
Mobile Agent Middleware for Sensor Networks:
An Application Case Study

Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu
Washington University in Saint Louis

Saint Louis, Missouri 63130
E-mail: liang, roman, lu@cse.wustl.edu

Abstract— Agilla is a mobile agent middleware that facilitates the rapid
deployment of adaptive applications in wireless sensor networks (WSNs).
Agilla allows users to create and inject special programs called mobile
agents that coordinate through local tuple spaces, and migrate across
the WSN performing application-specific tasks. This fluidity of code and
state has the potential to transform a WSN into a shared, general-purpose
computing platform capable of running several autonomous applications
at a time, allowing us to harness its full potential. We have implemented
and evaluated a fire tracking application to determine how well Agilla
achieves its goals. Fire is modeled by agents that gradually spread
throughout the network, engulfing nodes by inserting fire tuples into their
local tuple spaces. Fire tracker agents are then used to form a perimeter
around the fire. Using Agilla, we were able to rapidly create and deploy
47 byte fire agents, and 100 byte tracker agents on a WSN consisting
of 26 MICA2 motes. Our experiments show that the tracker agents can
form an 8-node perimeter around a burning node within 6.5 seconds and
that it can adapt to a fire spreading at a rate of 7 seconds per hop. We
also present the lessons learned about the adequacy of Agilla’s primitives,
and regarding the efficiency, reliability, and adaptivity of mobile agents
in a WSN.

I. I NTRODUCTION

Wireless sensor networks (WSNs) consist of tiny sensors deeply
embedded within the environment. Example applications include
habitat monitoring, microclimate research, surveillance, medical care,
and structural monitoring [1]–[5]. Such applications have lengthy
deployment intervals during which the sheer number of nodes, and
their exposure to the harsh physical environment, result in a high
probability that many of them will be disabled. The long deployment
intervals also increase the likelihood that the user requirements
will change. Furthermore, WSNs must deal with highly dynamic
environments. For instance, while a fire tracking network deployed in
a forest may remain dormant most of the time, a wildfire may break
out and spread unpredictably, rapidly triggering numerous network
activities. Therefore, WSN applications need to be highly flexible
and adaptive, which places an additional burden on the application
developer.

WSN applications are inherently difficult to develop and deploy.
For example, a representative WSN platform is comprised of MICA2
motes and the TinyOS [6] operating system. TinyOS is a minimalist
event-based operating system with a high learning curve [7]. It hard-
wires software components limiting flexible application development.
Thus, once deployed, TinyOS applications can only be marginally
tweaked by changing parameters defined prior to deployment. How-
ever, the number of nodes and the fact that they are deeply embedded
preclude the option of manually collecting each node, reprogramming
them, and re-deploying them. To complicate matters, memory and
other computational resources are scarce, and radio communication
is notoriously unreliable [8].

Middleware promises to enhance the flexibility of WSN ap-
plications. Excluding Agilla, other middleware include XNP [9],
Deluge [10], Mat́e [7], SensorWare [11], Impala [12] and Smart Mes-
sages [13]. XNP and Deluge both support network reconfiguration by

flashing the mote’s instruction memory. Deluge improves upon XNP
by enabling multi-hop support. Both XNP and Deluge take a long
time and consume a lot of energy transferring an entire image over the
lossy wireless network and flashing the instruction memory. Maté and
Impala both divide an event-based application into modules that are
flooded across the network. Maté is a virtual machine, Impala uses
native code. More fundamentally, XNP, Deluge, Maté, and Impala
do not allow a programmer to control where a program is installed
(it is installed on every node) preventing multiple applications from
running on a network simultaneously. SensorWare allows users to
inject mobile scripts into the network, but the scripts only support
weak mobility, execution state is not transferred. Both SensorWare
and Impala are implemented on the relatively powerful iPAQ 3670
platform.

