is the ratio of inertial to viscous forces, and so on). These ratios can often be determined for a system without
detailed computations, and their values (unity, very large, very small, etc.) typically give crucial intuition about how a
system will behave. Non-dimensionalization also allows one to generate universal plots that can collapse relationships
spanning orders of magnitude onto a single master curve. An example of this phenomenon is the plot of τR/τCRD vs.
Da (Fig. 4) in the main article. Finally, non-dimensionalization allows the results of various numerical simulations
and experiments to be compared in a truly meaningful fashion. Most undergraduate and graduate textboods on fluid
mechanics will discuss dimensional analysis and non-dimensionalization. Below, the five dimensionless parameters in
the main article (PeH, λ, Da, c̃, and ε) will emerge naturally via non-dimensionalization.

First, we non-dimensionalize the convection-diffusion equation (eq. 6) governing mass transport in the fluid, scaling
concentration by input concentration (c = c′/c0), axial distance by the sensor length (x = x′/L), transverse distances
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by the channel height (y = y′/H), and time by diffusion time for analyte to traverse the channel (t = D t′/H2).
Equation (6) then becomes

∂c

∂t
= λ2 ∂

2c

∂x2
+
∂2c

∂y2
− 6λPeH y(1− y)

∂c

∂x
, (18)

where the dimensionless parameters PeH = Q/WcD and λ = H/L discussed in the main text have naturally emerged.
Note that the diffusive terms are now anisotropic (λ2 multiplies ∂2c

∂x2 term but not ∂2c
∂y2 ); this occurs because we have

scaled axial and transverse distances differently in order to create a computational domain where the sensor length
and channel height both have the same length, such that concentration fields around each can be resolved naturally.
In some cases, it is numerically advantageous to choose different scalings, as discussed below.

Next, we non-dimensionalize the sensor binding kinetics (eq. 7). We scale the surface concentration of bound
analyte by the binding site density (b = b′/bmax) and time and concentration as above, yielding

∂b

∂t
= ε∗ Da∗

(
cy=0(1− b)− 1

c̃

)
, (19)

where

ε∗ =
c0H

bmax
, (20)

Da∗ =
konc0H

D
, (21)

c̃ =
konc0
koff

=
c0
KD

. (22)

The dimensionless parameters ε∗, Da∗, and c̃ arise simply from non-dimensionalizing the Langmuir binding kinetic
equation. Note, however, that two of them (Da∗ and ε∗) are defined differently than in the main text (where, e.g.,
Da = konbmaxδ/D). In both cases, the Damkohler number represents a ratio of reactive flux to diffusive flux. The
diffusive flux depends upon the distance over which analyte must diffuse, which is not known a priori. In the text, we
used physical intuition and scaling arguments to estimate this length δ, whereas for general numerical simulations, we
choose a standard length scale (here H) based on the geometry of the system. Simulations for systems with different
conditions are then performed by simply changing the dimensionless parameters as appropriate.

Equations (18) and (19) are dimensionless differential equations that govern the analyte concentration field and
surface reaction kinetics, respectively. In the simulations, it is these two equations that are solved simultaneously via
numerical finite-element methods. However, the boundary conditions (eqs. 14-16) must also be non-dimensionalized.
Using the same scalings as above, we obtain

c = 1 at surface (1) (23)
~n · ∇c = 0 at surfaces (2), (3), (4), (6) (24)

∂b

∂t
= −ε∗ ∂c

∂y
at surface (4), (25)

with surface locations non-dimensionalized to yield

surface (1) → 0 ≤ y ≤ 1, x = −s/2L (26)
surface (2) → 0 ≤ y ≤ 1, x = s/2L (27)
surface (3) → −s/2L ≤ x ≤ s/2L, y = 1 (28)
surface (4) → −1/2 ≤ x ≤ 1/2, y = 0 (29)
surface (5) → 0 ≤ y ≤ 1, x = s/2L (30)
surface (6) → L/2 ≤ x ≤ s/2L, y = 0. (31)

Using eq. (19), the reaction/flux boundary condition on the sensor becomes

∂c

∂y

∣∣∣∣
|x|<1/2,y=0

= −Da∗
(

c|y=0(1− b)− 1
c̃
b
)
. (32)
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C. Approaches and Considerations during Finite Element Simulations

For the main article, we performed simulations for three scenarios: (i) pure diffusion, (ii) convection and diffusion,
and (iii) convection, reaction, and diffusion. Each case requires the (dimensionless) governing equations and boundary
conditions to be modified, each differs in implementation and poses distinct computational challenges. Furthermore,
microsensors and nanosensors place different demands upon the simulation geometry, and will also be discussed.

