
Abstract -- A wireless ad hoc communication net-
work is a collection of wireless links that cooperate to
form a complete communication system without the
need for centralized control or preexisting infrastruc-
ture. This paper presents Gradient Routing (GRAd), a
novel approach to routing and control in wireless ad
hoc networks. A GRAd network attains scalability
through a multi-hop architecture: nodes that are not
within range of one another can communicate by
relaying messages through intermediate neighbors.
Routing information is established on-demand and is
updated opportunistically as messages are passed
among nodes.

Unlike other ad hoc routing techniques, a node in a
GRAd network does not single out a particular
neighboring node to relay its message. Instead, it
advertises its “cost” for delivering a message to a
destination, and only those neighboring nodes that
can deliver the message at a lower cost will participate
in relaying the message. In this way, a message
descends a loop-free “gradient” from originator to
destination.

Since multiple neighbors can participate in the
relaying of messages, GRAd maintains good
connectivity in the face of frequently changing
network topologies. A node does not need to know the
identities of its neighbors and establishes routes on
demand, making periodic “hello” beacons
unnecessary and increasing the overall security of the
network. Because GRAd does not use link to link
handshakes, end-to-end latencies remain small.

I. INTRODUCTION

Wireless ad hoc networks—characterized by decentral-
ized, self-organizing, multi-hop communications—have
recently become the subject of increasing study. The
growing interest can be attributed to the confluence of
several independent factors: the explosion of portable
computing and communication devices; the availability
of inexpensive radio systems operating in unlicensed

bands; and government funding for research of easily
deployed, mobile networks [9][12]. The promise of ad
hoc networks is pervasive network connections which are
cheap to manufacture and trivial to deploy.

In any wireless ad hoc network, a major challenge lies
in the design of routing and network control. Lacking any
centralized point of control, nodes in an ad hoc network
must cooperatively manage routing and medium access
functions. Nodes may be mobile, creating continual
changes in the network topology. Also, wireless links are
not as robust as their wired counterparts; high bit error
rates and packet losses are commonplace.

In the last decade, a number of ad hoc network proto-
cols have been proposed. As an indicator of the amount
of activity in this field, the Internet Engineering Task
Force (IETF) recently formed the Mobile Ad Hoc Net-
working (MANET) working group to develop ad hoc
protocol specifications and introduce them into the Inter-
net Standards track [5]. At this time, there are eight sepa-
rate ad hoc routing protocols under consideration by the
working group.

This paper introduces GRAd, a new approach to rout-
ing and control for ad hoc networks. GRAd falls under
the category of on-demand routing protocols, in which
routes are established only when nodes wish to commu-
nicate with one another; no attempt is made to maintain
state when there is no data to send.

In other on-demand routing protocols such as the Ad
Hoc On-Demand Distance Vector Routing protocol
(AODV) [10] and the Dynamic Source Routing protocol
(DSR) [7], a node relays a message by sending to a par-
ticular neighboring node. The popular 802.11 MAC layer
protocol uses “virtual carrier sensing ” as part of its colli-
sion avoidance mechanism for such unicast transmissions
[4], requiring a request to send / clear to send handshake
(RTS/CTS) between each pair of wireless links. This
exchange contributes to significant delays in the relaying
of messages, resulting in long latencies.

By comparison, a node in a GRAd network makes no
attempt to identify which of its neighbors is to relay a
packet. Instead, it includes its “cost to destination” infor-
mation in the packet and broadcasts it. Of all the nodes
that receive the broadcast, only those that can deliver the
packet at a lower cost will relay the message. In this way,

This research has been supported in part by the Things That Think Consortium
at the MIT Media Laboratory and by the Motorola Fellows Program.

Gradient Routing in Ad Hoc Networks
Robert D. Poor

Media Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139
r@mit.edu

the packet descends a loop-free “gradient” towards the
ultimate destination.

Since each transmission is a local broadcast, GRAd
does not (and in fact, cannot) use the RTS/CTS hand-
shake associated with unicast transmissions. Conse-
quently, GRAd exhibits very low latencies.