To address the limitations of the above middleware solutions,
we have developed Agilla [14], a mobile agent middleware for
WSNs. Agilla is based on Maté, but unlike Mat́e which divides
an application into capsules that are flooded throughout a network,
Agilla allows users to deploy applications by injecting mobile agents
into a sensor network. Mobile agents can intelligently move or clone
themselves to desired locations in response to changing conditions
in the environment. Each node maintains a local tuple space, and
different agents can coordinate through local or remote operations on
these tuple spaces. We have implemented Agilla on the MICA2 and
TinyOS platform. The design and preliminary performance micro-
benchmarks of Agilla were reported in [14].

In this paper, we present an in-depth case study of Agilla using
a fire tracking application. In this application, mobile agents are
deployed to dynamically form and maintain a perimeter around a
fire as it spreads through a network comprised of 26 MICA2 motes.
The fire itself is modeled using special fire agents that epidemically
spread throughout the network. This paper makes three primary
contributions. First, it demonstrates how a mobile agent middleware
can be used to facilitate the development and deployment of a non-
trivial application. Using Agilla, we were able to rapidly create and
deploy the entire fire tracking application by injecting 47-byte fire
agents and a 100-byte tracker agent. Second, we present a set of
application-level performance results that demonstrate the reliability
and efficiency of mobile agents and tuple spaces in a highly dynamic
application. Finally, we provide new insights into, and lessons about,
mobile agent programming techniques for WSNs. To the best of our
knowledge, this paper provides the first case study of mobile agents
using a real application on a physical WSN test bed.

The remainder of this paper is organized as follows. Section II
provides an overview of Agilla. Section III describes the fire tracking
application which is used for the case study. Section IV contains
the experiments performed to evaluate the fire tracking application’s
performance. Section V discusses lessons learned while building the
fire tracking application. Conclusions appear in Section VI.



Pointer


Heap
16-Bit


Registers


ID


PC


Condition


Stack


0


1


11


0


1


150


40-bit

8-bit


Fig. 1. The mobile agent architecture

Node (1,1)

Tuple SpaceNeighborsNeighbors

Node (2,1)

NeighborsNeighbors

migrate

remote

access

Tuple Space

Fig. 2. The Agilla model

II. A GILLA OVERVIEW

This section provides a brief overview of Agilla. For more details,
see [14]. Agilla applications consist of mobile agents that can
move and clone themselves performing application-specific tasks.
The agents coordinate through tuple spaces and address nodes by
their location. An acquaintance list identifying one-hop neighbors is
maintained on each node. Agilla provides high-level instructions that
allow agents to perform complex tasks.

The mobile agent architecture is shown in Figure 1. It consists
of a stack, heap, and various registers. Mobile agents use a stack
architecture because it allows most instructions to be a single byte (a
few consume 3 bytes for pushing 16-bit variables onto the stack). A
full listing of the instructions are given here [15]. Agilla agents are
currently written using an assembly-like language similar to that of
Maté. During this case study, we learned that programming in this
assembly-like language was very tedious and error prone. To address
this, we are currently working on a higher-level declarative language
that is described in more detail in Section V.

While running, an agent can move or clone to other nodes using
the instructionssmove, wmove, sclone , and wclone . The first
letter indicates whether the operation isweak or strong. A weak
migration transfers only the code, all execution state is reset and
the agent resumes running from the beginning when it arrives at
the destination. A strong migration transfers everything, meaning an
agent resumes execution where it left off. Our experience with the fire
tracking application shows that the choice between strong vs. weak
migration significantly affects the application overhead, performance,
and reliability.

The Agilla model is shown in Figure 2. Each node currently
supports up to four agents. Agilla automatically handles the context
switching that allows the agents to run concurrently and inde-
pendently. Instead of addressing destinations by their ID, Agilla
addresses them by their geographic location, which is assumed to be
known. This is reasonable since most WSN applications must know

1  BEGIN
 pushn fir


2
 pushc 1


3
 out


4
 halt


1  BEGIN
 pusht string


2
 pushc 1


3
 pushloc 1 1


4
 rrdp


5
 rjumpc FOUND


6
 halt


7  FOUND
 pushc 1


8
 putled


9
 halt


(a) agent at (1,1)
 (b) agent at (2,1)


Fig. 3. An example of an agent (a) inserting a tuple into node (1,1)’s tuple
space, and (b) remotely reading it

their spatial orientation to make sense of the sensor data they collect.
Sensors can get their location through GPS, or any number of other
localization schemes [16]–[18]. Addressing nodes by location enables
Agilla primitives to be easily extended to operate over geographic
regions, and geographic routing to be used for multi-hop interactions.

