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Introduction

Not too long ago, incorporating a wireless RF link into an electronics project implied mastery of the
mysteries of RF electronics and layout or the need to incorporate often a fairly cumbersome subsystem into
your design.  This has all changed enormously over the past few years, with the introduction of embedded
modules that encapsulate the radio’s electronics onto a compact device, which can easily be mounted onto a
small part of your project’s circuit card.  The embedded RF arena is now exploding with development of new
products – although many small hybrid transmitter, receiver, and transceiver modules are on the market, the
latest entries include totally integrated RFIC’s that put the radio on a CMOS chip with a microcontroller, in
some cases adorned with peripherals such as ADC’s, DAC’s, timers, etc.  These elements are intrinsically
interconnected, with signal strength, transmit frequency, and other radio parameters digitally accessible as
processor registers, and protocols available as subroutines or resident in the device’s firmware.  Although one
still needs to be mindful of proper antenna matching, appropriate bypassing, zero-balancing, interference issues,
etc., incorporating radio links into projects has never been simpler.  In this article, we present a quick snapshot
of the state-of-the-art in embedded RF devices, then discuss an application that we have built around one of
them in a wearable badge platform to facilitate social interaction in large events.  We conclude by briefly
mentioning how we use embedded RF in a dense wearable sensor platform, and point to RFIC’s built around
heavier protocols, such as Bluetooth [1] and ZigBee [2].

Selecting a Short Range Radio Frequency Device

Bearing in mind that the field is developing so quickly that any survey will rapidly become dated, Table
1 lists and compares a range of currently available devices, including small hybrid, multi-component modules
and single integrated CMOS chips (RFICs).  Although many of the listed manufacturers provide a range of
different offerings that address various requirements, we have selected one representative product to detail from
each company.

The selected devices work in the 300 MHz through 1000 Mhz range or at the 2.4 GHz band. The
operating frequency is probably the first decision a designer has to make when selecting a RF device. In the
United States, the frequency bands 260-470 MHz and 902-928 MHz are license exempt and open for use,
provided you transmit at an FCC approved transmission strength and duty cycle. In Europe, the license exempt
bands are centered around 433.92 MHz and 868 MHz; The 868 MHz was previously a regulated band in
Europe, but has recently become license exempt. In both markets, 2.4 GHz is also license exempt, as are several
other higher frequency bands.

In general, devices using frequencies below 1GHz have lower power consumption and longer
communication range than devices using 2.4 GHz. They also don’t have to worry about interference from now
ubiquitous WLAN and Bluetooth networks. However, the 2.4 GHz channel offers higher bandwidth and greater
data rates.

Although not all SRDs (short-range devices) come equipped with hardcoded channel-sharing
procedures, they all need to have some sort of protocol [3] for working in the chosen frequency band with other
devices - either other devices in the same system or unknown devices using the same frequency band. This is



especially important in the heavily-used 2.4GHz ISM band. Techniques for sharing the airwaves include Time
Division Multiple Access (TDMA), Carrier Sense Multiple Access (CSMA), Frequency Division Multiple
Access (FDMA), Frequency Hopping Spread Spectrum (FHSS), and Direct Sequence Spread Spectrum (DSSS).

TDMA is a system by which different devices use the medium at different times, usually done by
allocating different time slots to different transmitters. CSMA is a technique where a device first checks
whether the medium is available before transmitting. This can still lead to collisions if multiple devices are
waiting for the medium to become available, so collision avoidance schemes, such as a random back-off
(waiting for a random interval to elapse before transmitting), are usually implemented. The example application
shown at the end of this article uses CSMA with such an approach. FDMA is a system where the frequency
band is divided into smaller subchannels that are assigned to different devices in the system. Devices operating
with the same subchannel cannot be in overlapping physical range space.

Spread Spectrum is a technique where the transmitter rapidly jumps from subchannel to subchannel. In
FHSS, each device can have a different sequence of frequencies that it follows, minimizing the probability that
two devices will occupy the same frequency simultaneously and interfere.  FHSS broadcasts are difficult to
listen in on without knowing the hopping code, and frequencies that contain interference can be removed from
the hop sequence. Devices with different hopping sequences can coexist on the same channel. DSSS systems
are based on spreading the signal energy by XORing the data signal with a pseudorandom spreading code.
Different devices in a system can use different spreading codes to support multiple access, which is known as
Code Division Multiple Access (CDMA).

It is important to have a general idea of the band sharing scheme that will be used before selecting your
RF device. If you are going to use a spread spectrum scheme or FDMA, you must select a chip that will support
it in hardware, usually by allowing the frequency to be easily changed in real-time by the application software.
If you are going to use a CSMA type scheme, it is a good idea to pick a chip with a Receiver Signal Strength
Indicator (RSSI) output that can be polled by an application. If the strength of the signal at the receiver is high,
it is usually because another nearby device is transmitting and the medium is busy.

Besides the RF specific parameters, all the standard factors for selecting any electronic component still
apply. The power consumption is broken down into three zones: Receiver power consumed while the chip is
listening for incoming data, standby current used while the chip is waiting for a carrier, and transmit power
consumed while sending. These devices also usually have a sleep mode that draws negligible current. It is
important to balance these values against the requirements of your application. If, for example, you need only to
transmit, then just the transmit power is important, and the expected power drawn from the RF system is the
transmit load weighed by the transmission duty cycle. There are ways of also duty-cycling the receiver – e.g.,
some devices support power management schemes where the device is mainly in sleep mode and is woken up at
periodic intervals to check for the presence of a carrier signal.

It is also important to consider the space requirements of the chip and the ensemble of external
components that it requires, as well as any requirements for the layout of the circuit board in order to support
the chip. Some manufacturers offer complete modules with their chip and include all required external
components on a printed circuit board for easy integration into an application.

Devices have become available recently that integrate both a microcontroller and a RF transceiver in a
single CMOS chip. Table 1 includes two such chips, the ChipCon CC1010 and the Nordic nRF24E1 (the rfPIC
integrates a transmitter with the processor). These chips contain a flash-programmable 8051 with a full set of
peripherals (UARTs, ADC, etc) on the same piece of silicon as the RF transceiver. This reduces component
count, board-space, and overall cost. This tight integration between the RF transceiver and the microcontroller
allows the transceiver to be controlled by simply writing and reading 8051 registers and by servicing RF
specific interrupts. We have recently used the Chipcon CC1010 in the RFRAIN project described below.