GRAd collects cost information opportunistically: each
message carries with it the cost since origination, which
is recorded at each node that overhears the transmission,
and is incremented when the message is relayed. Thus,
the simple act of passing a message quickly and effi-
ciently updates the cost estimates in nearby nodes.

GRAd demonstrates very good immunity to rapidly
changing topologies. Since each message reaches a num-
ber of neighboring nodes, a single link failure will not
cause a break in the communication path as long as
another neighbor is available to relay the message.

The essence of GRAd is embodied in its routing and
control algorithms—these are detailed in Section II of
this document. Section III describes the testing and simu-
lation that demonstrates the viability and robustness of
GRAd. Section IV suggests future directions for research
into GRAd, and Section V summarizes the work.

II. THE GRAD ALGORITHM

A. Assumptions

GRAd is designed for use in multi-hop wireless net-
works, and makes relatively few assumptions about the
underlying physical medium. It does assume that links
are symmetrical: if Node A can receive messages from
Node B, then Node B can receive messages from Node
A. In a practical wireless network, strict symmetry is
impossible to guarantee due to the mobility of the nodes
and time-varying environmental noise. As will be shown
in Section III, GRAd continues to work well in cases
where only partial symmetry holds.

GRAd assumes a local broadcast model of connectiv-
ity. When a node transmits a message, all neighboring
nodes within range simultaneously receive the message.

GRAd provides best effort delivery of messages with
the understanding that higher-level protocols will handle
retransmission and reordering of packets as needed.

The propagation of a message through the network
establishes and updates reverse path routing information
to the originator of the message. Consequently, GRAd is
most efficient when the network traffic has a “call and
response” pattern, such as streamed packet data with
periodic acknowledgments.

B. GRAd message format

Messages passed among nodes in a GRAd network

carry the fields shown in Fig. 1.

• msg_type: Takes on one of two values, M_REQUEST
for a reply request message and M_DATA for all others.

• originator_id: The id of the node originating this
message. This id may be statically assigned, or as
suggested in Section 4.?, may be dynamically gener-
ated on a per-session basis.

• seq_#: A sequence number associated with the orig-
inator id, and incremented each time the originator
issues a new message. The combination of
[originator_id, sequence_#] uniquely identifies
a message, so a receiving node can distinguish a new
message from a copy of a message already received.

• target_id: The id of the ultimate target for this mes-
sage.

• accrued_cost: Upon origination, the accrued_cost
of a message is set to 0.0. When the message is
relayed, the relaying node increments this field by
one. Thus, accrued_cost represents the estimated
number of hops required to return a message to
originator_id.

• remaining_value: Upon origination, this field is
initialized to the estimated number of hops to
target_id. Whenever the message is relayed, this
field is decremented by one. The remaining_value
field represents the “time to live” of the message: if it
ever reaches zero, the message is dropped.

C. Cost Table

Each node maintains a cost table, analogous to the
routing table of other algorithms1. The cost table plays
two important roles in GRAd. First, the cost table can
answer the question “Is this message a copy of a previ-
ously received message?” This is determined by compar-
ing the seq_# in the message from a particular
originating node against the last seq_# recorded in the
cost table for that originator. Second, it can answer the
question “What is the estimated cost of sending a mes-
sage to target node X?” This cost estimate is formed by
recording the accrued_cost fields for each
origninator_id in received messages.

TABLE 1 GRAd Message Format

msg
type

originator
id

seq
#

target
id

accrued
cost

remaining
value

1. The term “cost table” is chosen over “routing table”
to emphasize the fact that GRAd does not prescribe a
specific route to a target node, but rather it maintains
an estimated cost to the target.

1) Cost Table Format
Each entry in the table holds state information about a

remote node, as shown in Fig. 1.

• target_id: The id of a remote node to which this
cost entry refers.

• seq_#: The highest sequence # received so far in a
message from target_id. When compared against
the seq_# of a newly arrived message, this field dis-
criminates between a new message and a copy of a
previously received message.

• est_cost: The most recent and best estimated cost
(number of hops) for delivering a message to
target_id.

• expiration: When a cost entry is updated, this field
is set to the current time plus cost_entry_timeout.
If the current time ever exceeds expiration, the cost
entry is purged from the table.