We wrote MATLAB code that employ COMSOL finite-element algorithms to define the geometry, initialize and
refine the computational mesh, and numerically solve the governing equations subject to the boundary and/or initial
conditions. For all simulations, we computed the dimensionless diffusive flux F numerically via

F =

L/2∫
−L/2

− ∂c
∂y
dx (33)

1. Pure diffusion

This scenario involves the simulation of a sensor in a quiescent fluid with no kinetic limitations. The governing
equation (6), is simplified by taking PeH = 0 (so that the flow rate Q vanishes), to leave pure diffusion. These
simulations are inherently transient, necessitating an initial condition, here taken to be simply c = 1 everywhere in
the quiescent fluid.

We modify the boundary conditions as well – all no-flux boundaries remain so. Additionally, the condition at the
inlet was changed to ‘no diffusive flux’ boundary condition ~n · ∇c = 0, and the simulation geometry was chosen to
ensure the diffusion zone did not reach the inlet and outlet boundaries. Finally, the reactive/flux boundary was taken
to be a perfect collector (c = 0). This change imposes an infinitely fast reactive flux relative to the diffusive flux and
an infinite binding site density; mathematically this is equivalent to letting Da→∞ and bmax →∞.

Since no convection is present, this system is never reaches steady-state and the depletion region grows indefinitely
as time evolves. To ensure that our ‘artifical’ simulation boundaries do not influence the results of the simulation,
we choose the dimensionless channel length s/L such that the depletion zone never reaches the end of the channels
over the timescale of the simulations. We can state this mathematically by imposing the condition s/2L�

√
λ2tfinal

where λ2 is the effective x-diffusion coefficient and tfinal is the final simulation time.

2. Convection and Diffusion

Here, we continue to treat the sensor as an ideal, perfect collector, so that rather than a kinetic reactive flux at the
sensor surface, we impose perfect collection (c = 0); here, unlike in the pure diffusion case, we use a non-zero PeH .

The convection-diffusion system is simulated at steady-state. As above, the channel length s/L must be chosen such
that the depletion region does not reach the entrance boundary. In the main text, we estimated the upstream distance
the depletion zone extends to scale like H/PeH. We thus require that the upstream distance s/2L � 1/(λ PeH),
assuming the sensor is located at the center of the computational domain. We can save computational effort, however,
by shortening the length of the downstream channel that we simulate. If we shift the center of the sensor a distance
∆x from the origin where ∆x < s/2L, we obtain (s/2L + ∆x) � 1/(λ PeH). Typically, the sensor was shifted by a
∆x such that any transverse downstream concentration gradients are still contained in the system.

An additional complication arises once convective transport is introduced: at high PeH, thin boundary layers form,
yielding gradients that occur over distances that are much shorter than one would naively estimate from geometry.
As such, we must ensure that the computational mesh employed by the finite-element solver is fine enough to resolve
the boundary layer. We therefore use different codes to simulate high and low PeH systems. Low-PeH systems are
treated as above; high-PeH systems, on the other hand, require computational meshes that are highly refined near the
sensor to sufficiently resolve these gradients. In these situations the mesh is locally initialized over the sensor with an
exponential decay algorithm. The regions directly over the sensor then have a high density mesh and the regions far
away from the sensor have a low density mesh. By doing so, all meshes are sufficiently dense to resolve local analyte
concentration gradients, while avoiding unnecessary computational expenses.

In this steady state, we are interested in the fraction of the analyte molecules in solution that is collected by the
sensor, and the fraction that is ‘lost’ upon flowing past the sensor. We define the ‘retention’ (collected fraction) R as

R = (Jin − Jout)/Jin, (34)
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Supplementary Figure 2: Analyte Retention R vs. PeH at various values of λ for the convection and diffusion
scenario.

where

Jin =

H∫
0

ux(y) c|x=−s/2L(y)dy, (35)

and

Jout =

H∫
0

ux(y) c|x=s/2L(y)dy. (36)

In other words, the retention R is the fraction of the incoming analyte flux that is collected. We plot the steady-state
analyte retention R vs. PeH for various sensor sizes λ in Supplementary Figure 2.