Implementation Example – the RFRAIN

The RFRAIN device (standing for RF Random Access Integrated Node) was developed by the
Responsive Environments group at the MIT Media Lab as an original part of the UbER-Badge (described
below), a compact platform designed to explore applications at the convergence of wearable and social
computing. It was decided that the RF subsystem developed for the badge had considerable standalone utility
for other projects, hence it was designed as a separate daughterboard called the RFRAIN. A website dedicated
to the RFRAIN is located at http://www.media.mit.edu/resenv/rfrain.

The RFRAIN board, with schematic shown in Figure 1 and assembled in Photo 1, contains the CC1010,
an 8MHz crystal, a 32kHz crystal for low-power operations, an antenna matching/filter circuit, an inductor for
the RF VCO, 2 choices of antennas, a 4-way selector switch, 4 LEDs, and connectors breaking out all external
i/o connections to the CC1010. The hardware is based on ChipCon’s reference design available at their website
and the component values for the antenna circuit and VCO were calculated by SmartRF Studio, also
downloadable from ChipCon’s website (www.chipcon.com).

The software on the RFRAIN board running in the integrated microcontroller handles the media access
using CSMA and the protocol needed for random-access, peer-to-peer networking. It also buffers incoming and
outgoing data and provides a serial interface to a connected application microprocessor, although stand-alone
applications can also be developed directly on the RFRAIN board. The software for the RFRAIN project was
based on ChipCon’s Simple Packet Protocol. The packet structure was modified to increase the address space
from 8-bits to 16-bits and a packet ID was added. Chipcon’s SPP software also contained code to handle
Acknowledgments and Retries. The Retry code was removed here, as this was handled at a higher level to
support the CSMA backoff scheme.

Listing 1 gives sample code that illustrates the transmission, retry, and backoff protocol. This code
section resides in the main application loop and is executed while the receiver is looking for a preamble of a
transmission.  If the receiver is not idly looking for a preamble, this code does not get executed.

If there is a packet to transmit, tx_outgoing will be set and this code will begin to execute. The first thing
that happens is that the Receive Signal Strength Indicator is read. This detects whether some sort of carrier is
being received. If there is a carrier signal present, execution of this code stops, cycles around the main loop,
then returns to this same check. When this check shows that the channel is empty, execution continues with a
random wait. This prevents all the devices waiting to transmit on the same channel from being in sync and
colliding with each other.  If tx_attempts is equal to 0, we are about to transmit a new packet; if it is greater than
0, we are about to send a retry because a previous transmission did not receive an ACK. If it is a new packet, we
load the packet into the transmit buffer, increment the packet ID, and set tx_attempts to the number of attempts
that will be tried. After the packet is loaded and ready to go, the channel is checked again to see if it is clear. If
it is clear we send the packet, and wait for the ACK if requested. If the channel is busy, we start all over again,
wait for the channel to become clear, and perform the random wait. If an ACK is not received, we start the loop
again, but without loading a new packet into the transmit buffer, and continue until we run out of retry attempts
or an ACK is received. In between retries, we return to receive mode to check for incoming packets.

The reception and transmission of bytes in each packet is handled by an Interrupt Service Routine (ISR).
Whenever the RF transceiver finishes receiving or transmitting a byte, it triggers the RF interrupt. The ISR
related to this interrupt executes a Finite State Machine (FSM), the code for which is shown in Listing 2. The
first function, RF_ISR, is the main interrupt service routine that the code vectors to upon completion of
transmission or reception of a single byte. This function calls a callback function sppRFStateFunc(), which
executes a function for the particular state of the finite state machine. Example FSM functions for receiving a
packet are given following RF_ISR.



Each of these functions represents a single state in the FSM for reception. In general, these functions
store the received byte appropriately, check if the packet is still valid, and set the callback function to the next
state. The first state is executed after reception of the sync byte, upon which this byte is dropped and the state
machine is advanced to the first Destination Address Byte. After receiving this byte, the firmware checks if the
address is the receiving node’s address or the broadcast address. If it is not a valid address, it sets a flag and
continues listening. It does not stop receiving if the packet is not intended for it; instead it continues receiving,
and drops the entire packet at the end. This keeps the node from transmitting while the channel is active (e.g.,
another two devices are communicating).  This procedure, combined with the check of the signal strength
indicator, works well to avoid interference.

The reception state machine then continues by receiving the lower byte of the destination address and
repeating the check.  It then receives the two byte source address, the packet ID (which is used elsewhere to
determine if the packet is a repeat transmission), the length of the data payload, a byte containing flags, and a
CRC8 byte as a check on the header. If the CRC8 fails, then the packet is dropped and the receiver is reset. If
this check is successful, the receiver acquires the data payload and a CRC16 check on the data. If the data is
valid, the function checks the flags to see if an acknowledgement is requested. If it is, the state machine will go
to transmit mode and begin the acknowledgement process. If not, the state machine returns to idle, and the main
application will be notified that a new packet has arrived.

We have written a series of similar state machine functions for sending the acknowledgement, sending a
packet, and receiving an acknowledgment. This code is available on the RFRAIN website at
http://www.media.mit.edu/resenv/rfrain.

