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Abstract

Autonomous localization is crucial for many sensor network applications. The goal
of this thesis is to develop a distributed localization algorithm for the PLUG indoor
sensor network by analyzing sound and light sensory data from naturally occurring
background phenomena as well as synthesized emulations of background transients.
Our approach has two main phases: passive and active. The system enters an active
mode when its sensed region stays relatively silent and stable, hence assumed to
be unoccupied; otherwise, it stays in the passive mode. In the passive mode, each
node looks for sonic transients and compares the timing of its highest sound peak to
that of synchronized sound peaks from other nodes in its neighborhood in order to
estimate its distance. Passive ranging achieved 50.96cm error and simulated passive
localization achieved 103.06cm error with a typical node-spacing of 2m. In addition,
the system exploits background transients based on light sensory data to determine
room boundaries. In the active mode, each node occasionally generates recorded
mimics of natural sonic transients, like pencils dropping or water glasses clinking and
manipulates an attached light source. Active acoustic ranging achieved 2.1cm error
and simulated active localization achieved 7.97cm error with a typical node-spacing of
2m. In addition, passive location estimation in a real deployment is found to converge
as more sensory data is available; range resolutions of 2.5m and localization errors
of 20.3cm were obtained after running in passive mode for 20 hours in 7m by 5m
dorm hallway. The main features of author’s approach are its distributed properties,
the lack of any heavy infrastructure, its unobtrusive exploitation of multi-sensory
background phenomena, and in active mode, making the sound signal between nodes
unobtrusive by mimicking the natural sounds.

Thesis Supervisor: Joseph A. Paradiso
Title: Associate Professor, MIT Media Lab
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Chapter 1

Introduction

In an article titled 21 Ideas for the 21st Century published in Business Week [80],

Nobel Laureate Horst Stormer wrote:

Unfettered micro sensors will go anywhere and measure anything - traffic

flow, water level, number of people walking by, temperature. This is

developing into something like a nervous system for the earth, a skin for

the earth. The world will evolve this way.

Modern technology has become mature enough to create microprocessors and periph-

erals in miniature size, small enough to embed in almost any object such as shown

in Figure 1-1. This chip contains memory, modem, antenna and microprocessor in

2− 4mm2 size with 512 kilobytes memory. Data can be moved in and out of the chip

at speed of up to 10 megabits per second. According to the researchers at HP[4], this

chip could be used to ensure that drugs have not been counterfeited or to add sounds

or video to postcards, hence enabling digital data to be attached to related physical

objects seamlessly.

In addition, the admission ticket for the 2005 World Exposition[75], which has

approximately 22,050,000 visitors, employed the Hitachi µ-chip with size 0.15×0.15×

7.5µm. Despite its small size, it has an outstanding performance: no incidence of

confirmed forgery and 0.001% incidence of ticket recognition error. Weiser’s [89]

vision for ubiquitous computing and Butera’s [11] vision for paintable computing are
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becoming true. The environment is becoming responsive, being embedded seamlessly

with sensor devices.

1.1 The Future with Ubiquitous Computing and

Sensor Network

Figure 1-1: HP’s Memory

Spot chip in its 2-4 square

mm area with memory, mo-

dem, antenna, and micro-

processor. This picture is

excerpted from BBC news

[4].

In the future, the author believes that every building

will be equipped with infrastructure sensors (IS) and

everyone will carry mobile sensors (MS), which is more

capable than current mobile phones. The MS, storing

personal information and life patterns, reacts with the

augmented “environment” to make everyone’s life more

comfortable. The MS communicates with other MS’s,

IS’s, and its user while operating at its minimum possi-

ble energy. The future MS is not just a cell phone with

camera and mp3 player; it will replace credit cards, IDs,

admission tickets, paper clips and many other devices.

The MS can communicate with other MS’s, for exam-

ple, to avoid car collisions. A relevant project from the

MIT Media Lab, the UbER-Badge [52], supports many

applications in this space, including current business

cards, helping users to exchange information electronically and to transmit automat-

ically all necessary information to the main server, which emails relevant information

to the user’s account. Digitized paper clips, called DigiClips[16], turn passive paper

documents to active physical documents that keep track of changes both of the phys-

ical and the virtual document. In addition, the infinitesimal size of the sensor will

enable “futuristic” bio applications [90] [55]. There are currently enormous numbers

of other applications of sensor networks. However, the greatest use of sensor network

lies not only in exiting applications, but also in future applications that cannot be
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imagined yet.