2) Cost Table Maintenance
When a message is received at a node, the

originator_id of the message is compared against the
target_id of each entry in the cost table.

If no matching entry is found, a new cost entry is cre-
ated, for which target_id is copied from the message’s
originator_id, seq_# is copied from the seq_# field,
and est_cost is copied from the accrued_cost field.
The message is marked as “fresh.”

If a target_id is found that matches the
originator_id of the incoming message, and if seq_#
in that entry is lower than the seq_# of the incoming mes-
sage, the message is marked fresh and the cost entry
fields are updated from the corresponding fields in the
message.

Otherwise, the message is marked as “stale”—it is a
copy of a message previously received. However, if the
messages offers a lower cost estimate in its
accrued_cost field than the recorded cost in the
est_cost field, the lower cost is recorded. This has the
effect that if a copy of a previously received message
subsequently arrives by means of a shorter path, the
shorter path is recorded.

D. Message Origination and Relaying

When a node wishes to send a message to a destination
for which the cost to the target is known, it transmits a
message with the msg_type field set to M_DATA, specify-
ing the destination in the target_id field and the cost to
that destination in the remaining_value field.

Of the neighboring nodes that receive the message,
only those that can relay the message at a lower cost, as
indicated by their cost tables, will do so. Before a neigh-
boring node relays a message, it debits the
remaining_value field by one. As this process repeats,
the message “rolls downhill,” following an ever decreas-
ing gradient from the originator to the target.

At the same time, the message carries the originator of
the message in the origination_id field and the accu-
mulated relay cost since origination in the accrued_cost
field. Upon origination, the accrued_cost is set to 0.
Each node that receives the message increments the
accrued_cost field of the message and then updates its
cost table entry for the originating node based on this
information. If and when the message is relayed, it is re-
sent using the incremented accrued_cost. By this pro-
cess, any node that receives a message can update its cost
estimate for returning a message to the originating node,
whether or not the node is actively involved in relaying
the message.

E. Reply Request

When a node wishes to send a message to another node
for which there is no entry in the cost table, it initiates a
“reply request” process. To do so, the originating node
transmits a message whose msg_type field is set to
M_REQUEST, specifying the destination in the target_id
field and initializing the remaining_value field to
default_request_cost.

Relaying of the message proceeds much in the same
manner as for a M_DATA message, but with one important
exception: any node that receives an M_REQUEST message
will always relay the message the first copy of the mes-
sage it receives, unless the remaining_value field has
reached zero. As with an M_DATA message, the node will
increment the accrued_cost and decrement the
remaining_value fields of the message before relaying
the message.

If a node receives a copy of a previously received mes-
sage, it will update its cost table entry for the originator
of the message if the copy represents a lower cost to the
originator, but the node will not relay the copy.

Two important things happen in the reply request pro-
cess. First, if the destination node is present anywhere in
the network (within a radius of default_request_cost),
it will receive the M_REQUEST message and initiate a
reply. Second, each node that receives the M_REQUEST
message establishes a cost estimate for returning a mes-
sage to the originator. Consequently, when the destina-
tion node responds to the originating node’s request, it
can use the more efficient M_DATA message to deliver the
reply.

TABLE 2 Cost Table Entry

target_id seq_# est_cost expiration

F. Call and Response

GRAd is uses on demand routing: none of the nodes
have any a priori knowledge of one another. Until a node
turns on its transmitter, its presence in the network is not
known to other nodes. The general rule for such networks
is “if you wish to be spoken to, you must first speak.”

The following two figures illustrate the Reply Request
process in an ad hoc network, in which Node A initiates a
request to Node B, and Node B subsequently responds. It
is assumed that initially none of the nodes in the network
have any knowledge about nodes A or B.

Fig. 1 shows the state of the network after the propaga-
tion of a Reply Request message from Node A to Node
B. The dashed circle around Node A shows the range of
an individual transmitter. Node A starts by transmitting a
Reply Request message with an accrued cost of 0 and a
target_id set to the ID of Node B. The two neighbors to A
each increment the accrued_cost field of the message,
record the fact that they are each one hop away from A,
and relay the message. This process continues until all
the nodes in the network have received and relayed the
Reply Request message.

