Real-time Lighting System for Large Group Interaction

Joshua Randall

Massachusetts Institute of Technology
May 2002

Abstract

Lighting systems have historically been controlled by an individual or small group
of human operators working together in real-time. Applications for real-time lighting
control include theatre, concerts, dance performances, and dance parties such as raves.
For the first three applications, changes in the lighting are usually designed to be
triggered by premeditated actions of the performers on-stage. In those cases, control
by a small number of operators is possible since they need only to pay attention to
the relatively small number of performers in order to achieve the goals of the lighting
design. In an environment such as a rave, the primary focus is a large number of people
dancing together in an unpredictable way. In such a dynamic environment, control by
human operators is not ideal, since it is difficult for a small group to follow changes in
the movements of a large group, or to react quickly enough to sudden changes in group
activity. This paper will present a system which makes it possible for large groups,
such as dancers, to interact with the lighting system directly.

1 Introduction

The real-time lighting control system creates an interaction between a large group of dancers
and the dance lighting. It depends upon another, already existing, system to provide the
input data. The "system for large group musical interaction using disposable wireless motion
sensors,” described by Feldmeier et al.[1], collects motion data from the dancers in real-time
and derives parameters used for synthesizing electronic music. These parameters are also
useful for lighting control, and are supplied digitally to the lighting system. Refer to Figure
1 for an overview of the interconnection between systems and subsystems.

The lighting controller takes these parameters as input and generates a set of lighting
parameters as output. Programmable mappings between the input and output parameters
allow the designer to determine how group activity translates into lighting effects. These
effects are achieved by making changes to the lighting control data which are sent to the
lighting output interface.

The lighting output interface is attached to the lighting controller and to the lighting
equipment. Data received from the controller is transmitted to the lighting devices using an
industry-accepted standard protocol.

The lighting system consists of both hardware and software elements. Hardware is needed
to interface with lighting equipment, while software drives the hardware and performs the
input to output mappings. This paper presents the technical design of the hardware and
software.

SPEAKERS
MusIC

NS SYNTHESIZER

DANCERS WITH WIRELESS MOTION SENSORS BASE STATION RECEIVERS

1’1’ “xﬂ
A A DEFEETION FFT
i
'

MUSICAL INTERACTION SYSTEM

MUSICAL INTERACTION CONTROLLER

MIDI
—

MIDI

1
[o:]
m
)>
N T

1aIN

LIGHTING INTERACTION SYSTEM

huj

LIGHTING

DEVICES
LIGHTING SYSTEM CONTROLLER DMX OUTPUT INTERFACE
PROCESSING
INPUT OUTPUT Mcu
il sEQUENCER PARALLEL DMX
“N PARALLEL RS-485
HNTERFACE © o PORT LINEDRVER =
DRIVER DESIGN_ DMX DRIVER
BROWN-OUT
SOFTWARE DETECTOR
PATCH

Figure 1: Large Group Interaction System Overview.

1.1 Hardware

An IBM-compatible personal computer (PC) is the core piece of hardware in the lighting
system. It receives input indirectly from the wireless motion sensors by way of the large
group musical interaction system. This system sends data to the PC over the Musical
Instrument Digital Interface (MIDI) port. These data received over the MIDI port are
mapped to lighting data on the PC, and the output is via a DMX512 interface connected to
the parallel printer port. The DMX512 digital data transmission standard (DMX protocol)
is the most commonly used method for communicating between lighting control systems and
theatrical lighting devices such as dimmers, color scrollers, and moving lights. The standard

is supported by the United States Institute for Theatre Technology and has been adopted by
most of the theater lighting manufacturers in the United States and throughout the world.
While many DMX512 computer interfaces are commercially available, they are unnecessarily
costly. The design of an inexpensive DMX512 compliant interface for the PC parallel port
was therefore a major portion of this project and will be presented in this paper.

1.2 Software

The software for the lighting system consists of several components, which can be divided
into three modules: the input protocol handler, the controller which processes the data and
performs the mapping between input and output, and the output driver. Because access to
the input and output ports is not handled uniformly across operating systems, the input and
output components had to be written for a specific operating system. The operating system
chosen is GNU /Linux because it is reliable, freely available, and has free drivers for both the
input and output ports. All software is written in the C programming language, but each
module is separate and any module could be rewritten in another language if so desired. The
controller module is the domain of the lighting designer, and is the only module that should
need to be changed by the designer. While C is perfectly valid choice for programming a
design, other programming environments such as C++ or LISP might be more desirable for
more complicated designs. The realization of a design in this system consists of developing
a control module that contains all the different lighting "looks” and defines how changes in
them should occur depending on input parameters.