Agilla provides two components that facilitate inter-agent coordi-
nation: a Linda-like tuple space [19], and an acquaintance list. Both
are maintained on each node by the middleware. A node’s tuple
space is shared by local agents and is remotely accessible. Tuple
spaces offer a decoupled style of communication where one agent
can insert a tuple, and another can later read or remove it using
pattern matching via a template. For example, consider the agents
shown in Figure 3. Agenta in Figure 3 is located on node (1,1). It
pushes a tuple containing the string “fir” onto the stack (lines 1-2),
and inserts it into the local tuple space (line 3) before halting. When
an agent halts, its resources are deallocated, but its tuples remain
in the tuple space. Agentb, located on node (2,1) reads the tuple
inserted by agenta. Lines 1-2 push a template that matches a tuple
with one field of type string. Line 3 pushes the location (1,1) to
indicate the target of therrdp instruction executed by line 4.rrdp
is a remote probing read instruction that probes a remote tuple space
for a matching tuple. If a match is found, it pushes a copy of it onto
the stack and sets the condition code to 1. Line 5 branches based on
the condition code. The agent halts if no match is found, and turns on
the red LED otherwise. Tuple spaces decouple agent communication,
allowing each agent to run autonomously. To avoid polling, Agilla
augments the tuple space with reactions, which allow an agent to
react to the presence of a tuple matching a particular template. This
is a technique used by other tuple space-based middleware [20]–[23].

Note that Agilla doesnot support a global tuple space that
spans across multiple nodes primarily due to bandwidth and energy
constraints. Instead, it supportslocal tuple spaces where each node
maintains a distinct and separate tuple space. Special instructions are
provided for agents to access tuple spaces located on remote nodes.
These instructions rely on location-addressed unicast communication
with the specific node hosting the tuple space. Hence, a remote tuple
space operation entails the transmission of only two messages, a
request and a reply, and is scalable to networks of any size. During
this study, however, we learned that sequentially accessing each
neighbors’ tuple space required lots of code and entailed significant
overhead. To address this, we added arrdpg (remote probing group
read) instruction that uses multicast to query the tuple spaces of all
one hop neighbors. Sincerrdpg operates over one hop, it does not
saturate the bandwidth of the entire network.

Agilla also maintains an acquaintance list on every node. This
list contains the location of all one-hop neighbors. Local agents can
access it by executing specialgetnbr , numnbr , and randnbr



1


2


3


Fig. 4. An overview of the fire tracking application. Tracker agents (1) form
a perimeter around the fire and notify a fire fighter (2). The fire fighter injects
a guidance agent (3) that directs him to the fire.

1: BEGIN pushn fir
2: pushc 1
3: out // insert fire tuple
4: BLINK RED pushc 25
5: putled // toggle red LED
6: pushc 1
7: sleep // sleep for 1/8 second
8: rjump BLINK RED

Fig. 5. The static fire agent

instructions. While Agilla could use a beacon-based approach or other
middleware [24] to maintain this list, we use a grid topology in our
prototype and take advantage of it to populate the list.