3. Convection, Diffusion, and Reaction

Finally, the full convection-diffusion-reaction system involves the full system of equations presented above. These
simulations are inherently transient and an initial condition c = 1 is specified to solve the governing equations. As
with the convection and diffusion scenario above, we design the computational grid such that s/L � 1/(λ PeH).
The computational grid is chosen according to the (estimated) mass transport regime: we employ a highly-refined
mesh near the sensor for high-PeH systems, for example. An additional complication that arises in solving this set
of equations is that the sensor boundary condition itself involves an ordinary differential equation. We solve the
convection-diffusion equation for mass transport in the bulk in weak form, and the boundary condition is integrated
as an ODE, and two-way coupling between the boundary and the concentration field is enforced through COMSOL.

In the convection, reaction, and diffusion scenario, Da � 1 indicates that the system is diffusion-limited and
Da � 1 indicates that the system is reaction-limited. If the system is reaction limited, then mass transport plays
little role, and the concentration above the sensor, c|(y=0, is very nearly equal to the bulk concentration c0 in the
Langmuir binding model. The Langmuir binding equation can then be solved analytically (equation (10) in the
main article), giving a bound concentration that approaches equilibrium exponentially. A diffusion-limited system,
on the other hand, has c|y=0 ≈ 0, giving a diffusive flux that is nearly constant and a bound concentraiton b(t) that
grows approximately linearly in time. We plot the (scaled) bound concentration b† = b′/beq against (scaled) time
t∗ = t′/τCRD in Supplementary Figure 3, for two different values of Da. WIth these scales, the sensor equilibrates at
b∗ = 1 and reaches 1 − 1/e = 0.63 capacity at time t∗ = 1. As expected, the diffusion-limited system has a bound
concentration that grows linearly (slope ∼ 1) and the reaction-limited bound concentration grows exponentially.
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Supplementary Figure 3: Dimensionless analyte concentration vs. dimensionless time for a reaction-limited system
(Da� 1) and a diffusion-limited system (Da� 1).

4. Microsensor and Nanosensor Simulations

The above strategies are effective, roughly speaking, for sensors that are approximately the same size as the channel
height. Systems with λ� 1, as would occur for e.g. nanosensors, would be computationally quite difficult to resolve
directly with extremely low aspect ratios. We thus describe our strategies for the worked examples (micro-sensor and
nano-sensor).

We simulate the behavior of a microsensor using the strategy discussed above, by solving the governing con-
vection/reaction/diffusion equations numerically using Matlab and COMSOL, while imposing the above boundary
conditions and initial condition c0 = 1. Using the parameters given in the main text, we calculate PeH = 1.67 x 105,
λ = 0.5, Da∗ = 332, c̃ = 10−5, and ε∗ = 3 x 10−8.

A straightforward extension of this approach to simulate the nanosensor would be computationally too expensive
– the tremendous mesh refinement required around a sensor that is λ = 10−4 smaller than the channel height
would simply require too many mesh points to resolve everything sufficiently. We thus introduce a modified problem
formulation and code. As discussed in the text, the nanowire system under study has PeH ∼ 105, and λ = 10−4, giving
a depletion zone that is small compared with the channel but large compared with the sensor. The depletion zone is
this ‘extended’ compared with the sensor geometry, yet never ‘feels’ the top of the channel. Rather than simulate the
full channel, therefore, we simulate a region that is large enough to contain the depletion zone, yet still much smaller
than the full channel. In this computational zone, the fluid flow velocity looks like simple shear flow ~u′(y′) = γ̇ y′

with shear rate γ̇. Note that the channel height is no longer relevant in this simulation, so we non-dimensionalize y
instead with the sensor length L, obtaining

∂c

∂t
=
∂2c

∂x2
+
∂2c

∂y2
− Pesy

∂c

∂x
, (37)

where Pes = 6λ2 PeH as above.
The Langmuir binding equation and the reaction/flux boundary condition for the convection-diffusion equation

must also be non-dimensionalized with y = y′/L to obtain

∂b

∂t
= ε†Da†

[
c|y=0(1− b)− b

c̃

]
, (38)

where Da† = konbmaxL/D and ε† = c0L/bmax. Note that Da† and ε† differ from Da∗ and ε∗ by a factor of λ. Another
modification follows from the observation that c|y=0(1 − b) ∼ O(1) and 1

c̃ b ∼ O(105), yet at steady-state the two
balance. The errors introduced by computational round-off and numerical imprecision can cause trouble in accurately
tracking the evolution of terms of such widely-varying sizes. Instead, we non-dimensionalize the bound concentration
b′ by the equilibrium amount beq, a new scaling, b† = b′/beq, where beq is the surface concentration of bound analyte
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at equilibrium. Doing so, we obtain

∂b†

∂t
=
ε†Da†

c̃
[c|y=0(β − b†)c̃− b†], (39)

where β = bmax/beq. The two terms in brackets are now both O(1) as desired.