Host Systems

A wide range of applications can be supported by the RFRAIN, as well as by similar circuits hosting
embedded wireless devices. The RFRAIN was originally developed for use in a device called the UbER
(Ubiquitous Experimental Research) Badge (Photo 2) - the latest in a series of badge platforms [4] developed at
the MIT Media Lab. The UbER-Badge is designed to be worn as a digital nametag at large events such as trade
shows and conventions. In addition to the RF link provided by the RFRAIN card, the UbER-Badge features
line-of-sight IR transceivers for face-face communication, a 5x9 LED matrix display capable of presenting
bitmap graphics and scrolling text that users in the vicinity can read, a 2x2 brightness-controllable blue LED
matrix for indicating badge status, a 3-state pressable thumbwheel for user input, an onboard microphone
sampled into 12 bits, a 12-bit audio output, a pager motor vibrator for tactile feedback, 3 onboard processors,
capacity for up to 256MB of flash memory for storing audio or user data, provisions for connecting two LCD
displays, and connectors that mate into the Stack Sensor platform (see below), allowing integration of a wide
variety of different sensors.  The RFRAIN system is used to network these badges in an ad-hoc, infrastructure-
less way, allowing message passing, location of colleagues and points of interest, and transfer of contact
information, all across a wide vicinity without the line-of-sight restriction imposed by the IR system, which
talks only to a badge or IR beacon that’s directly facing you. The UbER-badge uses the RFRAIN and its
embedded microcontroller to handle all of its wireless communication activity. The RFRAIN stores incoming
and outgoing packets and provides a simple serial interface to the main application processor on the badge, a
Texas Instruments MSP430F149 16-bit microcontroller. Details on the UbER-Badge can be found at
http://www.media.mit.edu/resenv/badge.

Wireless Sensing devices are another common use of these short-range radio modules, which have
enabled compact sensor platforms such as the Berkeley Motes [5] and the Smart-Its (developed by a European
university consortium) [6], through which researchers prototype sensor networks and ubiquitous computing



environments. Our group has developed several dense, multisensor wireless platforms for wearable
applications.  One example, shown in Photo 3, is card that acquires 16 different tactile and free-gesture sensor
parameters from a dancer's shoe, producing data which are then interpreted by a rulebase running on a PC
generating interactive music, putting the dancer in control of the composition.  Data is acquired by a PIC
16C711 microcontroller and transmit right from the shoe by a Radiometrix TX-series transmitter.  See
http://www.media.mit.edu/resenv/danceshoe.html and [7] for more information.  A more recent example in this
area is our Stack Sensor Architecture [8], shown in Photo 4. The Stack is a series of compact interchangeable
circuit boards, each performing a specific function such as 6-axis inertial measurement sensing, sonar proximity
measurement, tactile interfaces (bend, pressure, capacitive sensors), and processing and wireless
communication. The wireless board contains a RFM wireless transceiver and a Cygnal 8051-based processor
that handles a TDMA communication protocol. It snaps together with any combination of sensor boards to form
a compact wireless sensing suite. We are currently using this device in another shoe, this one designed in
collaboration with the Biomotion Group at the Massachusetts General Hospital to acquire data for diagnosis of
gait defects and to develop interactive therapy for patients with difficulty walking properly. For more
information about the stack sensor architecture, please see http://www.media.mit.edu/resenv/Stack; and for
more information about the Gait Sensing Shoe, please see http://www.media.mit.edu/resenv/gaitshoe.html.

Wireless Networking Standards and Upcoming Devices

Several higher-level standards have been established atop the low-level protocols that we have
overviewed in the “Selecting a Short Range Radio Frequency Device” section.  Although many manufactures
provide chipsets that implement 802.11 (i.e., “Wi-Fi”), its power requirements and associated complexity often
preclude adoption in small battery-operated devices such as described above, which don’t often need its high
data rates and heavy protocol stack.  A significantly simpler and less power-hungry option is provided by
Bluetooth, a well-established standard that describes hardware and a software protocol for wireless networking.
By conforming to a standard such as Bluetooth, different manufacturers can insure that their devices will be
able to communicate with one another.  Several manufacturers, including Cambridge Silicon Radio
(www.csr.com), SiliconWave (www.siliconwave.com), and Zeevo (www.zeevo.com), offer single chip
solutions that not only perform the RF communication but also handle the high-level protocol described in the
Bluetooth standard. These chips offload much of the required processing and allow the use of a low power
microcontroller to handle the application software without sacrificing board space, power consumption, or cost.
Furthermore, single chip solutions integrating the protocol stack, the RF hardware, and a microprocessor are
starting to emerge from manufacturers such as Motorola and National Semiconductor.

With a maximum data rate of 1Mb/s and power consumption at 0.3mA in standby, 30mA maximum
while transferring at full speed, Bluetooth is intended for high data rate applications such as streaming audio
and video in battery-powered devices. A new standard, developed under IEEE 802.15.4, called ZigBee is
starting to emerge that aims to do the same thing for lower bandwidth, lower power, longer range applications,
such as home automation and sensor telemetry. ChipCon has recently announced an RFIC (the CC2420) that's
ZigBee enabled, and Motorola is starting to enable devices such as sensors with ZigBee to provide single chip
solutions that perform a task and handle all the communication hardware and software – the soon-to-be-released
Motorola NeuRFon chips (e.g., the MC13192) will integrate an 802.15.4 radio with a digital state-machine to
handle very low-level ZigBee protocol.



References

The authors wish to thank their colleagues in the Responsive Environments Group, in particular Ari Benbasat
and Stacy Morris, for their contribution to several of the projects introduced in this article.  We are grateful for
the support of the Things That Think Consortium and other sponsors of the MIT Media Laboratory.

[1] J. C. Haartsen, “The Bluetooth Radio System,” IEEE Personal Communications 7, No. 1, 28-36 (2000).

[2] J. Adams, "Meet the ZigBee Standard," Sensors Magazine, June 2003.  See also http://www.zigbee.org.

[3] Rappaport, T.S., Wireless Communications: Principles and Practice (2'nd Edition), Prentice-Hall, NJ,
2002.

[4]. Borovoy, M. McDonald, F. Martin, M. Resnick, "Things That Blink: Computationally Augmented
Nametags," IBM Systems Journal, Vol 35, Nos. 3 & 4, 1996.  See also: http://web.media.mit.edu/~borovoy/.

[5] See: http://webs.cs.berkeley.edu/tos/hardware/hardware.html

[6] Holmquist, L.E., et. al., "Building Intelligent Environments with Smart-Its," to appear in IEEE Computer
Graphics and Applications Magazine, December 2003.

[7] J. Paradiso, K. Hsiao, A. Benbasat, Z. Teegarden, "Design and Implementation of Expressive Footwear,"
IBM Systems Journal, Volume 39, Nos. 3 & 4, October 2000, pp. 511-529.