1.2 State of the Art

If someone visits a new city for the first time, the best place to get a grasp of the

city’s current technology is its market. The market is where most people exchange,

sell, and buy their new ideas. Accordingly, the author would like to discuss some

current sensor networks in commercial products.

SensorWare Systems [96], a company spun-out of NASA, develops the Sensor Web

for environmental monitoring and control. As each node can be orbital or terrestrial,

fixed or mobile, sensor web has proven valuable in agricultural, homeland security,

and remediation needs. Known for its adoption and promotion of the ZigBee stan-

dard, Ember is a another sensor network company founded by MIT Media Lab alumni

Robert Poor and Andrew Wheeler. Their applications include home, building, indus-

trial and power automation in addition to asset management and defense. WhereNet

[92] uses wireless sensor networks for tracking and managing enterprise assets in au-

tomotive, transportation, logistics, aerospace, defense and healthcare.

However, these commercial products are still in a primitive stage, despite many

academic studies in sensor networks. Several research projects in hardware design for

sensor networks [99][59] [60] have tried to minimize their size while retaining enough

CPU power, energy efficiency, and memory. At the Media Lab, Benbasat [6] has de-

signed and constructed a modular platform for use in compact wireless sensing with

minimum power. Laibowitz[38] developed small nodes to illustrate parasitic mobility

for pervasive sensor networks. With a long history and more hard work, hardware

limitations seem to be receding. Although hardware designs are growing more ca-

pable, no particular algorithm has had widespread implementation in hardware yet

due to many reasons, such as applicability, energy efficiency, sensor data fusion, etc.

The sensor network literature has exploded in recent years, littered with many test

applications, node design protocols, and software architectures. One of the first no-

table application papers is [50], which provides an in-depth study of applying wireless
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sensor networks with 32 nodes to real-world habitat monitoring, streaming live data

onto the web. Other applications [69][61] focus on resource-efficient protocols in med-

ical settings. Based on coarse and primitive sensor data with statistical manipulation,

Wren [98] shows how to recover information about sensor geometry. Werner-Allen [91]

applied sensor networks to volcano eruption monitoring and evaluated its approach

in terms of energy, bandwidth usage, and accuracy of infrasonic signal detection.

1.3 Motivation: PLUG and Localization

Although applications of sensor networks have been studied for many decades, their

current commercial applications stay fairly primitive, as pointed out in the previ-

ous sections; this means that there is still much work to do. Due to limited re-

sources, sensor network applications pose many challenges [20]. These challenges

include time synchronization, power management[6][5], memory management, secu-

rity issues[63][77], sensor data fusion[49][48], localization[73], middleware and so forth.

Among the notable middleware projects are CodeBlue[47], Mate[42][43], Agilla[23],

Region Streams[56] and programming with attributed state machines[34]. Among

these issues, research most relevant to this thesis are synchronization and localiza-

tion, both of which are surveyed in the following paragraph. However, interesting

readers should refer to [10][13] for more general detail.

Every node has to be synchronized to either local or global time. Synchronization

is crucial for applications that require fine time measurement, such as sensor data fu-

sion, coordinated actuation, and power efficient duty cycling. Some localization algo-

rithms use acoustic or RF time-of-arrival (ToA) or time-difference-of-arrival (TDoA)

schemes to estimate the distance, and these schemes often require synchronization

down to micro-seconds or even nano-seconds for fine accuracy. Synchronization has

been attempted by ordering events[39], transmitting synchronization messages to the

entire network[51] or only a set of neighbors [18] for example.

In an effort to study sensor networks in indoor environments, the Responsive

Environment Group at the MIT Media Laboratory decided to build PLUG, a power
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strip equipped with sensing, computational, and communication capabilities to form

an IS that is natural to deploy in habituated environments. Using a set of PLUGs,

the author developed a system for autonomous indoor localization and designed a

simple environments drawing algorithm to display the PLUG’s sensory data.

1.3.1 PLUG

As much as sensor networks have been studied for many years, discoveries have been

confined only to the laboratory or specific tasks. They have not been “ubiquitous”

enough to evolve into common applications. Accordingly, it is critical to actually

deploy such sensors in a city. In order to be sustainably deployed, the system needs

to be useful to people. The author and his colleagues believe that the sensors com-

monly embedded into our electronic appliances will form a ubiquitous network once

common wireless and network standards are adopted. This infiltration into common

objects will someday bootstrap a pervasive sensor network. Everyone carries around

their cellular phones because they enable people to call other people almost anywhere

anytime. Everyone also has power strips to power a large number of electronic de-

vices simultaneously. These two electronic appliances are perfect examples that are

useful to people, but also have enough resources to perform collection, processing,

transmission and reception of sensor data. Although cellular phones can be used as

sensor nodes, such as has been tried at the Media Lab by Dalton [15] and elsewhere

by many others, because it is relatively easy to hack into power strips and power

strips have essentially infinite source of power and ubiquitously deployed as essential

items in every office and many houses, the power strip has been chosen as our model.