By the time A’s Reply Request message has arrived at
node B, all of the intervening nodes in the network have
established a cost estimate for returning a message to A,
as shown by the numbers next to each node in Fig. 1.

When Node B receives the Reply Request message
from Node A, it responds by originating an “ordinary”
message with msg_type set to M_DATA, accrued_cost set
to 0, and remaining_cost set to 3, the known cost
required to reply to Node A.

Referring to Fig. 2, when B transmits this message, the
neighboring nodes C and D lie within range and receive
the transmission. The cost table of C indicates that A is
two hops away, and since the message has an advertised
remaining_cost of three, node C should relay the mes-
sage after decrementing its remaining_cost. Node D, on

the other hand, is four hops away from node A, and since
it is unable to relay the message at a cost lower than the
remaining_cost advertised by the message, it drops the
message.

As the message is relayed towards A, intermediate
nodes also create entries for returning a message to node
B. Fig. 2 shows the state of the cost tables after the reply
has been received at Node A. Next to each node that par-
ticipated in the reply, the estimated cost for sending a
message to node A is shown to the left of the vertical bar,
the cost to node B is shown to the right.

In this example, nodes D and E received the message
from B, but did not actively participate in relaying it.
Nonetheless, by virtue of “overhearing” the message,
these nodes have established an estimated cost for send-
ing a message to Node B should the need ever arise.

G. Route Repair

If any nodes in the network are mobile, the topology of
the network can change dynamically, rendering the indi-
vidual nodes’ cost estimates inaccurate.

If the path between originator and target becomes
shorter, GRAd will automatically compensate for the
change by “skipping over” one or more intervening
nodes, and the revised cost estimates will be reflected in
the participating nodes’ cost tables after a single call and
response pair of messages.

In the event that the path become longer, or intervening
nodes change their positions, there is the possibility that
the originator’s cost estimate no longer has sufficient
“potential” to reach the target destination.

GRAd uses end-to-end acknowledgments. If an
acknowledgment is not received within a fixed amount of
time, the originator can re-send the message, but this time
using a higher estimated cost to the destination in the
remaining_cost field of the message. This has the effect
that more intermediate nodes will participate in relaying

A

FIGURE 1: REPLY REQUEST FROM NODE A TO NODE B

B

1

2

cost to A = 3

1 2

3

42

3

4

5

cost to A = 0

A

FIGURE 2: NODE B REPLIES USING THE REVERSE PATH

B

1|2

2|1
3|0

4|12|2

0|3

cost to A |cost to B

C DE

the message towards its destination. As before, by the
time the message reaches its destination, all of the inter-
mediate nodes will have fresh cost estimates for returning
a message to the originator, so the destination node’s
acknowledgement will be able to follow an updated gra-
dient back to the originator.

If the first attempt to send a message with an increased
estimated cost fails to reach the destination, the originator
can repeat the process, incrementing the initial estimated
cost each time.

If, after several attempts, the message fails to reach the
destination, the originator can issue a new Reply Request
message to create fresh cost estimates from scratch.

H. Implicit Acknowledgment

To reduce the number of redundant messages transmit-
ted, GRAd uses a variant of passive acknowledgment
called implicit acknowledgment. A message to be relayed
is stored in a MAC-level buffer while it awaits transmis-
sion. If a node overhears a neighbor relay a copy of that
same message, but at a lower remaining_cost, then the
node can assume that the neighbor has succeeded in
delivering the message closer to the destination than this
node can, therefore it can delete the message from the
MAC queue and cancel its transmission.

When the ultimate target node receives a message, it
re-transmits the message with a remaining_cost set to
zero. This has the effect of notifying any neighbors still
waiting to relay the message that the target has received
the message and that they may abandon their efforts.

III. SIMULATION AND RESULTS

Performance of GRAd was simulated using Jasper[11],
an event driven network simulator. The main objectives
of the simulation were to characterize the performance of
GRAd as a function of transmitted packets and the
amount of mobility among the nodes in the network.

A. Simulation Environment

Jasper provides detailed models for components of a
multi-hop, mobile, wireless ad hoc network.

