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Learning communities — understanding 
information flow in human networks

A Pentland

The Human Dynamics research group is developing methods to automatically map the flow of information within groups and communities 
using audio collected from wearable sensors such as mobile phones or PDAs.  Computational models of group interaction dynamics are 
then derived from this data, allowing us to answer questions such as:  Who influences whom? How much?  How can we modify group 
interactions to promote better information diffusion?  The goal is real-time learning and modification of information flow within 
organisations; we describe initial results and discuss concerns about user privacy.

1. Introduction
In almost any social or work situation our decision-making is 
influenced by the actions of others around us. Who are the 
people we talk to? For how long? How often? How much do 
they influence us? Answers to these questions have been used 
to understand the success and effectiveness of a work group or 
an organisation as a whole [1—4]. 

At the core of these questions is the problem of understanding 
information flow within the group, organisation, or 
community. For instance, can we identify the connectors 
within a community, the individuals who talk to a large fraction 
of the group or community members? Such individuals have 
an important role in information diffusion [1]. Can we identify 
local experts? These individuals are the repository of vital 
organisational knowledge, even though they are often not 
high-status individuals and their value to the organisation is 
not evident from an organisation chart.

Learning the flow of information within human organisations is 
critical to understanding the diffusion of information, 
consensus building, coalition formation, etc. Tracking 
information flow within digital media is already possible, and 
other researchers have ‘mined’ the structure of such digital 
communications and shown that informal networks coexist 
with the formal structure of an institution and these informal 
networks enhance the productivity of the formal organisation 
[2]. 

However, most communication is not digital. Studies of office 
interactions have discovered that 35—80% of work time is 

spent in spoken conversation, 14—93% of work time is spent 
in opportunistic communication, and 7—82% of work time is 
spent in meetings [1]. Senior managers represent the high end 
of these scales. Clearly, face-to-face interaction within the 
work-place is central to information flow, with critical pieces of 
information often transmitted by word of mouth in a 
serendipitous fashion. The money and time spent on business 
travel and conferences further underscores the value of face-
to-face interactions.

Thus to understand information flow within a human 
organisation, we must understand what happens in spoken 
conversation.

To achieve this goal we are developing models that can 
capture the dynamics of an individual and how they interact 
with others in their social network. While a variety of models 
are potentially appropriate, such as the hidden Markov model 
(HMM), these require a very large number of parameters to 
describe the interactions, and so learning the parameters of 
these models is difficult and interpretation of the models often 
impossible. The requirement for a minimal parameterisation 
motivated our development of coupled hidden Markov models 
(CHMMs) to describe interactions between two people, where 
the interaction parameters are limited to the inner products of 
the individual Markov chains [5].  

face-to-face interaction 
within the work-place is 
central to information flow
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The ‘influence model’, is a generalisation of this approach, 
and describes the connections between many Markov chains 
as a network of convex combinations of the chains. As 
developed in Asavathiratham [6], complex phenomena 
involving interactions between large numbers of chains can be 
analysed by use of this simplified model.  A key property of the 
influence model is a framework for understanding the global 
behaviour by doing eigenstructure analysis of the ‘influence 
matrix’ [6]. This is important in trying to understand how the 
behaviour of each individual affects the global group 
dynamics. 

In this paper we lay the groundwork for being able to 
automatically study how individuals and groups interact, 
model how information propagates between them, and 
propose new tools for improving information flow within 
groups and organisations.

2. Measuring interactions
In this section we describe how one can use wearable sensors 
to measure interactions. The first step towards reliably 
measuring communication is to have sensors that can capture 
interaction features. For example, in order to measure face-to-
face interactions we need to know who is talking to whom, the 
frequency and duration of the interactions, and (ideally) both 
the topic and intention of the conversation. 

Our first platform for gathering interaction data was a 
wearable sensor package [7—9] known as the sociometer, first 
used by Choudhury in her thesis research [10—12].  More 
recently we have been impressed that hand-held computers 
and mobile telephones have been adopted as standard 
corporate attire across the globe, have wireless network 
connectivity, and run at the speeds comparable to the desktop 
computers just a couple of years ago. Our standard method of 
measuring interactions now uses a headset microphone in 
conjunction with either a PDA or mobile telephone to collect 
audio, including ambient audio [13] (see Fig 1). We also have 
found it useful to use Bluetooth to discover the identity of 
nearby users by using the BTIDs broadcast by the Bluetooth 
transcievers built into modern telephones and PDA [14].

