
MASSACHUSETTS INSTITUE OF TECHNOLOGY

Media Laboratory

MAS.961 Quantum Information Science September 27, 2001

Problem Set #2
(due in class, 11-Oct-01)

Instructions: You will be graded only on the problems (middle section, below). The exercises are for your
own enlightenment and practice. Project questions need not be handed in; they are candidate questions
which you may work on for your final project paper, due at the end of the semester.

Lecture Topics (9/11, 9/13, 9/18, 9/20): Grover algorithms; implementations; open quantum systems

Recommended Reading: Nielsen and Chuang, Chapters 6-8

Exercises:

E1: (Multiple solution Grover algorithm) Give explicit steps for the quantum search algorithm for the
case of multiple solutions (1 < M < N/2).

E2: (Exact continuous time search algorithm) Consider simulating the continuous time quantum search
algorithm as in Section 6.2 of Nielsen and Chuang. Show that by choosing the timestep ∆t appropri-
ately we can obtain a continuous time quantum search algorithm that uses O(

√
N) queries, and for

which the final state is |x〉 exactly, that is, the algorithm works with probability 1, rather than with
some smaller probability.

E3: (Eigenstates of photon annihilation) Prove that a coherent state is an eigenstate of the photon
annihilation operator, that is, show a|α〉 = λ|α〉 for some constant λ.

E4: (Eigenstates of the Jaynes–Cummings Hamiltonian) Show that

|χn〉 =
1√
2

[
|n, 1〉+ |n+ 1, 0〉

]
(1)

|χn〉 =
1√
2

[
|n, 1〉 − |n+ 1, 0〉

]
(2)

(where the labels in the ket are |field, atom〉) are eigenstates of the Jaynes–Cummings Hamiltonian,
H = h̄ωN + δZ + g(a†σ− + aσ+) for ω = δ = 0, with

H|χn〉 = g
√
n+ 1|χn〉 (3)

H|χn〉 = −g
√
n+ 1|χn〉 . (4)

E5: (Universality of Heisenberg Hamiltonian) Show that a swap operation U can be implemented by
turning on J(t) for an appropriate amount of time in the Heisenberg coupling Hamiltonian

H(t) = J(t)~S1 · ~S2 =
J(t)

4

[
X1X2 + Y1Y2 + Z1Z2

]
(5)
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to obtain U = exp(−iπ~S1 · ~S2). Together with arbitrary single ubit gates, the ‘
√

swap’ gate obtained
by turning on the interaction for half this time is universal; compute the

√
swap and show how to

obtain a controlled-not gate by composing it with single qubit operations.

E6: (Measurement) Suppose we have a single qubit principal system, interacting with a single qubit
environment through the transform

U = P0 ⊗ I + P1 ⊗X , (6)

where X is the usual Pauli matrix (acting on the environment), and P0 ≡ |0〉〈0|, P1 ≡ |1〉〈1| are
projectors (acting on the system). Give the quantum operation for this process, in the operator-sum
representation, assuming the environment starts in the state |0〉.

E7: The graphical method for understanding single qubit quantum operations was derived for trace-
preserving quantum operations. Find an explicit example of a non-trace-preserving quantum oper-
ation which cannot be described as a deformation of the Bloch sphere, followed by a rotation and a
displacement.

E8: (T2 ≤ T1) The T2 phase coherence relaxation rate is just the exponential decay rate of the off-diagonal
elements in the qubit density matrix, while T1 is the decay rate of the diagonal elements:[

a b

b∗ 1− a

]
→

[
(a− a0)e−t/T1 + a0 be−t/2T2

b∗e−t/2T2 (a0 − a)e−t/T1 + 1− a0

]
, (7)

Amplitude damping has both nonzero T1 and T2 rates; show that for amplitude damping T1 = T2. Also
show that if amplitude and phase damping are both applied then T2 ≤ T1.

E9: (Exponential sensitivity to phase damping) Using the Hamiltonian H = χa†a(b+ b†) describing
the interaction between two harmonic oscillators (a, a† being the system, and b, b† being the environ-
ment), show that the element ρnm = 〈n|ρ|m〉 in the density matrix of the system harmonic oscillator
decays exponentially as e−λt(n−m)2

under the effect of phase damping, for some constant λ.