There are many challenges that Agilla must address. First, WSNs
have severely limited resources. For example, the MICA2 motes
have a mere 128KB of instruction and 4KB of data memory and
run a relatively slow 8MHz Atmel 128 microprocessor. Furthermore,
TinyOS does not provide dynamic memory management, meaning all
data memory must be statically allocated. Hence, Agilla implements
its own dynamic memory manager for agent instructions and the tuple
spaces. Second, the small physical size, reliance on batteries, and
embedded installation of the motes result in the use of unreliable low-
bandwidth (38.4 Kbaud) wireless links. Mobile agents are particularly
susceptible to message loss because it interferes with the agent’s
ability to migrate and clone. To minimize the impact of message loss,
agents are divided into tiny packets (less than 41 bytes), are migrated
a single hop at a time, and utilize timeouts and retransmits. Since this
introduces store-and-forward delay, it is only used while migrating or
cloning agents, not for remote tuple space operations. Remote tuple
space operations are intentionally non-blocking, preventing an agent
from deadlocking due to message loss.

III. T HE FIRE TRACKING APPLICATION

The fire tracking application is shown in Figure 4. A fire ignites in
a region within the sensor network. As the fire spreads, tracker agents
swarm around it repeatedly cloning themselves to form a perimeter.
Once the perimeter is formed, they notify a fire fighter, who injects
a guidance agent leading him along a safe path to the fire. This case
study focuses on the tracker agents. The guidance agent and its safe-
route discovery algorithm are left as future work. We model the fire
by inserting tuples containing the string “fir” into the nodes that are
supposed to be burning. The tracker agent can then use remote tuple
space operations (e.g.,rrdp or rrdpg ) to detect fire.

We use two types of fire agents for modeling fire:static and
dynamic. Static fire agents simply insert a fire tuple into the local
tuple space, and then sit in a loop blinking the red LED. By blinking
the red LED, we can visually determine the state of the network.
The code is shown in Figure 5. Lines 1-3 insert the fire tuple into

1: REG RXN pushn fir
2: pushc 1
3: pushc RXN FIRED
4: regrxn // register the reaction
5: ... // tracking code omitted
6: RXN FIRED pushc 9
7: putled // turn off LEDs
8: pushn trk
9: pushc 1
10: inp // remove tracker tuple
11: halt // die

Fig. 6. The reaction registered by the fire tracker

Insert
tracker
tuple

Register fire
reaction

Find
burning

neighbors

Weak move 
to random 
neighbor

Weak
Clone to 

non-burning
neighbors

Die

None
Found

Found

Rxn 

Fires

Rxn 

Fires

Fig. 7. The life cycle of a fire tracker agent

the local tuple space, while lines 4-8 blink the red LED. The static
fire agent is used to create fires of different shapes for the tracking
agent to form a perimeter around. We use it to isolate the detection
and tracking phase and to evaluate how quickly the tracking agent
can form a perimeter upon detecting fire.

The dynamic fire agent models a fire that epidemically spreads
throughout the network. It is implemented in a mere 47 bytes of
instructions, and is available in [15]. The dynamic fire agent works
by inserting a fire tuple upon arrival, and then blinking the red LED
a certain number of times. It then clones itself onto a random non-
burning neighbor and repeats the blinking. The process of blinking
and cloning to a random neighbor is repeated indefinitely, ensuring
that every node will eventually be on fire. Since it takes 0.25 seconds
to blink the LED, we can control the rate at which the fire spreads
by changing the number of times it blinks between clones.

The fire tracker agent discovers and forms a perimeter around the
fire. It dies if the node it is on catches on fire. This is done by
registering a reaction that kills the agent when a fire tuple is inserted
into the local tuple space. The code that registers this reaction is
shown in Figure 6. Lines 1-2 pushes a template containing the string
“fir” onto the stack. Line 3 pushes the address of the reaction’s
call-back function onto the stack, and Line 4 registers the reaction.
Lines 6-11 define the reaction’s call-back function, which is executed
when the reaction fires. When the reaction fires, the tracker agent
turns of all LEDs (lines 6-7), removes its tracker tuple (lines 8-10),
and then halts. The tracker tuple is inserted into the tuple space
by the tracker agent when it arrives. This tuple is used by other
tracker agents to determine the integrity of the perimeter by checking
whether a neighboring tracker agent is still present. If the fire breaches
the perimeter, the tracker agents next to the breach must re-form
the perimeter as quickly as possible by cloning themselves. Any
persistent breach of the perimeter is considered a failure.