Privacy is a primary concern for any system, so we typically 
extract and record only speech features, e.g. energy and 
spectral features, and not the raw speech signal. Thus the 
content of conversations is never recorded, and many (but not 
all) privacy concerns alleviated.

In some applications more detail about the content of the 
conversation is required. Such information can be important 
to distinguishing relationship types, expertise areas, and 
conversation relevancy to enable appropriate collaborations. 
As we have shown in Jebara et al [15] and Eagle et al [16], the 
noisy inputs from commercial word recognition software are 
sufficient for spotting topics within spoken conversation. If 
topic spotting is performed locally, then once again we avoid 
the problem of recording speech directly. 

To detect conversations, we need to reliably segment speech 
regions from the raw audio. As the first step, we extract 
spectral features proposed by Basu [17] that discriminate well 
between speech and non-speech regions. A two-layer hidden 
Markov model is trained to detect voiced/unvoiced and 
speaking/non-speaking regions using the features. This 
method works very reliably even in a noisy environment, with 
less than 2% error at 10 dB SNR. 

When two people are nearby and are talking it is likely that 
they are talking to each other; however, we cannot say this 
with certainty. Results presented in Basu [17] demonstrate 
that we can detect whether two people are actually in a 
conversation by using the fact that the speech of two people in 
a conversation is tightly synchronised. We can reliably detect 
when two people are talking to each other by calculating the 
mutual information of the two voicing streams, which peaks 
sharply when they are in a conversation as opposed to talking 
to someone else. This measure works very well for 
conversations that are at least one minute in duration. 

2.1 Accuracy
In Choudhury and Pentland [10—12] the sociometer was used 
to collect almost 1700 hours of interaction from 23 subjects, 
and the participants were also asked to fill out a daily survey 

 Fig 1 Measuring social interactions — left, the shoulder mounted sociometer; right,  the headset
connected to a PDA or mobile telephone. 
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providing a list of their interactions with others. The 
sociometer and our conversation detection algorithms 
detected 82% of the pairs that interacted based on the survey 
data. However, the survey data had only 54% agreement 
between subjects (where both subjects acknowledged having 
the conversation) and only 29% agreement in the number of 
conversations. Consequently, we also obtained hand-labelled 
ground truth from a subset of the users. Four participants 
labelled two days of their data in five-minute chunks (12 hours 
each). For the hand-labelled data set, our performance 
accuracy in detecting conversations was 87.5% for 
conversations greater or equal to one minute. 

The conversations missed by this method were typically in 
high-noise, multiple-speaker situations. In smaller, quieter 
environments (such as most group meetings) accuracy is 
nearly 100%. However, even in such relatively controlled 
environments ‘hotspots’ in the conversation, where multiple 
people are talking over each other, cause the accuracy of our 
method to degrade.

3. The influence model
Once we have detected and begun to characterise face-to-face 
conversations using wearable sensors, the next challenge is to 
build a computational model that can be used to predict the 
dynamics of the individuals and their interactions. The 
learnability and interpretability of a model greatly depends on 
its parameterisation. The requirement for a minimal 
parameterisation motivated our development of CHMMs to 
describe interactions between two people, where the 
interaction parameters are limited to the inner products of the 
individual Markov chains [5]. 

The ‘influence model’ is a generalisation of this approach, and 
describes the connections between many Markov chains as a 
network of convex combinations of the chains, as described in 
Asavathiratham [6]. This allows a simple parameterisation in 
terms of the ‘influence’ each chain has on the others. Complex 
phenomena involving interactions between large numbers of 
chains could be simulated through this simplified model, such 
as the up/down time for power stations across the US power 
grid which was the focus of Asavathiratham’s work.

The influence model is a tractable framework for 
understanding the recurrent classes of the global system and 
its steady state behaviour by doing eigenstructure analysis of 
the ‘influence matrix’ that describes the network of 
connections between the various constituent Markov chains. 
This representation makes the analysis of global behaviour 
possible, which otherwise would become intractable with 
increasing numbers of individuals or agents. 