2 Musical Interaction System

Wireless motion sensors are attached to dancers and transmit acceleration data in real-time.
The musical interaction system [1] uses base station receivers to collect data from the many
wireless sensors attached to dancers (see Figure 1). A computer processes the data from the
sensors, using algorithms such as beat detection and fast-fourier transforms (FFTs). Derived
parameters such as intensity and rhythm data are sent on the MIDI output line. MIDI is a
set of communications protocols used by musical instruments to exchange musical and timing
data, which makes it ideally suited for this purpose. The MIDI standard defines both the
communication protocols and the physical hardware parameters for cabling and interfaces.
The MIDI output line is connected to a music synthesizer which uses the derived parameters
to generate music that is played over speakers on the dance floor. The dancers’ movement
in reaction to the music creates a feedback loop that can either lead or follow the dancers’
actions [1]. The MIDI output line from the musical interaction system is also connected to
the MIDI input port of the lighting controller so that the derived parameters can be used to
provide a lighting feedback loop.

2.1 Hardware
2.1.1 Wireless motion sensors

The wireless motion sensors consist of small, inexpensive, wireless transmitters that send
short bursts of RF energy whenever they sense acceleration above a threshold level [1]. The
transmitter is triggered by a piezoelectric film cantilever. The strength of the RF burst
is kept to a minimum to conserve energy and so that each transmitter has a 3-10 meter
transmission radius. As a result, only nearby receivers register the burst. This is desirable
since it imparts some information about the location of the sensor.

2.1.2 Base station receivers

Several base station receivers are physically distributed across the dancing area. For a small
dance area, an array of four receivers located at the corners could be used. Each receiver
counts the number of bursts received from the wireless motion sensors within a short window
of time. Since no additional information is encoded in the RF burst, the number of bursts
received per unit time is the only data collected by the receivers. This data is periodically
transmitted over the MIDI line to the musical interaction controller.

2.1.3 Musical Interaction Controller

A Macintosh computer with MIDI input and output ports is used by the large group musical
interaction system. It performs data processing on the acceleration data collected from the
receivers and outputs derived parameters on the MIDI output port.

2.1.4 Synthesizer

An electronic music synthesizer receives derived parameters from the musical interaction
controller and generates music which is played on the dance floor.

2.2 Software
2.2.1 Motion data analysis

The large group musical interaction system uses the MAX programming environment to
perform data processing algorithms on the MIDI input stream from the base station receivers
(see Figure 2). MAX is a Macintosh based, object-oriented programming environment that
has built in MIDI support and is well suited to analyzing data in real time. FFTs are used
to work with the motion data in the frequency domain. Many parameters are derived, such
as intensity, frequency, and rhythm (beat detection). The derived data is transmitted over
a MIDI output stream which goes both to the lighting system and to the electronic music
synthesizer.

MUSICAL INTERACTION CONTROLLER

MAX
PROGRAMMING
ENVIRONMENT

FFT

BEAT
DETECTION

MIDI INTERFACE
MIDI INTERFACE
Y

Figure 2: Musical interaction controller block diagram.

3 Lighting Controller

The controller consists of software on the PC that performs the mapping between derived
parameters received from the large group musical interaction system and lighting parameters,
which are represented by channel levels. The code for the mapping is written by the lighting
designer for a specific event. This is necessary since the functions of the lighting channels will
vary depending on the lighting devices used, and because designers will want the controller
to behave differently depending on the style of dance, music, and physical layout of the dance
space.

3.1 Hardware

An IBM compatible personal computer (PC) is the core of the system and is used primarily to
map inputs to outputs. The hardware used as the test platform has an Intel 486 processor
and 32 MB of system memory (RAM). The lighting system receives MIDI data from the
large group musical interaction system via the MIDI interface (MPU401 port) built-in to the
sound card on the PC.