[8] A.Y. Benbasat, S.J. Morris, and J.A. Paradiso, "A Wireless Modular Sensor Architecture and its Application
in On-Shoe Gait Analysis," in the Proceedings of the 2003 IEEE International Conference on Sensors, October
21-24.

Bios

Mat Laibowitz holds a diploma from Columbia University in Electrical Engineering and Computer Science. He
is currently a second-year graduate student at the MIT Media Lab in the Responsive Environments Group, and a
Motorola Fellow. Prior to joining the Media Lab he worked for 3 years at IBM Research in Yorktown Heights,
NY, and worked for 2 years at XanBoo Inc, in New York City, where he developed wireless products for
internet-controlled home automation. He has also studied film and animation at NYU and is active in the
electronic music scene as a performer and instrument designer.

Joseph Paradiso, Sony Career Development Associate Professor at the MIT Media Lab, directs the Responsive
Environments Group, which develops new sensor architectures for interactive systems.  He received his Ph.D.
in physics from MIT in 1981 and BS in electrical engineering and physics from Tufts University in 1977.
Before coming to the Media Lab, he worked at Draper Laboratory in Cambridge and ETH in Zurich on high-
energy physics detectors, spacecraft control systems, and underwater sonar, and has long been active in the
electronic music community as a designer of synthesizers and musical interfaces.



T
ables and F

igures

A
erocom

m
A

C
4490-1x1

C
hipcon

C
C

1010
L

inx T
echnologies

T
R

-916-SC
-S

M
axstream

24X
Stream

M
icrochip

rfPIC
12C

509A
G

N
ordic

nR
F24E

1
Frequency R

ange
902-928 M

H
z

300-1000 M
H

z
916.5 M

H
z

2.4 G
H

z
310-480M

H
z

2.4 G
H

z
M

ethodology
FH

SS, FSK
FSK

FSK
FH

SS, FSK
O

O
K

, FSK
FSK

M
axim

um
 B

it
R

ate
115.2 kb/s

76.8 kb/s
33.6 kb/s

20 kb/s
40 kb/s

1000 kb/s

Standby Pow
er

30 m
A

1.3 m
A

50 uA
10 uA

0.1 uA
2 uA

R
eceiver Pow

er
30 m

A
9.1 m

A
15 m

A
50 m

A
N

/A
19 m

A
T

ransm
it Pow

er
35 m

A
 @

 2dB
M

8.9m
A

 @
 -5dB

M
29 m

A
 @

4dB
M

150 m
A

 @
 17dB

M
11.5 m

A
 @

 2dB
M

10.5m
A

 @
 -5dB

M
R

eceiver
Sensitivity

-96 dB
M

-107 dB
M

-95 dB
M

-102 dB
M

N
/A

-90 dB
M

R
SSI O

utput
N

/A
Y

es
Y

es
N

/A
N

/A
N

o
Package and Size

O
E

M
 M

odule
26m

m
 x 26m

m
64T

Q
FP

12m
m

 x 12m
m

M
odule

33m
m

 x 37m
m

M
odule

40m
m

 x 68m
m

18SSO
P

10m
m

 x 12m
m

36Q
FN

6m
m

 x 6m
m

E
xternal

C
om

ponents
(not including
antenna)

N
one

R
X

 M
atch,

T
X

 M
atch,

V
C

O
 Inductor,

C
rystals for uC

N
one

N
one

C
rystal for

transm
itter,

Passives

E
E

PR
O

M
 for code,

C
rystal for µ

C

O
E

M
 M

odule
A

vailable
Y

es
N

o
Y

es
Y

es
N

o
N

o

C
om

m
ents

Frequency H
opping

Spread Spectrum
perform

ed by
m

odule. E
m

bedded
protocol handles
headers, acks, rts/cts
for stream

ing data,
addressing, error
checking.

Integrated 8051,
hardw

are D
E

S,
supports frequency
hopping, supports
tw

o crystals for low
pow

er operation

R
eady-m

ade
keychain rem

otes and
other com

patible
devices are available

Frequency H
opping

Spread Spectrum
perform

ed by m
odule.

Integrated w
ire antenna

available. E
m

bedded
protocol handles acks,
retries, and m

odem
-like

com
m

unications.

T
ransm

itter only –
receiver is a separate
device, the
rfR

X
D

0420

Integrated 8051,
pow

er ratings are for
R

F and don’t include
m

cu, supports
frequency hopping

M
icrocontroller

Specifications
N

/A
8051 based
22 M

H
z

32kb flash
2kb ram
10 bit A

D
C

2 U
A

R
T

s
SPI, W

D
T

, PW
M

N
/A

N
/A

4 M
H

z
1024 bytes O

T
P

41 bytes ram
W

D
T

8051 based
16M

H
z

R
equires external

flash for program
storage
4kb R

A
M

12 bit A
D

C
SPI, W

D
T

, PW
M

W
ebsite

w
w

w
.aerocom

m
.com

w
w

w
.chipcon.com

w
w

w
.rfdigital.com

w
w

w
.m

axstream
.com

w
w

w
.m

icrochip.com
w

w
w

.nvlsi.no



R
adiom

etrix
B

iM
3

R
aym

ing
R

E
-99, T

X
-99

R
F M

onolithics
T

R
1100

R
FW

aves
R

FW
102-M

T
exas Instrum

ents
T

R
F6901

X
em

ics
X

E
1203

Frequency R
ange

869/914 M
H

z
300 M

H
z

916.5 M
H

z
2.4 G

H
z

860-930M
H

z
433M

hz, 868M
hz, and

915M
hz

M
ethodology

O
O

K
O

O
K

O
O

K
D

SSS, O
O

K
O

O
K

, FSK
FSK

M
axim

um
 B

it
R

ate
64 kb/s

1.2 kb/s (see
com

m
ents)