The radio modelled by Jasper emulates an FM or
spread-spectrum radio, such as would be used in a wire-
less local area network, operating in an urban or dense
office environment. In the absence of other transmis-
sions, a transmitter/receiver pair has a nominal range of
250 meters. Transmit power falls off as the cube of the
distance, and a receiver can acquire lock on a transmitter
if the signal to interference ratio exceeds 10db. Once
locked, a receiver can hold lock as long as the signal to
interference ratio exceeds 6db. During reception of a

packet, if the signal to interference ratio drops below 6db,
the packet is marked as corrupted. The bit rate of the
transmitter is 2Mb/sec.

GRAd’s MAC layer uses a technique of carrier sense
with exponential back off: when a node wishes to trans-
mit a packet, it first waits for a random interval between
Tb and 2Tb seconds. At the end of that time, if the carrier
sense detects that the local airwaves are in use, it doubles
the value of Tb (up to an upper limit) and waits again. If
the airwaves are free, it halves the value of Tb (down to a
lower limit) and transmits the packet. If the MAC trans-
mit buffer becomes empty, Tb is reset to its minimum
value.

Mobility and traffic models were chosen to emulate
those described in [1]. Fifty nodes in a 1500m×300m
arena travel according to the random waypoint algorithm:
each node travels towards randomly chosen locations
within the arena at random speeds (evenly distributed
between 0 and 20m/sec.). After reaching its destination,
the node pauses for a fixed amount of time before setting
out for its next randomly chosen location. The pause time
is varied from 0 seconds for continuous motion to 900
seconds in which case the nodes are stationary for the
duration of the simulation.

Traffic is generated by constant bit rate (CBR) sources,
randomly chosen among the 50 nodes. Each CBR source
targets a randomly chosen destination among the remain-
ing 49 nodes. A CBR source generates four 64 byte pack-
ets per second. The load on the network is controlled by
the changing number of CBR sources. In the tests, 10, 20,
30 and 40 CBR sources were used to generate traffic.

Messages from the CBR source sit in a queue until a
route is discovered. To prevent indefinite buffering, mes-
sages are dropped if they remain in the queue for over 30
seconds.

Entries in cost tables are set to time out if not updated
within four seconds.

In the simulation, a target sends a 32 byte acknowledg-
ment to the CBR source once every two seconds. This
acknowledgement message has the dual effect of notify-
ing the CBR source that messages are reaching the target,
but more importantly, it refreshes the path from the CBR
to the target.

Each test was run for 900 simulated seconds and the
results were averaged over ten consecutive runs in order
to account for different network topologies.

B. Evaluation and Discussion

As in [2], three key performance metrics are evaluated:
(i) Packet Delivery Fraction—the ratio of data packets
successfully delivered to those originated; (ii) the Aver-
age Latency—the measure of the total end-to-end delay

in delivering a packet to a destination; (iii) Normalized
Routing Load—the ratio of the total number of packets
transmitted by any node to the number of packets suc-
cessfully delivered to the destination2.

Fig. 3 shows the Packet Delivery Fraction as a function
of pause time and for different numbers of CBR sources.
As can be seen from the graph, GRAd is nearly impervi-
ous to variable mobility—the percentage of good packets
delivered remains essentially constant as the pause time
changes.

GRAd is robust in the face of changing topology
because it enlists multiple neighboring nodes to relay
messages from one place to another. If one node moves
out of place, other nodes are often available to relay the
packet without resorting to rebuilding the route.

Fig. 4 shows the average end-to-end latency for suc-
cessfully delivered packets. In GRAd, latency remains
under 7 milliseconds, even under conditions of high
mobility and load. By contrast, [2] reports end-to-end
delays of more than 100 milliseconds, and as high as one
second for heavily loaded networks. It must be pointed
out that is not an exact comparison: in [2], packet size
was 512 bytes and the radio is simulated using a different
path loss model.

In any practical implementation, GRAd is still likely to
show small latencies since it avoids the RTS/CTS link to
link handshake used in other protocols.

However, there is a price to pay for the “fast and loose”
routing approach used by GRAd. Fig. 5 shows the rout-
ing load for various pause times and CBR sources.