The life cycle of a tracker agent is shown in Figure 7. It works by
repeatedly checking whether any of its neighbors are on fire. If none
are, it performs a weak move to a random neighbor and repeats the
process. If a neighbor is on fire, it enters a tracking mode. While in
tracking mode, the fire tracker lights up its green LED and repeats



(a) (b)

(c) (d)

Fig. 8. The static fire tests

the following loop: It first determines the locations of all neighbors
that are on fire. Then for each non-burning neighbor that is within a
certain distance of the fire and not already running a tracker agent,
it performs a weak clone (wclone ) to it. This process is repeated
indefinitely until the fire dies. The periodic checking of neighbors in
danger of catching fire allows the tracker agent to adjust the perimeter
as the fire spreads.

The fire tracker agent was implemented in 101 bytes of code. It
was intentionally designed to only use weak migration instructions
to minimize overhead. While implementing the tracker agent, we
discovered two useful instructions that reduced the size of the agent
by 58%: rrdpg and vicinity . These instructions store their
results in the heap and are discussed further in Section V.

IV. PERFORMANCEBENCHMARKS

To evaluate our fire tracking agent, we tested its performance in a
WSN consisting of 26 MICA2 motes arranged in a5 x 5 grid (one
mote serves as a separate base station). By arranging the motes in
row-major order, we were able to calculate the node’s(x, y) location
based on its address. To create a multi-hop network in our lab’s
limited space, we modified the TinyOS network stack to filter out
all messages except those from immediate horizontal, vertical, and
diagonal neighbors based on the grid topology. Since our network
is physically single-hop, our results reflect worse-case scenarios due
to an increased likelihood of wireless collisions. The base station is
located at(0, 0) and can communicate with any node in the first row.

Two types of tests were run. The first used static fire agents to
determine how fast the perimeter can be formed around a static fire
of various sizes and shapes. The second set of experiments use the
dynamic fire agents to determine how well the tracker agents can ad-
just the perimeter as the fire spreads. Since this is an application case
study, we do not present micro-benchmarks evaluating the latency
of each individual instruction. These experiments were conducted
previously and are presented in [14]. They show that one-hop remote
tuple space operations take around50ms, while migration operations
take around250ms. Local instructions range from50µs to 450µs.

For the static fire tests, we initialize our WSN by injecting static
fire agents onto certain nodes to form fires of various shapes and
sizes. A fire tracker agent is then injected onto a node next to the
fire. Note that we do not inject the tracker on a distant node because

Static Fire Tests: Percent Perimeter Formation vs. Time

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

Time (s)

P
e
rc

e
n

t 
o

f 
P

e
ri

m
e
te

r 
F

o
rm

e
d

Scene A

Scene B

Scene C

Scene D

Scene B (5,1)

Fig. 9. The rate of perimeter formation around a static fire.

(1,1) (5,1)

(1,5) (5,5)

Fig. 10. The initial setting of the dynamic fire tests

then it will randomly move around until it finds a neighbor that is on
fire. It is not interesting to benchmark the random walk phase because
an agent’s performance relies entirely on how lucky it is at moving to
a node next to the fire. By injecting the tracking agent next to the fire,
we isolate the discovery phase from the tracking phase allowing us to
focus these experiments on the efficiency of perimeter formation. We
ran tests on several different fires, as shown in Figure 8. The node on
which we initially injected the detector agent is marked with a black
star. The arrows indicate where the detector must clone itself to form
the perimeter. Note that in test b, node (1,5) also has a star. This is
because our tests revealed that the starting location of the tracker has
a significant impact on the efficiency, and will be described later in
this section.