1000 kb/s
1000 kb/s

64 kb/s
152.3 kb/s

Standby Pow
er

11.5 m
A

1.6 m
A

0.7 uA
2.6 uA

4 uA
1.10 m

A
R

eceiver Pow
er

11.5 m
A

1.6 m
A

8 m
A

38 m
A

21 m
A

17 m
A

T
ransm

it Pow
er

11 m
A

 @
 3dB

M
1.6 m

A
12m

A
 @

 0dB
M

21m
A

 @
 2dB

M
40 m

A
 @

 8dB
M

40m
A

 @
 5dB

M
R

eceiver
Sensitivity

-100 dB
M

50 ft range guaranteed,
100 ft expected

-87 dB
M

-80 dB
M

-86 dB
M

-100 dB
M

R
SSI O

utput
Y

es
N

o
N

o
N

o
Y

es
Y

es
Package and Size

M
odule

33m
m

 x 23m
m

O
E

M
 m

odules
30m

m
 x 60m

m
SM

-20H
8m

m
 x 11m

m
M

odule
11m

m
 x 16m

m
48PQ

FP
9m

m
 x 9m

m
48V

Q
FN

7m
m

 x 7m
m

E
xternal

C
om

ponents
N

one
N

one
A

ntenna Filter,
Passives

N
one

C
rystal,

A
ntenna M

atching
C

ircuitry,
Passives (L

C
 T

ank
circuit)

R
X

 M
atch,

T
X

 M
atch,

V
C

O
 T

ank,
Freq Synth Filter,
C

rystal
O

E
M

 M
odule

A
vailable

Y
es

Y
es, only

Y
es (dr3000-2)

Y
es

N
o

Y
es

C
om

m
ents

T
w

o versions available
for different operating
frequencies. D

rop-in
O

E
M

 m
odule. M

any
other products
available from
R

adiom
etrix.

T
ransm

itted and
R

eceiver pair. Sw
itch

E
ncoders/D

ecoders are
available. T

hey have
several ready m

ade
keychain rem

otes
available.

O
E

M
 M

odule is
recom

m
ended w

hich
requires no external
com

ponents

3 chip solution on
m

odule, B
uilt-in D

SSS
protocol, sim

ple
interface to m

ain
processor

Sim
ple 3-w

ire serial
interface

Several other chips
available.

M
icrocontroller

Specifications
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A

W
ebsite

w
w

w
.radiom

etrix.com
w

w
w

.raym
ing.com

w
w

w
.rfm

.com
w

w
w

.rfw
aves.com

w
w

w
.ti.com

w
w

w
.xem

ics.com

T
able 1: B

asic specifications for several currently-available sm
all-footprint, short-range R

F
 devices



i
f
 
(
t
x
_
o
u
t
g
o
i
n
g
 
=
=
 
1
)
 
{

/
/
 
I
F
 
W
E
 
H
A
V
E
 
A
 
P
A
C
K
E
T
 
T
O
 
S
E
N
D

t
m
p
_
R
S
S
I
 
=
 
r
f
d
c
R
e
a
d
R
S
S
I
(
)
;

/
/
 
R
E
A
D
 
S
I
G
N
A
L
 
S
T
R
E
N
G
T
H

i
f
 
(
t
m
p
_
R
S
S
I
 
<
 
R
S
S
I
_
T
H
R
E
S
H
O
L
D
)
{

/
/
 
C
A
R
R
I
E
R
 
S
E
N
S
E

/
/
 
N
O
 
C
A
R
R
I
E
R
 
D
E
T
E
C
T
E
D

h
a
l
W
a
i
t
(
r
a
n
d
(
)
,
 
C
C
1
0
1
0
D
C
_
C
L
K
F
R
E
Q
)
;

/
/
 
R
A
N
D
O
M
 
W
A
I
T

/
/
 
C
H
E
C
K
 
I
F
 
W
E
 
H
A
V
E
 
M
O
R
E
 
A
T
T
E
M
P
T
S
 
T
O
 
M
A
K
E
 
O
N
 
L
A
S
T
 
T
X

i
f
 
(
t
x
A
t
t
e
m
p
t
s
 
=
=
 
0
)
{

/
/
 
N
O
 
M
O
R
E
 
A
T
T
E
M
P
T
S

/
/
 
L
O
A
D
 
N
E
X
T
 
P
A
C
K
E
T
 
F
R
O
M
 
B
U
F
F
E
R

.
 
.
 
.

t
x
A
t
t
e
m
p
t
s
 
=
 
m
y
R
e
t
r
y
C
o
u
n
t
;
 
 

/
/
 
R
E
S
E
T
 
A
T
T
E
M
P
T
S

T
X
I
.
p
k
i
d
 
=
 
+
+
m
y
_
p
k
i
d
;

/
/
 
I
N
C
 
P
A
C
K
E
T
 
I
D

}t
m
p
_
R
S
S
I
 
=
 
r
f
d
c
R
e
a
d
R
S
S
I
(
)
;

/
/
 
R
E
A
D
 
S
I
G
N
A
L
 
S
T
R
E
N
G
T
H

/
/
 
C
H
E
C
K
 
C
A
R
R
I
E
R
 
S
E
N
S
E
 
A
N
D
 
T
H
A
T
 
R
F
 
T
R
A
N
S
C
E
I
V
E
R
 
I
S
 
N
O
T
 
C
U
R
R
E
N
T
L
Y
 
R
E
C
E
I
V
I
N
G
 
A
 
P
A
C
K
E
T

i
f
 
(
(
R
X
I
.
s
t
a
t
u
s
 
=
=
 
S
P
P
_
R
X
_
W
A
I
T
I
N
G
)
 
&
&
 
(
t
m
p
_
R
S
S
I
 
<
 
R
S
S
I
_
T
H
R
E
S
H
O
L
D
)
)
 
{

/
/
 
M
E
D
I
A
 
F
R
E
E

s
p
p
R
e
s
e
t
(
)
;

/
/
 
R
E
S
E
T
 
R
E
C
E
I
V
E
R

/
/
 
T
R
A
N
S
M
I
T
 
P
A
C
K
E
T

i
f
 
(
s
p
p
S
e
n
d
(
&
T
X
I
)
 
=
=
 
S
P
P
_
T
X
_
S
T
A
R
T
E
D
)
 
{

B
L
E
D
 
=
 
L
E
D
_
O
N
;
 