In Asavathiratham’s formulation of the influence model, all 
states were observed. He did not develop a mechanism for 

learning the parameters of the model —he assumed that they 
were known a priori. Learning the model parameters from 
observation is an important requirement in our case. We 
extend his model by adding the notion of hidden states and 
observations. We describe algorithms for learning the 
parameters of the influence model in section 4.

The graphical model for the influence model is identical to that 
of the generalised N-chain coupled HMM (see Fig 2), but there 
is one very important simplification. Instead of keeping the 
entire , we only keep and 
approximate the former with:

In other words, we form our probability for the next state by 
taking a convex combination of the pairwise conditional 
probabilities for our next state given our previous state and 
the neighbour’s previous state. As a result, we only have N 
Q ×Q tables and N parameters per chain, resulting in a total of 
NQ2 + N2 transition parameters — far fewer parameters than 
any of the above models. The real question, of course, is 
whether we have retained enough modelling power to 
determine the interactions between the participants. 
Asavathiratham refers to the α’s as ‘influences’, because they 
are constant factors that tell us how much the state transitions 
of a given chain depend on a given neighbour. It is important 
to realise the ramifications of these factors being constant — 
intuitively, it means that how much we are influenced by a 
neighbour is constant, but how we are influenced by it 
depends on its state. 

This simplification seems reasonable for the domain of human 
interactions and potentially for many other domains. 
Furthermore, it gives us a small set of interpretable 
parameters, the values, which summarise the interactions 
between the chains. By estimating these parameters, we can 
gain an understanding of how much the chains influence each 
other.

3.1 The influence matrix
There is clearly a computational advantage in using the 
influence model framework because of the relatively small 
number of parameters that must be learned. Another benefit 
of this representation comes during the analysis of the global 
dynamics of the system.

Let G be the transition matrix from all possible sets of node 
(agent) states to all other possible sets of states. As the 
dimension of G is exponential in the number of nodes (agents) 
in the system, it is practically impossible to do computation on 
G. However, we can make statements about the recurrent 
states and the steady state probabilities of the global system 
by analysing the structure of the influence matrix [6].

The influence matrix H is defined as the Kronecker product 
[18] of the network influence matrix A and the local state 
transition matrix P:

computational models can 
be used to predict the 
dynamics of individual 
interactions
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The recurrent state of a Markov chain is a state j if Pj(T < •) = 1, 
otherwise if Pj(T = •) >0, j is a transient state. Here T = time of 
the first visit to state j.

Thus being able to relate G and H and thereby do some 
computation on H that provides results for G is of great 
practical importance. In Asavathiratham [6] the following 
connections have been shown between G and H:

• the recurrent classes of the master Markov chain can be 
inferred from the structure of the graph H ,

• the influence matrix H has a dominant eigenvalue at 1 
and its algebraic multiplicity if equal to the number of 
recurrent classes of G,

• one can also track the evolution of the steady state 
probability of the influence model E(s[k]) instead of the 
state probability of the global Markov model E( f [k]).

The advantage of doing such analysis in the domain of human 
interaction is in understanding how connections between 
people affect the overall group behaviour. How can we 
manipulate our links to better propagate information or stop 
the flow of information among the group? If we want 
consensus among nodes what kind of network graph will help 
achieve that, i.e. can we identify and modify the recurrent 
states of the network? 

Our framework allows us to take a data driven approach to 
modelling social dynamics. In the following section we 
describe how we learn individual’s states from observation 
data of their communication and use those to learn the 

network influence matrix. By doing so we will have learned all 
the parameters necessary to define the influence model. We 
will then be ready to understand the global properties of the 
system and how we may go about changing these properties. 

4. Learning for the influence model
In Basu et al [19] we addressed the problem of estimating 
influence model from observation data. We assume that we 
are given sequences of observations, { }, from each chain, i. 
The goal is to estimate the amount of influence, αi j, that chain 
j has on chain i, along with the pairwise conditional probability 
distributions that describe this inter-chain influence, 

. In this section we develop methods for doing 
this and illustrate them with synthetic data. 