To capture the progress of the perimeter formation, we used
a SONY DCR-TRV18 digital camcorder to record each run. The
camcorder records video at 30fps with enough color resolution to tell
which LEDs are lit up. By performing off-line analysis of the video,
we are able to correlate the status of the detector agent by looking at
when the green LEDs of the perimeter nodes turn on. The videos of
our experiments are available at [15]. Recall that the green LED lights
up when the detector enters the tracking phase. We recorded the time
at which the green LEDs of the perimeter nodes lit up, and plotted
the percent perimeter formation over time. The results are shown in
Figure 9. Notice that in most cases the perimeter is formed within 3
seconds. The only scenario that took longer is sceneA. The reason
why scene A took longer is because its configuration contains areas
that prevent multiple agents from spreading in parallel. For example,
when a detector is at node (2,2), it is the only agent that can clone to
(2,3). To test this theory, we re-ran scenarioB with the fire detector
initialized at node (5,1) which presents many instances where only
one agent can clone to advance the perimeter. The results, shown on
Figure 9, clearly show how the initial point of fire tracking has a
significant impact on the speed at which the perimeter is formed.

To evaluate the detector’s ability to maintain a perimeter around a



Percent Perimeter Formation Over Time Using Dynamic Fire

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Time (s)

P
e
rc

e
n

t 
P

e
ri

m
e
te

r 
F

o
rm

a
ti

o
n

Slow Fire

Fast Fire

Fig. 11. The rate of perimeter formation around a dynamic fire.

spreading fire, we inject four fire tracking agents into the network at
the positions marked with a black star in Figure 10, and then inject
a dynamic fire agent into node (5,5). We run two tests: one with
a slow fire agent, another with a fast one. Recall that the speed of
propagation is controlled by the number of times the agent blinks its
red LED between cloning operations. The slow agent blinks 28 times,
whereas the fast one blinks 20 times. This translates to a maximum
of one cloning every 7 and 5 seconds, respectively.

We used the digital camcorder to record each run of the dynamic
fire tests, then sampled every other second to see what percentage
of the perimeter is formed. Note that since the fire keeps spreading,
the percent formed can vary non-uniformly over time. The results are
shown in Figure 11. They show that the fire tracker does a reasonable
job maintaining a perimeter around the slow fire, but has difficulty
with the fast fire. In the fast experiment, the fire agent spreads so
quickly that it cuts off a portion of the network preventing the detector
agent from forming a full perimeter. The reason why both converge to
100% is because as the fire spreads, the network eventually becomes
saturated with an agent on every node.

V. L ESSONSLEARNED

The most important lesson is that care must be taken when writing
mobile agents. The choice between using strong and weak migration
operations has a significant impact on the complexity and efficiency
of the mobile agent code. Initial versions of the tracking agent
used strong migrations because of the way we designed the agent.
Specifically, the agent code was split into two modules to reflect the
two modes of operation, e.g., fire detection and fire tracking. After
writing the agent, we ran into problems with the agent size being too
big to fit under the severe memory constraints of Mica2 motes. After
several rounds of optimizing the two-module agent, we realized that
the agent’s mode could be inferred based on whether there were any
neighboring nodes on fire. This allowed us to merge the two blocks
of code reducing the agent’s size, and use weak migration operations
since an agent no longer needed to remember which mode it was in
across migrations.

We also learned that the instruction set can significantly reduce
agent code size, both in terms of what they do and how they store
their results. Two instructions we added during this case study were
rrdpg andvicinity . rrdpg takes a template and determines the
address of all neighbors who have a tuple matching this template.
Without it, each neighbor would have to be queried individually,
a process that takes 33-bytes of code and many more message
transmissions. Unlike other instructions,rrdpg stores the results
on the heap because they are often used numerous times. This is a

void main() {
String f = ”fir”;
Tuple t;
t.addField(f);
out(t); // insert fire tuple;
while(true) {

ledToggle(RED);
sleep(100); // sleep 100ms

}
}

Fig. 12. The static fire agent written in our higher-level language

tradeoff since it prevents the agent from using the heap for other
purposes. We chose this because manually transferring the results
from the operand stack to the heap takes 24-bytes of code (1/4
of the current tracker agent).vicinity operates on the results
of rrdpg . It takes a location and determines whether any of the
locations returned by therrdpg are within 1.4 non-diagonal grid
hops of it. This instruction is useful when determining whether a
neighbor should be part of the perimeter. The introduction of this
instruction saved an additional 30 bytes of code within the fire tracker
agent.