/
/
 
I
N
D
I
C
A
T
E
 
T
R
A
N
S
M
I
S
S
I
O
N

/
/
 
T
R
A
N
S
M
I
S
S
I
O
N
 
I
S
 
I
N
T
E
R
R
U
P
T
 
D
R
I
V
E
N

/
/
 
I
S
R
 
W
I
L
L
 
U
P
D
A
T
E
 
S
P
P
_
S
T
A
T
U
S

/
/
 
W
A
I
T
 
U
N
T
I
L
 
S
T
A
T
U
S
 
C
H
A
N
G
E
S

d
o
 
{
 
 
}
 
w
h
i
l
e
 
(
S
P
P
_
S
T
A
T
U
S
(
)
 
!
=
 
S
P
P
_
I
D
L
E
_
M
O
D
E
)
;

/
/
 
C
H
E
C
K
 
T
R
A
N
S
M
I
T
 
S
T
A
T
U
S

i
f
 
(
T
X
I
.
s
t
a
t
u
s
 
=
=
 
S
P
P
_
T
X
_
F
I
N
I
S
H
E
D
)
 
{

/
/
 
P
A
C
K
E
T
 
S
E
N
T
 
S
U
C
C
E
S
S
F
U
L
L
Y
,
 
A
C
K
 
R
E
C
E
I
V
E
D
 
I
F
 
A
C
K
 
R
E
Q
U
E
S
T
E
D

G
L
E
D
 
=
 
L
E
D
_
O
N
;

/
/
 
S
E
N
D
 
R
E
T
U
R
N
 
C
O
D
E

.
 
.
 
.

 
 
 
 
 
 
 

}
 
e
l
s
e
 
{/
/
 
P
A
C
K
E
T
 
F
A
I
L
E
D
,
 
C
O
L
L
I
S
I
O
N
 
O
R
 
N
O
 
A
C
K

i
f
 
(
-
-
t
x
A
t
t
e
m
p
t
s
 
=
=
 
0
)
 
{

/
/
 
N
O
 
M
O
R
E
 
R
E
T
R
I
E
S

R
L
E
D
 
=
 
L
E
D
_
O
N
;

/
/
 
C
H
E
C
K
 
I
F
 
T
H
E
R
E
 
A
R
E
 
A
N
Y
 
O
T
H
E
R
 
P
A
C
K
E
T
S
 
T
O
 
S
E
N
D

i
f
(
t
x
_
b
u
f
f
e
r
_
e
m
p
t
y
(
)
)
 
t
x
_
o
u
t
g
o
i
n
g
 
=
 
0
;

/
/
 
S
E
N
D
 
R
E
T
U
R
N
 
C
O
D
E

.
 
.
 
.

}
 
/
/
 
E
L
S
E
 
A
 
R
E
T
R
Y
 
W
I
L
L
 
O
C
C
U
R
 
O
N
 
N
E
X
T
 
L
O
O
P

}
}/
/
 
R
E
S
T
A
R
T
 
R
E
C
E
I
V
I
N
G
 
A
L
L
O
W
I
N
G
 
C
A
R
R
I
E
R
 
S
E
N
S
E
 
F
O
R
 
N
E
X
T
 
R
E
T
R
Y
 
O
R
 
N
E
W
 
P
A
C
K
E
T

s
p
p
R
e
c
e
i
v
e
(
&
R
X
I
)
;

}
}

}

L
isting 1: E

m
bedded C

 C
ode for the R

F
R

A
IN

 C
SM

A
 T

ransm
ission



/
/
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

/
/
 
 
v
o
i
d
 
R
F
_
I
S
R
 
(
v
o
i
d
)
 
i
n
t
e
r
r
u
p
t
 
I
N
U
M
_
R
F

/
/

/
/
 
 
D
e
s
c
r
i
p
t
i
o
n
:

/
/
 
 
 
 
 
 
R
F
 
i
n
t
e
r
r
u
p
t
 
s
e
r
v
i
c
e
 
r
o
u
t
i
n
e

/
/

R
u
n
s
 
t
h
e
 
S
P
P
 
f
i
n
i
t
e
 
s
t
a
t
e
 
m
a
c
h
i
n
e

/
/

/
/

T
h
e
 
p
a
c
k
e
t
 
s
e
q
u
e
n
c
e
 
b
i
t
:

/
/

T
X
:
 
T
o
g
g
l
e
 
w
h
e
n
 
f
i
n
i
s
h
e
d
 
(
s
p
p
I
n
t
D
a
t
a
.
p
T
X
I
-
>
s
t
a
t
u
s
 
=
 
S
P
P
_
T
X
_
F
I
N
I
S
H
E
D
)
.

/
/

R
X
:
 
T
h
e
 
u
s
e
r
 
a
p
p
l
i
c
a
t
i
o
n
 
m
u
s
t
 
e
x
a
m
i
n
e
 
t
h
e
 
s
e
q
u
e
n
c
e
 
b
i
t
.

/
/
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

v
o
i
d
 
R
F
_
I
S
R
 
(
v
o
i
d
)
 
i
n
t
e
r
r
u
p
t
 
I
N
U
M
_
R
F
 
{

I
N
T
_
G
L
O
B
A
L
_
E
N
A
B
L
E
 
(
I
N
T
_
O
F
F
)
;

I
N
T
_
S
E
T
F
L
A
G
 
(
I
N
U
M
_
R
F
,
 
I
N
T
_
C
L
R
)
;

i
f
 
(
s
p
p
I
n
t
D
a
t
a
.
m
o
d
e
 
!
=
 
S
P
P
_
I
D
L
E
_
M
O
D
E
)
 
{

s
p
p
R
F
S
t
a
t
e
F
u
n
c
(
)
;

}I
N
T
_
G
L
O
B
A
L
_
E
N
A
B
L
E
 
(
I
N
T
_
O
N
)
;

r
e
t
u
r
n
;

}
 
/
/
 
R
F
_
I
S
R

/
/
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

/
/
 
R
X
 
F
U
N
C
T
I
O
N
S

/
/
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

v
o
i
d
 
R
X
_
W
A
I
T
 
(
v
o
i
d
)
 
{

/
/
 
D
r
o
p
 
t
h
e
 
s
y
n
c
 
b
y
t
e

R
F
_
L
O
C
K
_
A
V
E
R
A
G
E
_
F
I
L
T
E
R
(
T
R
U
E
)
;

s
p
p
I
n
t
D
a
t
a
.
m
o
d
e
 
=
 
S
P
P
_
R
X
_
M
O
D
E
;

s
p
p
R
F
S
t
a
t
e
F
u
n
c
 
=
 
R
X
_
D
A
B
H
;