Problems:

P1: (Lower bound on Grover search) Suppose the search problem hasM solutions. Prove thatO(
√
N/M)

oracle calls are rqeuired to find a solution using a quantum algorithm.

P2: (Refocusing dipolar interactions) The dipolar coupling Hamiltonian is

HD
1,2 =

γ1γ2h̄

4r3

[
~σ1 · ~σ2 − 3(~σ1 · n̂)(~σ2 · n̂)

]
, (8)

where γ1, γ2, and r are real parameters that describe the physical system, and n̂ is a fixed unit vector
that can point in any direction. Evolution according to this Hamiltonian for time t gives a unitary
operator Ud(t). Our goal is to cause the system to evolve according to the much simpler Hamiltonian

HJ
1,2 =

Jh̄

4
Z1Z2 (9)

for some constant J , using a product of Ud(t) gates and single qubit gates.
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(a) Find a series of single-qubit gates to apply that will transform the Hamiltonian as desired. In
this part, you may use many gates acting for infinitesimal amounts of time, which allows you to
evolve according to a sum of Hamiltonians via the Lie product formula

lim
n→∞

(e−iA/ne−iB/n)n = e−i(A+B) . (10)

(b) Assume for now that n̂ = ẑ and find a non-infinitesimal way of simulating HJ
1,2, i.e., find a finite

string of Ud(t) and single-qubit operations whose product is e−it
′HJ1,2 for some t′.

(c) Generalize your result from the previous part to find a non-infinitesimal way to simulate HJ
1,2 for

arbitary choices of n̂.

P3: (Decoherence free subspaces) Certain subspaces of Hilbert space remain invariant under decoher-
ence given that the decoherence has certain properties.

(a) Collective phase damping is a quantum operation on two qubits defined by the operators

A0 =
√
p(IZ + ZI)/2 A1 =

√
1− p(IZ + ZI)/2 + (II − ZZ)/2 , (11)

where I and Z denote the identity and Pauli Z operators, respectively, and two such adjacent
operators indicate a tensor product, i.e., IZ = I ⊗ Z. Verify that these operators define a valid
quantum operation.

(b) Show that superpositions of the states |01〉 and |10〉 do not decohere under collective phase damp-
ing. That is, for |ψ〉 = a|01〉+ b|10〉,

E(|ψ〉) =
∑
k

Ak|ψ〉〈ψ|A†k = |ψ〉〈ψ| . (12)

(c) The quantum operation elements for phase damping of a single qubit are

B0 =
[

1 0
0
√

1− p

]
, B1 =

[
0 0
0
√
p

]
. (13)

Thus independent phase damping is described by the four operators

C0 =
1
2
B0 ⊗ I , C1 =

1
2
B1 ⊗ I , C2 =

1
2
I ⊗B0 , C3 =

1
2
I ⊗B1 . (14)

Show that this quantum operation does not have a decoherence free subspace. That is, show
that there is no two- (or higher) dimensional subspace that is left invariant by independent phase
damping.

P4: (Amplitude damping of a harmonic oscillator) Suppose that our principal system, a harmonic
oscillator, interacts with an environment, modeled as another harmonic oscillator, through the Hamil-
tonian

H = χ(a†b+ b†a) (15)

where a and b are the annihilation operators for the respective harmonic oscillators.

(a) Using U = exp(−iH∆t), denoting the eigenstates of b†b as |kb〉, and selecting the vacuum state
|0b〉 as the initial state of the environment, show that the operation elements Ek = 〈kb|U |0b〉 are
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found to be

Ek =
∞∑
n=k

√√√√(n
k

)√
(1− γ)n−kγk |n− k〉〈n| , (16)

where γ = 1− cos2(χ∆t) is the probability of losing a single quantum of energy, and states such
as |n〉 are eigenstates of a†a.

(b) Show explicitly that the operation elements Ek define a trace-preserving quantum operation.

Project Questions:

Q1: (Continuous time analogues of quantum algorithms) Discuss continuous-time analogues of one
(or more) of the known quantum algorithms. For example, you might consider the Deutsch-Josza
problem, Simon’s problem, or the quantum Fourier transform.

Q2: (Thermodynamics of local measurement) Bennett et al. have conjectured that a set of states can
be measured by a local, reversible procedure only if it is dissectable (defined in quant-ph/9804053).
Prove this conjecture or find a counterexample.
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