4.1 Expectation-maximisation method
In Fig 2 we showed the graphical model for the most general 
form of the influence model with hidden states and continuous 
observations. Fitting this model to data requires us to 
maximise the likelihood of the influence model over its free 
parameters. The likelihood function can be readily written as:

One possibility for estimating the parameters of this model is 
expectation-maximisation. The E-step requires us to calculate 
P (S|X) which in most cases amounts to applying the junction 
tree algorithm (exact inference) or other approximate 
inference algorithms. We will discuss the possibilities for doing 
inference on this model later. The M-step is specific to this 
model and requires maximising the lower bound obtained in 

 Fig 2 Graphs for (a) a generalised coupled HMM, (b) an influence model with hidden states,
(c) an influence model with observed states.
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the E-step. Examining this expression we can see that the M-
step for all the parameters except the αi j’s is only trivially 
different from the HMM [20]. However, we can readily write 
down the update equations for the αi j’s by noticing that they 
are mixture weights for N conditional probability tables 
analogous to a mixture of Gaussians. The αi j update equations 
are obtained by following the derivation of the M-step for a 
Gaussian mixture (i.e. introduce a hidden state to represent 
the ‘active’ mixture component and then take an expectation 
over its sufficient statistics):

The ‘ ’ event means that at the time chain i was 
influenced by chain j, and the ‘ ’ event means that 
chain i was in state k during time t.

Unfortunately, exact inference of the influence model is 
computationally intractable because of the densely connected 
hidden variables [21]. Variational methods or approximate 
inference techniques may be alternate tractable methods for 
learning the full model. However, in the next section we take a 
different approach towards tackling the intractability problem.

4.2 The constrained gradient descent method
Due to the difficulties involved in doing the inference required 
for E-step, we decided to simplify the estimation problem by 
allowing the states to be observed for each chain (see Fig 
2). In practice, we found we could obtain reasonable state 
sequences by fitting an HMM to each chain’s observations and 
performing a Viterbi decoding. Then the chain transition 
tables can be easily estimated (by frequency counts) directly 
from these state sequences. Since our goal is to estimate the 
inter-chain influences (via the αi j’s) this ‘clamping’ of the 
observation and chain transition parameters help combat the 
overfitting problems of the full model.

We now have an unusual DBN where the observed nodes are 
strongly interconnected and the hidden states are not. This 
presents serious problems for inference because marginalising 
out the observed state nodes causes all the hidden states to 
become fully connected across all time and all chains. Unless 
we apply an approximation that can successfully decouple 
these nodes, a maximisation procedure such as EM will not be 
tractable. However, there is a far simpler way to estimate the 
αi j values in our observed scenario. Let us first examine how 
the likelihood function simplifies for the observed influence 
model: 

Converting this expression to log likelihood and removing 
terms that are not relevant to maximisation over αij yields:

We can further simplify this expression by keeping terms 
relevant to chain i:

This per-chain likelihood is concave in αi j, which can be easily 
shown as follows. Let:

then the per-chain likelihood becomes:
.

This is concave since for any  and :

(using Jensen’s inequality).

Now take the derivative w.r.t. αi j :

Here we notice the gradient and the per-chain likelihood 
expression above are inexpensive to compute with appropriate 
rearranging of the conditional probability tables to form the 

 vectors. This, along with the facts that the per chain 
likelihood is concave and the space of feasible αi j’s is convex, 
means that this optimisation problem is a case of constrained 
gradient ascent with full 1-D search (see Bertsekas [22]). 
Furthermore, in all examples in this paper, 20 iterations were 
sufficient to ensure convergence.