}v
o
i
d
 
R
X
_
D
A
B
H
 
(
v
o
i
d
)
 
{

s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
s
t
a
t
u
s
 
=
 
S
P
P
_
R
X
_
R
E
C
E
I
V
I
N
G
;

F
A
S
T
_
C
R
C
8
_
I
N
I
T
(
s
p
p
I
n
t
D
a
t
a
.
c
r
c
8
)
;

F
A
S
T
_
C
R
C
8
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
,
 
s
p
p
I
n
t
D
a
t
a
.
c
r
c
8
)
;

i
f
 
(
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
 
=
=
 
s
p
p
S
e
t
t
i
n
g
s
.
m
y
A
d
d
r
e
s
s
H
)
 
|
|
 
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
 
=
=
 
S
P
P
_
B
R
O
A
D
C
A
S
T
_
H
)
)
 
{

s
p
p
I
n
t
D
a
t
a
.
r
x
_
a
d
d
r
e
s
s
_
v
a
l
i
d
 
=
 
1
;

}
 
e
l
s
e
 
{s
p
p
I
n
t
D
a
t
a
.
r
x
_
a
d
d
r
e
s
s
_
v
a
l
i
d
 
=
 
0
;

}s
p
p
R
F
S
t
a
t
e
F
u
n
c
 
=
 
R
X
_
D
A
B
L
;

}v
o
i
d
 
R
X
_
D
A
B
L
 
(
v
o
i
d
)
 
{

s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
s
t
a
t
u
s
 
=
 
S
P
P
_
R
X
_
R
E
C
E
I
V
I
N
G
;

F
A
S
T
_
C
R
C
8
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
,
 
s
p
p
I
n
t
D
a
t
a
.
c
r
c
8
)
;

i
f
 
(
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
 
=
=
 
s
p
p
S
e
t
t
i
n
g
s
.
m
y
A
d
d
r
e
s
s
L
)
 
|
|
 
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
 
=
=
 
S
P
P
_
B
R
O
A
D
C
A
S
T
_
L
)
)
 
{

}
 
e
l
s
e
 
{s
p
p
I
n
t
D
a
t
a
.
r
x
_
a
d
d
r
e
s
s
_
v
a
l
i
d
 
=
 
0
;

}s
p
p
R
F
S
t
a
t
e
F
u
n
c
 
=
 
R
X
_
S
A
B
H
;

}v
o
i
d
 
R
X
_
S
A
B
H
 
(
v
o
i
d
)
 
{

s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
s
o
u
r
c
e
H
 
=
 
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
;

F
A
S
T
_
C
R
C
8
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
,
 
s
p
p
I
n
t
D
a
t
a
.
c
r
c
8
)
;



s
p
p
R
F
S
t
a
t
e
F
u
n
c
 
=
 
R
X
_
S
A
B
L
;

}v
o
i
d
 
R
X
_
S
A
B
L
 
(
v
o
i
d
)
 
{

s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
s
o
u
r
c
e
L
 
=
 
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
;

F
A
S
T
_
C
R
C
8
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
,
 
s
p
p
I
n
t
D
a
t
a
.
c
r
c
8
)
;

s
p
p
R
F
S
t
a
t
e
F
u
n
c
 
=
 
R
X
_
P
K
I
D
;

}v
o
i
d
 
R
X
_
P
K
I
D
 
(
v
o
i
d
)
 
{

s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
p
k
i
d
 
=
 
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
;

F
A
S
T
_
C
R
C
8
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
,
 
s
p
p
I
n
t
D
a
t
a
.
c
r
c
8
)
;

s
p
p
R
F
S
t
a
t
e
F
u
n
c
 
=
 
R
X
_
D
A
T
A
_
L
E
N
;

}v
o
i
d
 
R
X
_
D
A
T
A
_
L
E
N
 
(
v
o
i
d
)
 
{

s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
d
a
t
a
L
e
n
 
=
 
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
;

F
A
S
T
_
C
R
C
8
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
,
 
s
p
p
I
n
t
D
a
t
a
.
c
r
c
8
)
;

s
p
p
R
F
S
t
a
t
e
F
u
n
c
 
=
 
R
X
_
F
L
A
G
;

}v
o
i
d
 
R
X
_
F
L
A
G
 
(
v
o
i
d
)
 
{

s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
f
l
a
g
s
 
=
 
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
;

F
A
S
T
_
C
R
C
8
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
,
 
s
p
p
I
n
t
D
a
t
a
.
c
r
c
8
)
;

s
p
p
R
F
S
t
a
t
e
F
u
n
c
 
=
 
R
X
_
C
R
C
8
_
H
E
A
D
E
R
;

}v
o
i
d
 
R
X
_
C
R
C
8
_
H
E
A
D
E
R
 
(
v
o
i
d
)
 
{

F
A
S
T
_
C
R
C
8
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
,
 
s
p
p
I
n
t
D
a
t
a
.
c
r
c
8
)
;

s
p
p
I
n
t
D
a
t
a
.
c
o
u
n
t
e
r
 
=
 
0
;

i
f
 
(
s
p
p
I
n
t
D
a
t
a
.
c
r
c
8
 
=
=
 
C
R
C
_
O
K
)
 
{

i
f
 
(
s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
d
a
t
a
L
e
n
 
=
=
 
0
 
&
&
 
s
p
p
I
n
t
D
a
t
a
.
r
x
_
a
d
d
r
e
s
s
_
v
a
l
i
d
 
=
=
 
1
)
 
{

S
P
P
_
D
I
S
A
B
L
E
_
T
I
M
E
O
U
T
(
)
;

i
f
 
(
s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
f
l
a
g
s
 
&
 
S
P
P
_
A
C
K
_
R
E
Q
)
 
{

S
P
P
_
F
A
S
T
_
P
O
W
E
R
_
U
P
_
T
X
(
)
;

s
p
p
R
F
S
t
a
t
e
F
u
n
c
 
=
 
R
X
A
C
K
_
S
T
A
R
T
;