Accordingly, PLUG has been developed based on these ideas. More detail on the

PLUG is discussed in Chapter 4.

1.3.2 Localization

Being one of the most popular applications for what could be loosely termed sensor

networks, camera networks range from surveillance and responsive environments to
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scientific remote monitoring. Although distributed arrays of cameras have been used

for decades in these applications, all processing tended to be done centrally, not

distributed across the network. In these applications, network data is only useful

if the data origin is known: an image of a thief without any location info does not

give any useful information for security purposes. Manually measuring the location

and orientation of every camera becomes infeasible, especially when the number of

installed cameras is large. This example is only one of many that make the localization

algorithm one of the important issues to consider.

Localization is important not only in the surveillance camera setting but also in

many other applications. This importance was recognized by U.S. Government. In

1996, the US Federal Communication Commission (FCC) [22] required all wireless

service providers to give location information to Emergency 911 services, called en-

hanced 911 or E911. By October 2001, the FCC mandates a 125m root mean square

(RMS) accuracy for 67% of all 911 calls and by October 2006, a 300m RMS accuracy

and 95% for all 911 calls.

Theoretically, many localization algorithms have been formulated as a decentral-

ized detection problem, a term coined by Tsitsiklis, who formed a theoretical prob-

abilistic foundation for this field. The model is beyond the scope of the thesis but

interesting readers are referred to [81][32][85][64][84], where the sensor data is condi-

tionally independent and to [86], which proves that the problem becomes NP-complete

without the sensor data being conditionally independent. A survey of less theoreti-

cal but still interesting localization works is presented in Chapter 2 and Chapter 3.

Some of these works have focused on active localization, meaning the localization is

estimated based on signals that are artificially stimulated and measured by the sensor

networks, such as transmitting RF or artificially generated acoustic events.

In addition, there is passive localization, which performs poorer but is more appli-

cable to the real world. The basic idea behind passive localization is that, if different

sensors sense a similar sound pattern, they determine that they are nearby each other

with high probability; by comparing the timing of commonly detected transients, a

localization can be executed. This problem has been studied in pervasive, for example
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locating the position of gunshots with a localized sensor network [41]. Whereas ac-

tive localization is performed in controlled environments, passive localization occurs

in non-controlled environments where stimuli are autonomously generated. However,

to author’s best knowledge, no work has focused on passive localization by, for exam-

ple, sounds of doors banging or foot stepping, nor on the combination of active and

passive localization. Hence the author focuses on passive localization as well as the

comparison between active and passive localization in a similar setting. In addition,

the author also compares active acoustic localization with localization solely based on

radio signal strength. These algorithms are discussed in Chapter 5 with correspond-

ing comparison, both in simulation and experimental setup, in Chapter 6. The thesis

is concluded in Chapter 7 with possible future studies.
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Chapter 2

Background

Recent and evolving research in ubiquitous computing is reviewed in this chapter,

with a particular concentration on autonomous localization algorithms. A goal of

ubiquitous computing research is to deduce a global interpretation from distributedly-

collected sensor data. The degree of the distributedness varies between projects and

can be broken into four main categories.

1) First, network algorithms with no distributedness at all. In this algorithm,

every task is centralized. One node is powerful enough to sense the environment,

interpret the data, and display the results. These include, for example, satellite

systems, where each node can be powerful enough to handle the entire data collection,

processing and transmission by itself.

2) Second, network algorithms with low-level distributedness. In these works,

each node is responsible only for collecting sensory data, filtering out the unnecessary

data, and routing the filtered data to the base station for further processing. These

algorithms are suitable for sensor network applications, where each node is not capable

of heavy-computing nor heavy-storage. However, there are two drawbacks with these

algorithms. First, they can cause network traffic, because entire network load is

routed toward the base station. This network traffic might cause data loss, which

can possibly lead to the faulty data interpretation. The second problem is that this

algorithm is sensitive to outliers. Since there is no communication between nodes,

outliers, which are usually due to noise and have no physical significance, might make
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the node believe that they are interesting enough to be routed to the base station.