II. PHASE DIAGRAM FOR MASS TRANSPORT

We discuss briefly the location of the boundaries in Fig. 3(A) in the main text, which depicts the qualitatively
different mass transport behaviors that occur for different sensor length λ = L/H and channel Peclet number PeH.
We assume throughout this section that the channel and sensor have the same width, Wc = Ws ≡ W . We treat the
sensor as a perfect collector, such that all target molecules that diffusively encounter it are collected. In this fashion,
the following analysis (as well as Fig. 3(A) more generally) represent the mass transport-limited regime, which can
be modified or incorporated (as we did in the main text) to treat the full convection-diffusion-reaction system.

We begin with Region II, which involves a very thin depletion zone, whose thickness δ ∼ LPes
−1/3 must be small

compared with the sensor. For this limit to hold, the sensor (or shear) Peclet Pes must itself be large, which requires

Pes ∼ λ2PeH � 1, or ln PeH � −2 lnλ. (40)

Secondly, the depletion zone must be small compared to the channel height – which becomes relevant for ‘long’ sensors
(λ� 1):

δ ∼ Pes
−1/3L� H, , or λ−2/3PeH

−1/3 � λ−1, (41)

giving

PeH � λ. (42)

Thus the boundaries of Region II are formed by Equations (40) and (42).
We turn now to Region III, wherein the depletion layer is thin compared with the channel,

PeH � 1, (43)

but is much thicker than the sensor itself,

Pes ∼ λ2PeH � 1, (44)

(i.e. it only occurs for short sensors λ � 1). The above conditions put region II to the left of (40); however, one
expects to eventually cross into ‘full collection’ of all analyte molecules if the flow rate is slow enough.

The ‘full collection’ regime (region I) for large sensors (λ > 1) lies to the left of (42): if the flow is slow enough
that the depletion zone above the sensor spans the channel height H (even though Pes may be large), then almost all
target molecules will be captured. Its location for small sensors, on the other hand, is less trivial. The channel Peclet
number PeH must be low – to determine how small PeH must be, we note that there are three qualitatively different
regions of transport: (a) convective transport far upstream with flux,

J = Qc0, (45)

(b) a ‘one-dimensional’ depletion zone that extends from an upstream distance δ (where c = c0) to a distance of order
H from the sensor (where concentration is an as-yet unknown value c∗), giving a one-dimensional diffusive flux

J ∼ DW (c0 − c∗)/δ ∼ DPeHW (c0 − c∗), (46)

and (c) a two-dimensional, approximately radial diffusive flux onto the sensor, with concentration profile

c(r) ∼ c∗ ln r/Ls

lnH/L
= c∗

ln r/L
ln(1/λ)

, (47)

which goes from the (unknown) concentration c∗ at r = H and to zero (perfect collection) at r = Ls. The total
diffusive flux here is

JD ∼ DW
c∗

ln(1/λ)
. (48)
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For full collection, all three of these fluxes must balance, which determines δ and c∗. In particular, a boundary for
perfect collection is found by equating the ‘upstream flux’ (a) and the radial diffusive flux near the sensor (c), requiring

DW
c∗

ln(1/λ)
∼ Qc0 →

c∗

c0
∼ PeH ln(1/λ). (49)

Since the concentration c∗ is necessarily smaller than c0, the upper flow rate (or PeH) for full collection is given by

PeH �
1

ln(1/λ)
, (50)

which appears in fig. 3(A). The slower the flow (PeH), the farther the depletion zone extends upstream, and therefore
the smaller c∗.

One final regime – labelled IV in fig. 3(A) in the main text – has not, to our knowledge, been investigated in the
literature thus far. It exists for small sensors, and lies between the ‘full collection’ and low Pes diffusion in shear flow.
Depletion zones in region IV are bigger than the sensor, but are also comparable to or larger than the channel height.