}
 
e
l
s
e
 
{s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
s
t
a
t
u
s
 
=
 
S
P
P
_
R
X
_
F
I
N
I
S
H
E
D
;

F
S
M
_
R
E
S
E
T
(
)
;

}
}
 
e
l
s
e
 
i
f
 
(
s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
d
a
t
a
L
e
n
 
>
 
s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
m
a
x
D
a
t
a
L
e
n
)
 
{

s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
s
t
a
t
u
s
 
=
 
S
P
P
_
R
X
_
T
O
O
_
L
O
N
G
;

F
S
M
_
R
E
S
E
T
(
)
;

}
 
e
l
s
e
 
{s
p
p
R
F
S
t
a
t
e
F
u
n
c
 
=
 
R
X
_
D
B
X
_
S
T
A
R
T
;

}
}
 
e
l
s
e
 
{F
S
M
_
R
E
S
T
A
R
T
_
R
X
(
)
;

}
}v
o
i
d
 
R
X
_
D
B
X
_
S
T
A
R
T
 
(
v
o
i
d
)
 
{

s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
p
D
a
t
a
B
u
f
f
e
r
[
s
p
p
I
n
t
D
a
t
a
.
c
o
u
n
t
e
r
]
 
=
 
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
;

F
A
S
T
_
C
R
C
1
6
_
I
N
I
T
(
s
p
p
I
n
t
D
a
t
a
.
c
r
c
1
6
)
;

F
A
S
T
_
C
R
C
1
6
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
,
 
s
p
p
I
n
t
D
a
t
a
.
c
r
c
1
6
)
;

s
p
p
I
n
t
D
a
t
a
.
c
o
u
n
t
e
r
 
=
 
1
;

i
f
 
(
s
p
p
I
n
t
D
a
t
a
.
c
o
u
n
t
e
r
 
=
=
 
s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
d
a
t
a
L
e
n
)
 
{

s
p
p
R
F
S
t
a
t
e
F
u
n
c
 
=
 
R
X
_
C
R
C
1
6
_
D
A
T
A
_
H
;



}
 
e
l
s
e
 
{s
p
p
R
F
S
t
a
t
e
F
u
n
c
 
=
 
R
X
_
D
B
X
;

}
}v
o
i
d
 
R
X
_
D
B
X
 
(
v
o
i
d
)
 
{

s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
p
D
a
t
a
B
u
f
f
e
r
[
s
p
p
I
n
t
D
a
t
a
.
c
o
u
n
t
e
r
]
 
=
 
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
;

F
A
S
T
_
C
R
C
1
6
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
,
 
s
p
p
I
n
t
D
a
t
a
.
c
r
c
1
6
)
;

s
p
p
I
n
t
D
a
t
a
.
c
o
u
n
t
e
r
+
+
;

i
f
 
(
s
p
p
I
n
t
D
a
t
a
.
c
o
u
n
t
e
r
 
=
=
 
s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
d
a
t
a
L
e
n
)
 
{

s
p
p
R
F
S
t
a
t
e
F
u
n
c
 
=
 
R
X
_
C
R
C
1
6
_
D
A
T
A
_
H
;

}
}v
o
i
d
 
R
X
_
C
R
C
1
6
_
D
A
T
A
_
H
 
(
v
o
i
d
)
 
{

F
A
S
T
_
C
R
C
1
6
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
,
 
s
p
p
I
n
t
D
a
t
a
.
c
r
c
1
6
)
;

s
p
p
R
F
S
t
a
t
e
F
u
n
c
 
=
 
R
X
_
C
R
C
1
6
_
D
A
T
A
_
L
;

}v
o
i
d
 
R
X
_
C
R
C
1
6
_
D
A
T
A
_
L
 
(
v
o
i
d
)
 
{

F
A
S
T
_
C
R
C
1
6
(
R
F
_
R
E
C
E
I
V
E
_
B
Y
T
E
(
)
,
 
s
p
p
I
n
t
D
a
t
a
.
c
r
c
1
6
)
;

i
f
 
(
s
p
p
I
n
t
D
a
t
a
.
c
r
c
1
6
 
=
=
 
C
R
C
_
O
K
 
&
&
 
s
p
p
I
n
t
D
a
t
a
.
r
x
_
a
d
d
r
e
s
s
_
v
a
l
i
d
 
=
=
 
1
)
 
{

S
P
P
_
D
I
S
A
B
L
E
_
T
I
M
E
O
U
T
(
)
;

i
f
 
(
s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
f
l
a
g
s
 
&
 
S
P
P
_
A
C
K
_
R
E
Q
)
 
{

S
P
P
_
F
A
S
T
_
P
O
W
E
R
_
U
P
_
T
X
(
)
;

s
p
p
R
F
S
t
a
t
e
F
u
n
c
 
=
 
R
X
A
C
K
_
S
T
A
R
T
;

}
 
e
l
s
e
 
{F
S
M
_
R
E
S
E
T
(
)
;

s
p
p
I
n
t
D
a
t
a
.
p
R
X
I
-
>
s
t
a
t
u
s
 
=
 
S
P
P
_
R
X
_
F
I
N
I
S
H
E
D
;

}
}
 
e
l
s
e
 
{F
S
M
_
R
E
S
T
A
R
T
_
R
X
(
)
;

}
}

L
isting 2: E

m
bedded C

 C
ode for the R

F
R

A
IN

 R
eception F

SM
 and ISR



F
igure 1: Schem

atic D
iagram

 for the R
F

R
A

IN



P
hoto 1: P

hotograph of a functional R
F

R
A

IN
 card (w

ire antenna protrudes from
 the right)

 
 

P
hoto 2: T

he U
bE

R
-B

adge - w
ith cover (left), w

ithout cover (center), and rear (right)



P
hoto 3: T

he E
xpressive F

ootw
ear - 16 diverse sensor channels w

irelessly transm
it from

 the foot of a perform
er for producing

dance-driven interactive m
usic



P
hoto 4: T

he Stack Sensor A
rchitecture - a com

pact, configurable, m
ultim

odal w
ireless sensing platform

 (top) and its
application in a shoe to m

onitor gait characteristics (bottom
)