An agent’s size is clearly dependent on the instructions available.
We were only able to achieve 101 byte tracker agents and 47 byte fire
agents by introducing the special instructions mentioned above. This
highlights the need for a middleware architecture that allows the user
to customize the instruction set. As it stands, Agilla’s architecture
allows users to easily add and remove instructions off-line, prior to
deployment. Once Agilla is compiled and installed on a mote, new
instructions cannot be added. As part of our future work, we plan on
investigating how new instructions can be added post-deployment.
One possibility is to use Deluge or XNP to update Agilla with new
instructions on an infrequent basis.

Finally, we learned that programming in an assembly-like language
is an extremely tedious and error-prone task. It is clearly not scalable
to complex applications requiring large mobile agents. While devel-
oping the tracker agent, for example, we repeatedly ran into problems
with maximum branch distances and overriding condition codes.
Maté, the virtual machine on which Agilla is based, suffered similar
difficulties [25]. Since one of Agilla’s goals, in addition to increasing
application and network flexibility, is to enable rapid application
development, we are currently working on a higher level declarative
language that will compile into agilla byte code. The severe resource
constraints and need for supporting a dynamic instruction set makes
this effort non-trivial. Our current prototype is able to compile simple
applications that blink the LEDs and perform simple tuple space
operations, like the static fire agent shown in Figure 12. Our goal
is to be able to program any agent behavior using this language.

VI. CONCLUSIONS

Throughout this study, we have demonstrated that Agilla can be
used to deploy complex applications in wireless sensor networks. We
have also demonstrated how multiple applications can simultaneously
share a network (e.g., a fire-simulation application and a tracker
application). We presented a case study of how mobile agents can
be used to program a WSN for tracking fire. We showed that mobile
agents and tuple space-based communication are feasible even in
highly restrictive environments, and that these abstractions can be
used to increase network flexibility. Through experiments on a 26
node MICA2 network, we demonstrated that 101 byte tracker agents
were able to quickly form a perimeter around a static fire, and that
the efficiency depends a great deal on the degree of agent parallelism.



We also showed that the fire tracker agents can maintain a perimeter
around a dynamic fire as it spreads throughout a network. Many
lessons were learned including careful agent design, the importance
of choosing an appropriate instruction set, and the need for a higher-
level agent programming language. Our experience with developing
this application led to the addition of several instructions, enabling
Agilla to provide a better foundation for rapidly developing flexible
applications for WSNs.

ACKNOWLEDGMENT

This research was supported by the Office of Naval Research
under MURI research contract N00014-02-1-0715 and by the the
NSF under ITR contract CCR-0325529. Any opinions, findings, and
conclusions expressed in this paper are those of the authors and do
not necessarily represent the views of the research sponsors. We also
thank the reviewers for their valuable feedback.

REFERENCES

[1] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor networks,”
IEEE Computer, vol. 37, no. 8, pp. 41–49, 2004.

[2] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad,
R. Govindan, and D. Estrin, “A wireless sensor network for structural
monitoring,” in SenSys ’04: Proceedings of the 2nd international con-
ference on Embedded networked sensor systems. ACM Press, 2004,
pp. 13–24.

[3] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton, “Codeblue: An
ad hoc sensor network infrastructure for emergency medical care,” in
Proceedings of the MobiSys 2004 Workshop on Applications of Mobile
Embedded Systems (WAMES 2004), June 2004.

[4] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo,
R. Stoleru, T. Yan, L. Gu, J. Hui, and B. Krogh, “An energy-efficient
surveillance system using wireless sensor networks,” inProceedings of
the MobiSys 2004, June 2004.