4.3 Performance of the learning algorithms
To evaluate the effectiveness of our learning algorithm we 
show results on synthetic data. The data is generated by an 
influence model with three chains in lock step — one leader 
which was evolving randomly (i.e. flat transition tables) and 2 
followers who meticulously followed the leader (i.e. an 
influence of 1 by chain 2 and a self-influence of 0). We 
sampled this model to obtain a training sequence of 50 time 
steps for each chain. These state sequences were then used to 

αnew

ij

P c i

t
j= Si

t
k= S

j

t 1–
l X=, , 

 
l
∑

k
∑

t
∑

P Si

t
k= S

j

t 1–
l X=, 

 
l
∑

k
∑

t
∑

-----------------------------------------------------------------------------------------=

c i
t j=

Si
t k=

Si
t

P S ai j{ }( ) P S
i

0 
 

i
∏
 
  αi j P Si

t
S

j

t 1– 
 

j
∏

t
∏

i
∏=

α *
i j

arg max
αi j

log αi j P Si

t
S

j

t 1– 
 

j
∑

t
∑

i
∑=

α *
i j

arg max
αi j

log
t
∑ αi j P Si

t
S

j

t 1– 
 

j
∑=

α

αi0

M

αiN

=

Bi

t

P Si

t
S

0

t 1– 
 

M

P Si

t
S

N

t 1– 
 

=

fi α( ) log α Bi
t,〈 〉

t
∑=

0 w 1≤< α0 α1,

f 1 w– )α0 wα1+( ) log 1 w– )α0 wα1 Bi

t
,+〈 〉

t
∑=

log 1 w–( ) α0 Bi

t
,〈 〉 w α1 Bi

t
,〈 〉+[ ]

t
∑=

1 w–( )log α0 Bi

t
,〈 〉 w log α1 Bi

t
,〈 〉+

t
∑≥

1 w–( )f α0( ) wf α1( )+=

∂
∂αi j
--------- .( )

P Si

t
S j

t 1– 
 

αik P S i

t
S

k

t 1– 
 

k
∑
-------------------------------------------

P Si

t
S

j

t 1– 
 

αi B i

t
,〈 〉

-----------------------------
t
∑=

t
∑=

Bi
t



Learning communities — understanding information flow in human networks

BT Technology Journal • Vol 22 No 4 • October 2004 67

train another randomly initialised influence model. For this 
learned model, the were estimated by counting 
and the αi j’s by maximising the likelihood with gradient ascent 
as described above. The resulting influence graph is shown 
along with a typical sample sequence in Fig 3. Note how the 
‘following’ behaviour is learned exactly by this model — chains 
1 and 3 follow chain 2 perfectly. 

We also evaluate EM with junction tree on the generalised 
coupled HMM (i.e. full state transition tables instead of the 
mixtures of pairwise tables). Again we sample from the lock 
step model as before and train a randomly initialised fully 
connected model. In this case, the learned model performed 
reasonably well, but was unable to learn the ‘following’ 
behaviour perfectly due to the larger number of parameters 
it  had to learn

( versus ). 

5. Initial human experiments

5.1 Influence and direction of information
For our initial experiments we wanted to model the simplest 
sort of situations that could plausibly be related to information 
dissemination within an organisation.  Thus we focused first 
on the speaking patterns of individuals, and in particular the 
turn-taking dynamics of conversations.

We start by defining what we mean by a ‘turn’. As in 
Choudhury and Pentland [11, 12], for each unit of time we 
estimate how much time each of the participants speaks; the 
participant who has the highest fraction of speaking time is 
considered to hold the ‘turn’ for that time unit. For a given 
interaction, we can easily estimate how a pair participating in 
the conversation transitions between turns. We use the 
speaker segmentation output within conversations to 
estimate the turn-taking transition probability. If the 
conversations are between pairs of people, then typically they 
transition between two states — speaker A’s turn and speaker 
B’s turn.

When two people are interacting, their average turn-taking 
dynamics will affect each other and the resulting turn-taking 

behaviour for that interaction will be a blend of the two 
Markov transition matrices. If someone affects our speaking 
pattern a lot, we may adapt completely to the behaviour of the 
other person, whereas if we are not affected at all we will 
probably maintain our own typical dynamics, or the resulting 
interaction behaviour may be somewhere in between these 
two extremes. We can model the transition probabilities 
during a specific interaction as a convex combination of the 
individuals' typical turn-taking styles using the influence 
model. 