3) Third, network algorithms with mid-level distributedness. The only difference

between second and third algorithms is that here each node filters out “intelligently”

unnecessary data and outliers by talking to its neighbors and makes a local inter-

pretation. This can reduce the network burden. Because different sensor data from

adjacent nodes often carry redundant information, communication between adjacent

neighbors can eliminate the redundancy. This algorithm is more scalable than other

algorithms mentioned before. Some people argue that this would require each node

to have more powerful processing power. However, if we think about this issue more

carefully, it is not always true. Although there are two “additional” tasks, which are

different from the second algorithm (communication between neighbors and simple

local decisions), the author believes that these “additional” tasks are not truthfully

additional. Communication between neighbors is already done in the second algo-

rithm. Since every communication in the sensor network is done over multiple hops,

this is already implemented in the second algorithm and requires no extra horsepower.

Simple local decisions are made based on the data received from the node’s neigh-

bors. Although the neighborhood size depends on the network density, it is usually

much smaller than number of sensor samples taken, indicating that each processor

is capable of handling the data from its neighbors and making simple decisions and

calculating simple parameters such as max, min, median, average, or stdev.

4) Last, network algorithms with high-level distributedness. These algorithms do

not have any central aspect. Every interpretation is done locally. Although these are

truly distributed algorithms and a perfect fit for sensor networks, most results on these

algorithms yield either insufficient accuracy or require an extensive calibration period

before the algorithm executes. Although such algorithms pose interesting challenges

to solve, the author believes that it is not worth sweating over them from the sensor

network application perspective for the reasons explained in the following paragraph.

Please note that four categories mentioned will be referred to as first, second, third,

and fourth categories throughout the Chapter.

Ubiquitous computing is a user-oriented paradigm. Thus, there is always a user
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assumed with reasonably high processing power, waiting to encounter the results. The

third class of algorithm is distributed enough to take advantage of the ubiquitousness

of the sensors. At the same time, it is central enough to give the user an accurate

interpretation and control over the sensor network. The author believes that the third

types of algorithm is the most suitable approach for ubiquitous computing, with which

the author’s thesis work perfectly fits. More detail on the author’s network algorithm

is discussed in Chapter 5.

2.1 Localization Problem

For those readers who are not familiar with the localization issue, let us formulate a

simple localization problem in a 1D plane with a perfect noiseless channel without

any obstructions. Ten people form a straight line and each person can only transmit

to his/her both right and left adjacent neighbor, if they exist. Each person would like

to know how far he/she is from two ends of the line by only talking to their adjacent

neighbors. The person without a left neighbor is indexed 1. Person 1 transmits signal

to its right adjacent neighbor with unit strength. The person who receives from person

1 is indexed 2 and estimates its distance to person 1 based on the radio signal strength

(RSS), which decreases typically with roughly the second (outdoor) and the fourth

(indoor) power of distance [33][67]. Based on this information, person 2 estimates

its relative location with respect to person 1. Person 2 transmits its location to its

right neighbor, person 3; person 3 estimates its global location with respect to person

1. By propagating the location information down the line, every person can estimate

their global locations with respect to person 1. This problem does not seem hard with

given assumptions. However, once any one or any combination of these assumptions

are relaxed, the problem gets much more complicated.

Most of the current localization algorithms are targeted for 2D or 3D domains.

Being in a noiseless 2D domain introduces many issues that were not even considered

in 1D domain due to many degrees of freedom such as reflection, translation, and

rotation. It is worth noting here that some localization algorithms use “reference”
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nodes to avoid some of the reflection, translation, and rotation problems. These

“reference” nodes already know their location even before the localization algorithm

executes, and will be referred as such throughout the thesis. In addition, the algo-

rithm’s complexity grows as optimum locations need to be estimated that meet the

fine distance constraints. Noise models are usually modeled as Gaussian random noise

in simulation, or raw noise data in real deployments. Formulating these via an ap-

proach termed SLAT (Simultaneous Localization and Tracking) has achieved recent

popularity, originating in robotics studies, such as SLAM (Simultaneous Localization

and Mapping).