As Fig. 5 shows, for every one data packet received at
the ultimate destination, between six and eight packets
have been transmitted. Some of these “extra” packets are
inevitable, for example, if a path requires two hops from
source to destination, this will be recorded as a routing
load of two. A destination node always sends an implicit
acknowledgment notification, as described in Section
II(H), which contributes to the load. Relatively few of the
overhead packets are Reply Request messages, even in
scenarios with high mobility3. The majority of the over-

2. Note that in [2], the Normalized Routing Node
counts the ratio of network control packets to all
delivered packets. In the tests described here, all
transmitted packets—data and control—are included
in the numerator.

FIGURE 3: P ACKET DELIVERY FRACTION

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800 900

Pause Time (sec)

P
ac

ke
t D

el
iv

er
y

F
ra

ct
io

n
(%

).

10 Sources

20 Sources

30 Sources
40 Sources

FIGURE 4: AVERAGE DELAY

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

0 100 200 300 400 500 600 700 800 900

Pause Time (sec)

A
ve

ra
ge

 D
el

ay
 (

se
c)

10 Sources
20 Sources
30 Sources
40 Sources

FIGURE 5: ROUTING LOAD

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800 900

Pause Time (sec)

N
or

m
al

iz
ed

 R
ou

tin
g

Lo
ad

 .

10 Sources
20 Sources

30 Sources
40 Sources

head packets are due to multiple neighbors attempting to
relay the same packet. A consequence of this overhead is
that GRAd networks exhibit more congestion than other
network algorithms for the same offered load.

C. Effects of MAC layer

In any ad hoc network, there is no centralized control to
control access to the airwaves, so nodes depend upon the
MAC mechanism to cooperatively share the airwaves.
GRAd, in particular, taxes the MAC layer since multiple
neighboring nodes will attempt to relay a message soon
after receiving it. It was therefore suspected that perfor-
mance of GRAd would be sensitive to the choice of
MAC layer.

The 802.11 MAC layer [4] is considerably more “fair”
than GRAd’s simple carrier sense and exponential back
off approach described in section III(A). In the 802.11
approach, the MAC layer implements a countdown timer
which is initialized to a random duration proportional to
an exponential back off constant. The timer counts down
only when the local airwaves are clear. When the timer
expires, the MAC layer transmits the packet. This
approach more evenly distributes air time to neighboring
nodes.

The tests were run for 10 CBR sources using the
802.11 MAC layer and compared against the same tests
using the GRAd MAC layer—the results are shown in
Fig. 6. It is interesting to note that there was little effect
on the overall performance of GRAd using two substan-
tially different MAC layers.

D. Disabling Route Repair

Section II(G) describes GRAd’s mechanism for Route
Repair: if the receiver fails to receive a packet from a
sender within the expected period of time, it sends a reply
to the sender with an increased remaining_cost.

To gain insights to the effectiveness of the route repair
mechanism, the tests were run with route repairs dis-
abled: if the network topology changed so an originator
no longer reached its destination (more accurately, if an
originator stopped receiving packets from its destina-
tion), the entries in the cost table would time out and the
originator would start a new Reply Request process.

Fig. 7 shows the effects of disabling the Route Repair
mechanism. The packet delivery fraction drops almost
insignificantly, but somewhat surprisingly, the average
latency and routing load are both improved.

3. In a typical test with 10 sources and 0 second pause
time, only 2.5% of all messages transmitted were
M_REQUEST messages.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 100 200 300 400 500 600 700 800 900

Pause Time (sec)

A
ve

ra
ge

 D
el

ay
 (

se
c)

802.11 MAC

GRAd MAC

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800 900

Pause Time (sec)

N
or

m
al

iz
ed

 R
ou

tin
g

Lo
ad

802.11 MAC

GRAd MAC

(a) Packet Delivery Fraction (10 Sources)

(b) Average Delay (10 Sources)

(c) Normalized Routing Load (10 Sources)

FIGURE 6: EFFECT OF DIFFERENT MAC LAYERS

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800 900

Pause Time (sec)

P
ac

ke
t D

el
iv

er
y

F
ra

ct
io

n
(%

).