In Pentland [23] it was proposed that in many conversations 
one participant ‘drives’ the interaction, typically through a 
series of questions. In such a situation the dynamics of 
speaking/not speaking for both participants is driven by the 
questioner. Note that the questioner can be a ‘teacher’ using 
a Socratic method of teaching, an administrator seeking a full 
report of some situation, or someone seeking to obtain 
information from an authority. In each case the main 
propagation of information is toward the person driving the 
turn-taking dynamics. Thus we might be able to measure 
propagation of information by measuring the influence 
parameters.

In Mandan et al [24] we found evidence that this was indeed 
the case. The plot in Fig 4 shows a typical evolution of 
influence parameters for an interview conversation, where 
person B questions person A. 

Fig 4 Influence experienced by participants.
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In this interview situation there was much more influence on 
the interviewee, with the influence parameters being about 
40% higher on the person who is providing the information. 

If this result held generally in day-to-day conversation, then we 
should be able to use the influence parameters to analyse 
information flow in social networks.  Choudhury and Pentland 
[11, 12] compared the influence parameters to individual 
subject’s ‘betweenness centrality’, which is a standard social 
science measure of how important an individual is to 
information flow within a social network.  In an experiment 
comprising almost 1700 hours of interaction data from 23 
subjects, we found that the correlation value between 
centrality and the influence parameter was 0.90 (p-value < 
0.0004, rank correlation 0.92). This finding strongly supports 
the hypothesis that the influence parameters are a good 
measure of information propagation within organisations.  

The conversational influence parameters are important in 
more than just measuring the direction of information flow.  
Their relative magnitude may also be a signficant measure of 
the effectiveness of the communication. Pentland et al [25] 
examined 46 mock salary negotiations conducted by Sloan 
graduate students (the students’ experimental pay and course 
grade was dependent upon the outcome of the negotiation). 
We found that more than 25% of the variance in the final pay 
package could be predicted from the turn-taking influence 
parameters. By adding prosody influence measurements, 
more than 35% of the variance in salary could be predicted. 
Thus influence parameters can be used not only to measure 
directionality of information flow, they also seem useful in 
measuring how well you got your story across. 

5.2 Information flow within groups
These results support the hypothesis that the person who 
elicits new information in a conversation exhibits a larger 
influence on the conversational dynamics. Therefore the social 
behaviour that relates influence on conversational dynamics to 
direction of information flow may give us a way to 
quantitatively estimate the magnitude and direction of 
information flow without needing to do full speech 
understanding. 

Quantifying the face-to-face interactions within an office 
environment is of particular interest, because this is the 
normal method for communicating complex information [3]. If 
an individual requires a complex piece of knowledge from 
colleague, he normally uses the telephone or e-mail to set up a 
meeting, but then receives the information through a face-to-
face interaction. Even outside the context of meetings, 
informal face-to-face conversations in the hall or by the water 
cooler are incredibly important for organisations [4]. 

Effectively harnessing this face-to-face communication 
channel has the potential to revolutionise the field of 
knowledge management.  Forming groups based on inherent 
communication behaviour, rather than rigid hierarchy or 
formal education, may also yield significant improvements to 
the organisation’s performance. For instance, by using the 
techniques described here it may be possible to automatically 
know who the local experts are and who  the inter-group 

connectors are, and to identify groups of people who need to 
talk together more frequently.

A particularly promising application of this technology is 
understanding and facilitating small group interactions. The 
dynamics of information flow within a classroom, for instance, 
plays a crucial role in the success of a class. It is common 
knowledge that an instructor must have a sense of how many 
people are following the discussion, who could use more 
personalised help, and which parts of material need to be 
reviewed. We believe that our technology can quantify these 
informal notions, and thus substantially augment an 
instructor’s performance. 

During the 2003 and 2004 academic years we taught a course 
called Digital Anthropology, which was cross-registered 
between the MIT Media Laboratory and the MIT Sloan 
Business School. The course was specifically created as a 
technology test bed for investigating applications for 
collaborative learning and teaching feedback (see Sung et al 
[26] for examples)1.

During each session of the class, participants were given a 
Sharp Zaurus PDA which recorded audio features, and which 
also provided an interest rating application that allowed 
participants to continuously provide subjective feedback on 
comments and discussion using the PDA’s 2-D touch pad. The 
feedback interface was designed to make the job of providing 
continuous interest level feedback a low-attention, secondary 
task that was mimimally distracting.  Data from a typical one-
hour class session is shown in Fig 5. Additional detail can be 
found in Eagle and Pentland [13].