3.2 Software

The core module receives data from the input protocol handler (MIDI driver) and transmits
data to the output module. The state of the output is maintained in memory as an array of
channel levels. This array is modified based on the input received and the mappings which
are programmed into the core module. The useful input data are the beats and the activity
level of each of the areas. Beats from each area synchronize lighting changes in that area.
The intensity level determines how much change occurs with each beat. For example, a low
intensity level in one area may indicate that no dancing is occurring there, so lighting changes

LIGHTING SYSTEM CONTROL COMPUTER

INPUT PROCESSING OUTPUT
REAL-TIME
nd
o LIGHTING o o
JIZl = DESIGN w2
ollx Ll SOFTWARE S0||&||x
z|le 21 mipi =3 Sl o
wllz|| S |EVENT AR Sallolly
L2 20 @Zzﬁ I IEI
o
Zl| || @ =L AN TR, e,
) - D:: T L_I|J T O ><
| <o (XS] o9l
< a. . &)

Figure 3: Lighting controller block diagram.

in that area only happen once every few beats. At the opposite end of the spectrum, many
dancers moving at the same time in an area could cause several different lighting changes in
a single beat. Setting up the exact relationship between the movement intensity, the beats,
and the light parameters (such as intensity, color, and position) is up to the designer of the
specific event.

3.2.1 MIDI driver

A number of drivers are available for the Linux kernel that provide access to the MIDI
port used as the input component to the lighting system. The Advanced Linux Sound
Architecture (ALSA) provides sound card and MIDI port drivers as well as a MIDI sequencer
and a library for accessing it. The input module uses the ALSA sequencer client API to
receive MIDI events in real time as they arrive. Data is then extracted from the MIDI event
and passed to the core module for mapping.

4 Lighting Output Interface

The lighting system transmits output via a DMX512 output interface for the PC. The DMX
protocol is an asynchronous serial protocol that runs at a data rate of 250 kilobits per second
(kbps) over a balanced RS-485 transmission line. The protocol consists of a reset signal fol-
lowed by a data packet. A series of 8-bit values representing each dimmer level is transmitted
sequentially in the data packet beginning with dimmer number 1 and incrementing to the
highest dimmer number used (up to a maximum of 512) [2].

DMX-capable lighting devices interpret the levels of the dimmer number(s) to which they
are set to respond. The dimmer number used by each device is usually set by the end user
as the DMX ”address” of the device. Each address controls a parameter of a lighting device.
Some lighting devices have only one address, while others use twenty or more addresses
to control their many parameters. For example, an actual lighting dimmer uses the level
of a single address to set the intensity of the lighting instruments connected to it, while
an advanced moving light responds to many different addresses, using their levels to set
parameters such as pan, tilt, intensity, color, pattern, and rotation speed.

Since commercially available DMX512 interfaces are very costly, ranging from $250 to
$500 or more, an inexpensive interface has been designed and built for this project. The
interface consists of hardware (see Figure 4) that is dedicated to transmitting dimmer levels
to the DMX port and software drivers for the PC that provide functions for sending dimmer
levels to the hardware.

DMX OUTPUT INTERFACE
. MCU
EEPROM || UART o
o >
= DMX
- SRAM J -
nd A %))
O 1 x Y
(o T Y =
- tNTO s— +—>=TXD -
= iNTLe— CPU _
<
o
BROWN-OUT
DETECTOR

Figure 4: Lighting output interface block diagram.

4.1 Hardware

The interface is designed to fully comply with the USITT DMX512/1990 standard while be-
ing inexpensive and relatively easy to build. It would be possible to implement the hardware
using a finite state machine programmed into a field programmable gate array (FPGA) or
other type of programmable logic device. However, this would require a rather large number
of gates and separate chips for memory, input, and output which would add considerable
expense and unnecessary complexity to the design. A much simpler and less expensive design
is based on a microprocessor control unit (MCU) (see Table 1) [3].

MCUs are versatile, relatively low cost, and can be easily upgraded with new program-
ming in the future. They are often packaged with various memory and input/output (I/0)

7

Table 1: DMX interface circuit component cost [3].