802.11 MAC

GRAd MAC

IV. CURRENT STATUS AND FUTURE WORK

The initial results of GRAd are encouraging, but there
are a number unanswered questions whose answers may
give insights to the operation of GRAd and suggest areas
for improvement.

A. Better Quantitative Comparison

The ns-2 simulator [3] has been extended as described
in [1] and used extensively to test various ad hoc wireless
routing protocols in [1][2][6]. Although Jasper has been
written to test GRAd using similar test conditions,
dependable comparisons can only be made if GRAd is
tested using ns-2. Work is underway to implement GRAd
in ns-2.

B. Hardware Implementation

Despite attempts to simulate the physical characteris-
tics of the environment, “there’s nothing like the real
thing,” and plans are underway to build a network of
wireless nodes as a test bed in order to characterize the
performance of GRAd in real-world conditions.

C. More intelligent routing

Throughout this paper, the term “cost” has been used to
mean “number of hops,” but metrics other than the num-
ber of hops are possible. For example, a node can charge
a higher cost for relaying a message if it notices that its
local airwaves are becoming congested, or if its local
topology is changing rapidly. The higher relay cost will
cause messages to flow around the node if there are other
nodes that can relay at a lower cost.

To generalize, in a multi-hop wireless network, the
only real choice a node can make is whether or not to
relay a message that it has received, and if so, when to
relay it. As suggested in [8], it may be useful to structure
the problem of routing as a set of software agents resid-
ing in the nodes and in the messages; the agents decide
what should be relayed and when. The network can then
be viewed as a series of activation and inhibition func-
tions, the former causing a message to be transmitted, the
latter preventing it.

D. Preferred Neighbors

GRAd and AODV share many traits, including on-
demand route discovery and updating reverse path infor-
mation as a message is relayed from one node to next.
GRAd permits any neighbor to participate in relaying a
message, AODV insists upon a particular neighbor. A
compromise between these two approaches shows some
promise: A relaying node advertises a cost for relaying a
message (a la GRAd) and suggests a preferred neighbor

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800 900
Pause Time (sec)

P
ac

ke
t D

el
iv

er
y

F
ra

ct
io

n
(%

).

10 Sources
20 Sources
30 Sources
40 Sources

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 100 200 300 400 500 600 700 800 900

Pause Time (sec)

A
ve

ra
ge

 D
el

ay
 (

se
c)

10 Sources
20 Sources
30 Sources
40 Sources

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800 900

Pause Time (sec)

N
or

m
al

iz
ed

 R
ou

tin
g

Lo
ad

10 Sources
20 Sources
30 Sources
40 Sources

(a) Packet Delivery Fraction

(b) Average Delay

(c) Normalized Routing Load

FIGURE 7: DISABLING R OUTE REPAIR

to do the relaying (a la AODV). If that neighbor is not
observed to relay the message within a certain amount of
time, then non-preferred neighbors may attempt to relay
the message. This approach could reduce some of the
routing overhead observed in GRAd while still maintain-
ing robustness in dynamically changing networks.

E. Functional Addressing

The broadcast nature of GRAd’s Reply Request
encourages functional addressing, in which a node ini-
tiates an M_REQUEST message containing a predicate
rather than a specifying a fixed target ID. The predicate is
a piece of software that embodies a query such as “Are
you a color printer?,” “Are you a gateway to a wired net-
work?,” or “Are you an ARP server?” Each receiving
node evaluates the predicate and sends a reply to the
requestor if the predicate evaluates to be true. If the
requestor receives multiple replies, it can choose the
reply that offers the lowest accrued_cost (i.e. is topo-
logically closest) or that best satisfies some other applica-
tion specific criteria.

F. Per-Session Addressing

In GRAd, routes are created on demand, entries in cost
tables are short lived and persist only for the duration of a
dialog between two nodes. The identities of the interme-
diate nodes are not required for passing messages. This
opens the possibility of per-session addressing , in which
an originating and replying nodes choose network IDs at
random to be used for the duration of a session.

The space of IDs can be made large enough so the
chance of two nodes choosing the same ID is insignifi-
cant.

Per-session addressing offers two advantages. The first
is security: by changing its advertised address for each
session, a node gains some measure of anonymity and
protection against malicious eavesdroppers.