By correlating peaks in interest/approval with the individual 
audio inputs, the system can automatically provide a summary 
audio track consisting of comments that had high approval or 
interest ratings, and employ speech analysis to identify topics 
that had high (or low) ratings. Dynamic maps of student 
interaction can be generated and publicly displayed to reflect 
the roles and dyadic relationships within a class. This analysis 
can help develop deeper insight into the underlying dynamics 
of the class. Table 1 shows a selection of metrics that can be 
gleaned from the stream of audio features. Profiles of a 
student’s typical classroom behaviour are built over time using 
conversation features such as speaking rate, energy, duration, 
participants, influence parameters, transition probabilities, 
and time spent holding the floor. This analysis uncovers 
information relevant to assessing the effectiveness of the 
class, as well as the dyadic relationships between individuals. 
The information collected includes a list of the peers that a 
student typically sits by, avoids, talks to, interrupts, and 
transitions. As can be seen from Fig 6, a professor (s9) is 
obviously the dominant member while his advisees (s2, s7, s8) 

1 The syllabus is available at http://ocw2.mit.edu/OcwWeb/Media-
Arts-and-Sciences/MAS-966Spring 2003/CourseHome/index.htm

a data-driven model of group 
interaction transcends the 
traditional org-chart
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concede the floor to him with relatively high probability — 
indicative of the professor’s influence.

Subjective feedback can be pooled and shared with the 
participants via a public display. Comments that give rise to 
wide variations in opinion cause the discussion to focus on the 
reason for disparate opinions, and controversial topics can be 
retrieved for further analysis and debate. Opinions and 
comments can also be clustered using ‘collaborative filtering’ 
to display groupings of opinion, allowing within-group and 
between-group debate.  

6. Privacy concerns
Continual processing of conversations within an organisation 
may seem unreasonable, even if only audio features and not 
the audio itself is recorded.  There are several methods of 
addressing privacy concerns, two of which we consider here.  
In some instances, of course, the job demands may supersede 
privacy concerns. Examples of such include emergency 
response teams, airport security, or military applications. 

One method of maintaining user privacy is to give users 
control over their data, by having all the data stored locally on 
the individual’s personal machine. At the end of each week the 
conversational statistics would be summarised and privately 
presented to the user, allowing them to censor the data. This 
is particularly private if the audio processing is conducted by 
the user’s own mobile telephone or PDA. Types of 
environment where this sort of system might flourish are 
places where individuals need to keep careful track of their 

time. For example law firms could use such a system to 
automate billing of their lawyers’ time. 

A more immediate method of giving the user control of their 
data is to equip the processing device with a button to delete 
the last ten minutes of data, or to turn off the processing for 
ten minutes into the future. In this way, employees could have 
a private conversation while at work with a push of the button.

7. Conclusions
We have demonstrated the ability to capture the information 
dynamics of everyday, face-to-face human interactions using 
hardware already worn daily by millions. We are now 
instrumenting a variety of group activities to derive 
relationship information, and using this information in 

Fig 5 A one-hour class with voicing segments mapped above aggregate interest level.

s1
s2
s3
s4
s5
s6
s7
s8
s9

0.6
0.4
0.2

0
-0.2

500 1000 1500 2000 2500 3000 3500
average group interest

voicing segments of nine speakers

Table 1 Metrics for classroom interaction analysis.
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Fig 6 A visual depiction of the professor (s9)
and student dynamics.
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controlled experiments to measure the extent to which this 
relationship information can be leveraged to create more 
effective teams and collaborations.

Such a data-driven model of group functioning offers the 
potential to transcend the traditional ‘org-chart’, and even to 
begin optimising the social network connectivity. Forming 
groups based on inherent communication patterns rather than 
an orthodox hierarchy may yield significant insights into group 
and community functioning. 

We believe that modern organisations will increasingly work to 
leverage their now-ubiquitous wearable computing 
infrastructures in order to better manage information flow. 
Our ability to understand the social and informational aspects 
of human conversations provides an important new capability 
for building such social network applications. 
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