Component Single-Unit Cost | Minimum Cost at Quantity (100+)
AT90S8515-8 $8.51 $5.25
MAX485 CPA $2.76 $1.33
DS1813-5 $1.11 $0.58
8MHz Crystal $1.90 $1.90
5x2 Header Connector $1.17 $0.41
13x2 Header Connector $4.28 $1.67
3x1 Header Connector $2.24 $0.79
TOTAL $21.97 $11.93

units on-board. The MCU chosen for the DMX output interface is the Atmel AV90S8515
8-bit RISC microcontroller [4]. It runs at a maximum of 8MHz; has 8 kilobytes of In-
System Programmable Flash program memory, 512 bytes EEPROM, 512 bytes SRAM, a
programmable serial UART, and two external interrupts for a cost of under $9 (see Table
1 for the cost of the major hardware components). Because of its many on-board features,
only two other semiconductor devices are necessary to complete the hardware for the DMX
interface: an RS-485 line driver and a brown-out detector. The line driver is necessary to
meet the electrical characteristics required by the DMX standard, and the brown-out de-
tector is used to protect the microprocessor from a low-voltage power supply such as would
likely be present during power-up. Please refer to Figure 5 for a complete circuit diagram
and Table 2 for a description of the purpose of the major components.

Table 2: Purpose of DMX interface major circuit components.

Circuit Label | Component Purpose
U1l AT90S8515-8 Microprocessor Control Unit
U2 MAX485 CPA RS-485 Line Driver
U3 DS1813-5 Brown-out Detector
X1 8MHz Crystal MCU Clock
J1 5x2 Header Connector | In-System Programming Port
J2 13x2 Header Connector | Parallel Port
J3 3x1 Header Connector | DMX Output Port

On power-up, the MCU loads the contents of the nonvolatile EEPROM, which is used
to store the default dimmer levels, into the SRAM. The SRAM is used to store the current
dimmer levels and is updated via the parallel interface which is implemented using the MCU’s
general-purpose /O ports and external interrupts (see Ul pins PAO, PA4, PCO0-7, PD4-5,
and INTO-1 in Figure 5). The serial UART is set to 250 kbps by using an 8MHz system
clock divided by 32. The UART is used to transmit the DMX protocol data packets, while
the DMX reset timing is sent synchronously by the microprocessor. Both the UART and the
microprocessor output DMX data on the TXD pin which is connected to the input of the

LED4| LED3
Y

2700

2700 2 2700

+
MCcu 0.pF
PBO vce }j

PB1 PAO

PB2 PAL
+5V
PB3 PA2
ECONORESET w5V
PB4 PA3 T
vce PBS PA4
é DS1813 PB6 PAS
s us 1000 PB7 PAG slodedalolalglalalalalalol 1 ParaLLELPORT
GND [RST JRESET PA7 R S —13
+5V <[(<[[s[F[F[F[<[<[<[~[~ Sl
a1 RXD icp —12 25
= AT90S8515-8 4700
- XD U1 ALE 1124
4700
INTO oc1s 10
4700
INTL PC7 9 22
4700
PD4 PC6 8 21
4700
PD5 PC5 7
4700
ISP PORT PD6 PC4 6

470Q
PD7 PC3 5
= 470Q =
= XTAL2 PC2 4 17 B
X1CJ8MHz 470Q
XTALL PC1| 3 16

4700
33pF — GND PCO 2 151
3pF 4700 1 14l
1 ‘ 4700 92

‘ 4700

DMX PORT
0apF 8600 —3
RO vce —— — 2
— 1200
IRE MAX485 ‘ — 1
DE vz A 8600 33
100Q

DI GND AL
RS-485 LINE DRIVER —

Figure 5: DMX interface circuit diagram.

RS-485 line driver. An in-system programming port allows the MCU to be reprogrammed
with updated firmware should additional features be desired or if bugs need to be fixed (see
J1 in Figure 5). Finally, a set of four LEDs connected to I/O port B (PB0-PB3) displays
the current status of the device. See Table 3 for a description of LED purpose.

Table 3: Purpose of LEDs on the DMX interface.
Name | Purpose

LED1 | Indicates DMX output idle.

LED2 | Indicates DMX output active.

LED3 | Indicates EEPROM reading or writing.
LED4 | Indicates parallel port activity.

The MAX485 chip receives the serial bitstream from the TXD pin on the MCU and drives
the RS-485 differential transmission line, with the help of external pull-up, pull-down, and
line loading resistors. Refer to Figure 6 for resistor values in the line driver circuit.