[5] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: Design tradeoffs and
early experiences with zebranet,” inInternational Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
San Jose, CA, USA, Oct. 2002.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” inArchitectural
Support for Programming Languages and Operating Systems, 2000, pp.
93–104. [Online]. Available: citeseer.ist.psu.edu/382595.html

[7] P. Levis and D. Culler, “Mat́e: A tiny virtual machine for sensor
networks,” in International Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose, CA, USA,
Oct. 2002. [Online]. Available: citeseer.ist.psu.edu/levis02mate.html

[8] J. Zhao and R. Govindan, “Understanding packet delivery performance
in dense wireless sensor networks,” inProc. of the ACM SenSys, 2003.

[9] http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf.
[10] J. Hui and D. Culler, “The dynamic behavior of a data dissemination

protocol for network programming at scale,” inProceedings of the 2nd
international conference on Embedded networked sensor systems. ACM
Press, 2004, pp. 81–94.

[11] A. Boulis, C.-C. Han, and M. Srivastava, “Design and implementation of
a framework for efficient and programmable sensor networks,” inProc.
of MobiSys, 2003.

[12] T. Liu and M. Martonosi, “Impala: A middleware system for managing
autonomic, parallel sensor systems,” inACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2003.

[13] P. Kang, C. Borcea, G. Xu, A. Saxena, U. Kremer, and L. Iftode, “Smart
messages: A distributed computing platform for networks of embedded
systems,”To Appear in the Special Issue on Mobile and Pervasive
Computing, the Computer Journal, 2004.

[14] C.-L. Fok, G.-C. Roman, and C. Lu, “Rapid development and flexible
deployment of adaptive wireless sensor network applications,” inPro-
ceedings of the 24th International Conference on Distributed Computing
Systems (ICDCS’05), 2005.

[15] http://mobilab.wustl.edu/projects/agilla.
[16] N. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket

location-support system,” inMobile Computing and Networking, 2000,
pp. 32–43. [Online]. Available: citeseer.ist.psu.edu/priyantha00cricket.
html

[17] N. Bulusu, J. Heidemann, and D. Estrin, “Gps-less low cost outdoor
localization for very small devices,” University of Southern California,
Tech. Rep. 00-729, April 2000.

[18] D. Moore, J. Leonard, D. Rus, and S. Teller, “Robust distributed
network localization with noisy range measurements.” inThe Second
ACM Conference on Embedded Networked Sensor Systems (Sensys 04),
November 2004.

[19] D. Gelernter, “Generative Communication in Linda,”ACM Transactions
on Programming Languages and Systems, vol. 7, no. 1, pp. 80–112,
January 1985.

[20] C.-L. Fok, G.-C. Roman, and G. Hackmann, “A Lightweight Coordi-
nation Middleware for Mobile Computing,” inProceedings of the 6th
Internation Conference on Coordination Models and Languages (Coor-
dination 2004), ser. Lecture Notes in Computer Science, R. DeNicola,
G. Ferrari, and G. Meredith, Eds., no. 2949. Springer-Verlag, 2004,
pp. 135–151.

[21] C. Julien and G.-C. Roman, “Egocentric Context-Aware Programming
in Ad hoc Mobile Environments,” inPro. of the 10th Int. Symp. on the
Foundations of Software Engineering, Nov. 2002, pp. 21–30.

[22] A. L. Murphy, G. P. Picco, and G.-C. Roman, “L IME: A Middleware for
Physical and Logical Mobility,” inProceedings of the 21st International
Conference on Distributed Computing Systems, April 2001, pp. 524–533.

[23] G. Cabri, L. Leonardi, and F. Zambonelli, “Reactive tuple spaces
for mobile agent coordination,”Lecture Notes in Computer Science,
vol. 1477, pp. 237–252, 1998. [Online]. Available: citeseer.ist.psu.edu/
cabri98reactive.html

[24] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a neigh-
borhood abstraction for sensor networks,” inProceedings of the 2nd
international conference on Mobile systems, applications, and services.
ACM Press, 2004, pp. 99–110.

[25] D. G. P. Levis and D. Culler, “Bridging the gap: Programming sensor
networks with application specific virtual machines,” University of
California, Berkeley, Tech. Rep. UCB//CSD-04-1343, 2004.