Second, manufacturing costs are reduced since network
IDs don’t need to be assigned and individually burned in
at the time of manufacturing.

V. CONCLUSION

GRAd offers a new approach to ad hoc, on-demand
routing. Rather than sending unicast packets, it exploits
local broadcasting to contact multiple neighboring nodes.
Messages descend a cost gradient from originator to des-
tination without needing to identify individual intermedi-
ate nodes. Cost functions are updated opportunistically as
messages are passed from one node to the next.

Through simulation, the performance of GRAd has
been tested and characterized under a variety of load and

mobility conditions. The results of the tests show that
GRAd exhibits very low end-to-end packet delays and
offers good immunity to rapidly changing topologies.

ACKNOWLEDGMENTS

I would like to thank the members of my doctoral com-
mittee, Michael J. Hawley, Andrew B. Lippman and Wil-
liam J. Kaiser, for continually challenging my
assumptions and keeping my attention focused on the
“real problems.” I have enjoyed discussions with Bob
Metcalfe, Scott Corson, and Andrew Mendel, and appre-
ciate the chance to work out my ideas with good critics.
The MIT Media Laboratory and the Motorola Fellows
Program have provided very tangible and much appreci-
ated support. Charlotte Burgess provided excellent “just
in time” editing support.

Finally, I’d like to give a special note of thanks to Hari
Balakrishnan for his interest in my work and for encour-
aging me to develop it more fully.

REFERENCES

[1] J. Broch, D. A. Maltz, D. B. Johnson, Y-C. Hu, J.
Jetcheva. “A performance comparison of multi-hop
wireless ad hoc networking protocols,” in Proceed-
ings of the 4th International Conference on Mobile
Computing and Networking (ACM MOBICOM ‘98),
pp. 85–97, October 1998.

[2] S. Das, C. Perkins, E. Royer. “Performance compar-
isons of two on-demand routing protocols for ad hoc
networks,” Proceedings of the IEEE Conference on
Computer Communications (INFOCOM), Tel Aviv,
Israel, March 2000, pp. 3–12.

[3] K. Fall, K. Varadhan (Eds.) ns notes and documen-
tation, available from http://www.isi.edu/~salehi/
ns_doc/.

[4] IEEE Standards Department. “Part 11: Wireless
LAN medium access control (MAC) and physical
layer (PHY) specifications,” ISO/IEC 8802-11, First
Edition, August 1999.

[5] J. Macker, S. Corson. “Mobile Ad-hoc Networks
(manet) Charter.” http://www.ietf.org/html.charters/
manet-charter.html, February 2000

[6] P. Johansson, T. Larsson, N. Hedman, B. Mielcza-
rek. “Routing protocols for mobile ad hoc net-
works—a comparitive performance analysis,”
Proceedings of the 5th International Conference on
Mobile Computing and Networking (ACM MOBI-
COM ‘99), pp. 195-206, August 1999.

[7] D. B. Johnson, D. A. Maltz. “Dynamic source rout-
ing in ad hoc networks,” in Mobile Computing , T.
Imielinski and H. Korth, Eds., Kulwer, 1996, pp.
152-81.

[8] K. H. Kramer, N. Minar, P. Maes. “Tutorial: Mobile
Software Agents for Dynamic Routing,” Mobile
Computing and Communications Review (ACM
SIGMOBILE), vol. 3, no. 2, 1999, pp. 12–16.

[9] S. Kumar. “Sensor Information Techology
(SenseIT) Program”, described in http://www.dar-
pa.mil/ito/research/sensit/, DARPA Information
Technology Office, April 2000.

[10] C. Perkins and E. Royer. “Ad-hoc on-demand dis-
tance vector routing,” Proceedings of the 2nd IEEE
Workshop on Mobile Computing Systems and Appli-
cations , pp. 90–100, February 1999.

[11] R. Poor. “Jasper: a Java-basd dynamic simulator for
ad hoc wireless networks,” unpublished.

[12] R. Ruth. “Global Mobile Information Systems (Glo-
Mo) Program,” in http://www.darpa.mil/ato/pro-
grams/glomo_mission.htm, DARPA Advanced
Technology Office, March 2000