The DS1813 5V EconoReset acts as a brown-out detector. It monitors the power supply
using a temperature reference and comparator to detect out-of-tolerance conditions [5]. The
output of the EconoReset is connected to the MCU’s /RESET pin so that the microprocessor
will be disabled if a brown-out occurs on the power supply.

DMX PORT

—3

RO vee 2
IRE MAX485 B 1
DE u2 A % goo o 33
FROM MCU,
TxDPIN P GND L

RS-485 LINE DRIVER —

Figure 6: Line driver circuit diagram.

4.2 Software

Software for the DMX output interface consists of firmware on the MCU and a driver for
the PC.

4.2.1 MCU Firmware

The firmware for the MCU is written in C and compiled to AVR microcode. In its normal
state, the firmware transmits DMX packets, sending around 40 complete updates per second.
The dimmer levels are read out of an array stored in the SRAM (see Figure 7) one at a
time and transmitted via the UART. The DMX reset timing is generated by the dmx_reset
function seen in Figure 8.

]k sk sk sk sk sk o sk sk sk ok ok sk sk s o ok sk s o o sk sk s o ok sk s o ok sk sk s sk sk s o sk sk s S sk sk o ok sk s R sk sk s o sk sk s o R sk sk s Rk sk s o ok sk s Rk sk sk s ok sk sk s S R sk sk s R sk s S ok sk ok R K sk sk ok ok ok
/* Transmit DMX Packet

sk sk sk koo sk sk s ok sk sk o o sk sk s o ok sk s o ok sk sk o o sk sk s S sk sk s s ok sk sk s o sk s s ok sk o R sk sk s sk sk s s ok sk sk o R sk s s ok sk o o sk sk sk sk s s ok sk sk s o o sk sk o ok sk ok sk sk R o ok sk sk ok ok /-
void dmx_send() {

LED20ON; /* LED2 on during DMX activity */
LED1OFF; /* LED1 off during DMX activity =/
if (DMX_CURDIMMER.-TX == 0) /* Send Reset Sequence */
{
delay (240); /* Additional Sleepiness during MBB (7200us) */
PORTA |= DMXBUSY; /* Set DMXBUSY =/
dmx_reset (); /* Transmit Reset x/

TransmitByte(STARTCODE); /% Send START code */
DMX_CURDIMMER_TX++; /* Increment transmit counter */
} /* end if(DMX_CURDIMMER_TX == 0) %/
else /* Data slot 1—>DIMMERMAX x/

TransmitByte(DMX_LEVELS[DMX_CURDIMMER_TX—1]); /* Send byte to RS485 Line Driver #/
if (DMX_CURDIMMER.TX < DIMMERMAX) /* Data slot 1—>(DIMMERMAX—1) */

DMX_CURDIMMER._TX++; /* Increment transmit counter x/
} /* end if(DMX_CURDIMMER_TX < DIMMERMAX) */
else if(DMX_CURDIMMER_TX == DIMMERMAX) /* Last slot in packet! */

DMX_CURDIMMER._TX = 0; /* Reset transmit counter x/

LED1ON; /* LED1 on during DMX idle */
LED2OFF; /* LED2 off during DMX idle /
PORTA &="DMXBUSY; /* Unset DMXBUSY x/

} /* end else if (DMX_CURDIMMER_TX == DIMMERMAX) =/
} /* end else Data slot 1—>DIMMERMAX x/
} /* end dmx_send() */

Figure 7: Firmware source code for DMX data packet transmission via UART.

An edge detected on the INTO pin (DATASTROBE signal from the PC) triggers an
interrupt handler that receives data from the parallel port and stores received dimmer levels
in the SRAM.

10

] 35 ok ek sk o o s o ok o sk o ook o ook o ok sk o ok o o sk o sk o o sk s o sk ok o o sk o ok o R sk R sk sk o o sk ook o R sk ok o ok o R o R oo R sk R ok o R R R o Rk ok o R ok o Rk o ok o R R R oK R K oK K ok R K oK R oK
/* Transmit DMX Reset
) 35 ks ok ook o ok s o ok o o sk o ook o ook o o ok o ok o o sk o sk o ook o sk ok o o sk o R o sk o R sk sk o ook o ok o R sk ok o Rk o o R oo R sk R oK o R R R ok R sk ok o R ok o Rk o K sk R R R oK R Kok o ok ok K ok ok ok
void dmx_reset() {

PORTD |=TXDPIN; /* Write port D bit 1 (TxD) to HIGH */

UART_TRANSMIT_OFF(); /* Disable UART transmit (so we can transmit break timing directly) */

/* "MARK” Before BREAK (MBB) = min Os, typical ——, max 1s %/

/* No delay needed =/

PORTD &="TXDPIN; /* Write port D bit 1 (TxD) to LOW for BREAK x*/

/* ”SPACE” for BREAK = min 88us, typical ——, max —— x/

/* Wait “90us */

delay (120);

PORTD |=TXDPIN; /* Write port D bit 1 (TxD) to HIGH */

/* "MARK” after BREAK (MAB) = min 8us, typical ——, max 1s x/

/* Wait 9us = 24%3 = 72 cycles for MAB x/

delay (10);

UART_TRANSMIT_ON(); /* Enable UART Transmit */
} /* emd dmx_reset() */

Figure 8: Firmware source code for synchronous DMX reset timing.

4.2.2 Driver

The protocol between the DMX512 interface and the PC has been designed to allow contin-
uous transmission on the DMX line. When DMX data is being transmitted, the interface
asserts the DMXBUSY signal so that the driver will not interrupt a DMX transmission.
When the driver wants to send data to the interface, it waits until the DMXBUSY signal
goes low before it sends the DATASTROBE to transfer a byte on the DATA pins. It then
waits for the DMXBUSY signal to go high again before attempting to send the next byte
(see Figure 9). The driver provides a C function for sending an array of dimmer levels.
dmxsend(char dimmer_level[]) sends levels in the dimmer level[] array to the interface.

5 Conclusion

The real-time lighting system for large group interaction makes it possible for dancers to
interact with the lighting system. Movements by dancers trigger changes in the lighting
of the dance area that are determined ahead of time by the lighting designer. While the
lighting as a whole will react to group activity, participants in the dance should be able to
tell that their motions are triggering lighting changes, since even low intensity signals can
be designed to make subtle changes, perhaps changing a single lighting instrument.

The software designed for this project allows for flexibility by making the controller a
separate module that is programmed by the lighting designer for a specific event. The
complexity of the mapping is therefore virtually unlimited, and the design is constrained
only by the maximum number of dimmers controllable by the interface (which is set forth
in the protocol specification).

The hardware interface designed and built for this project allows a PC to transmit lighting
control data at high speed. The major circuit components cost more than 10 times less than
commercially available interfaces. Even if the other components such as the circuit board,
case, and power supply were to double the cost of the interface, it would still amount to only
20% of the cost of a commercial unit.

11

Ons 200ns 400ns 600ns 800ns 1us 1.2us 1.4us 1.6us 1.8us 2us 2.2us 2.4us 2.6us 2.8us
it bt bt bt et it bbbt et

DMXBUSY

DATASTROBE

DATA[7..0] [><:><

DMX+Interface+Driver+Parallel+Port+Data+Transfer www.timingtool.com

Figure 9: DMX interface parallel port data transfer protocol.

12

References

1]

3]

[4]

[5]

Feldmeier, Mark; Paradiso, Joseph A.; Malinowski, Mateusz. (2002). Large Group Mu-
sical Interaction using Disposable Wireless motion sensors. Responsive Environments

Group, M.I.T. Media Laboratory. Cambridge, MA.

USITT Engineering Commission. (1990). DMX512/1990 Digital Data Transmission
Standard for Dimmers and Controllers. United States Institute for Theatre Technology,
Inc. New York, NY.

Digi-Key Corporation. (2002). Digi-Key — May-August 2002 Catalog.
http://info.digikey.com/T022/V5Catalog.html

Atmel Corportation. (2001). 8-bit AVR Microcontroller with 8K bytes In-System Pro-
grammable Flash. http://www.atmel.com/atmel/acrobat/doc0841.pdf

Maxim Integrated Products. (2002). 5V EconoReset with Pushbutton.
http://pdfserv.maxim-ic.com/arpdf/DS1813.pdf

13