2.2 SLAT(Simultaneous Localization and Tracking)

SLAT is an application of Bayesian inference, Kalman filtering, or other similar tech-

niques to update a distribution over localizations and mobile trajectories as measure-

ments become available [82]. As SLAT has a root in SLAM, SLAT inherits many

similar characteristics from SLAM. SLAM algorithms help a robot to localize itself

within a map of the environment, while concurrently building a map of its surround-

ings. As opposed to SLAM, SLAT is built around sensor network applications, hence

has similar but different characteristics. Because robots are usually capable of car-

rying more powerful processors and massive storage than those typically used with

sensor networks, their algorithms are not restricted to resource limitations. While

the robot is moving around, the position of the robot and the angle of the radio,

speaker, camera, or microphone can be estimated using data from various attached

sensors and actuators. However, what can be challenging are the multiple objects to

detect. Because the environment consists of multiple objects, both static and mobile,

the navigating robot needs to be able to distinguish between these different objects in

order to build its map. On the contrary, in the SLAT problem, the algorithms always

assume only few objects to detect. However, the issue here is that there are multiple

“robots” or sensor nodes that are detecting common objects. These sensor nodes

do not have any information about their location or the angle of the onboard radio,
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speaker, camera or microphone. Angle is one of many parameters that can affect the

interpretation of sensor data. For example, distance measurement using radio signal

strength (RSS) depends immensely on whether the transmitter and receiver are on a

simple line-of-sight or not and also can depend on the relative angular position of the

transmitter and receiver. This explains why most SLAT algorithms using RSS [3][25]

include measurements of the angles of the transceivers.

What is lacking in a SLAM algorithm to become a SLAT algorithm is distributed-

ness, scalability, and resource management. Many distributed algorithms specific for

sensor networks are developed to solve these issues and two notable efforts are worth

mentioning in detail with careful comparison to the author’s work; this comparison

appears in Section 2.4.3 and 2.4.4. First, let us survey the numerous other examples

of localization algorithms, which form the foundation of the field. A comprehensive

survey of localization systems can be found in [30] and a recent survey of localization

algorithms in Savvides[71].

2.3 Range-Free Localization

Many sensor networks are constrained by resource limitations such as network band-

width, processing power, memory, and cost of hardware. For resource limitations

and many other reasons, range might be immeasurable in some cases but still these

nodes require coarse localization. This field of study is called “range-free localiza-

tion.” Based on the number of RF beacon signals it received, each unlocalized node

estimates its location using a simple centroid model, sometime referred to as the

Centroid Algorithm[9]. Based on the radio network’s hop count from the reference

and the location of reference, the nodes calculate their position[54] [58]. Using the

reference’s location, an area-based range-free localization scheme, called APIT [29],

estimates the node location by calculating the diameter of the estimated area in which

a node resides. The APIT scheme performs best when irregular radio patterns and

random node placement are considered, and low communication overhead is desired.

Although the problem itself is interesting, most of the algorithms require the sensors
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to be densely distributed in order to obtain a reasonable accuracy. Also, this algo-

rithm is not robust against node or communication failures. The number of hops is not

necessarily proportional to the distance and is sensitive to noise and outliers. For his

thesis work, the author decided to rule range-free algorithms out from consideration

in his localization system.

2.4 Range Localization

On the contrary, range localization requires each sensor node to be equipped with

measuring devices such as an ultrasound transceiver, radio transceiver, microphone,

etc. to estimate pair-wise distance. The research in range localization can be divided

into two categories, depending on whether it is used indoors or outdoors. Outdoor

range localization systems have been developed to the necessary accuracy thanks to

the Global Positioning System (GPS) or the Galileo system, the European counterpart

of GPS. The first Galileo satellite [53] was launched in 2005 and is expected to be

operational by 2008 and completed by 2010 with 30 satellites. Its accuracy is projected

to be within 3 feet, which is better than that of GPS, which has an accuracy of roughly

16 feet. Although there have been many successes for outdoor localization, there

has been no such luck with indoor localization, despite much effort. Let us survey

the current outdoor localization systems, and currently evolving indoor localization

systems.

2.4.1 History of Outdoor Localization System

In 1970s, automatic vehicle location (AVL) systems were used to estimate the position

of police cars and military ground transportation in urban settings [87]. A set of sta-

tionary base stations acted as reference points to estimate the pair-wise distances em-

ploying ToA (time-of-arrival) and TDoA (time-difference-of-arrival) schemes. Then,

the vehicle position was estimated through multi-lateration, using Taylor series ex-

pansions [24] to transform a non-linear least squares problem to a linear one. LO-

RAN(LOng RAnge Navigation)[95] was developed to provide outdoor terrestrial lo-
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cation. LORAN estimates the location based on the time interval between radio

signals received from three or more stations. Based on similar techniques, larger-

scale localization schemes have been developed thanks to satellite systems. In 1996,

the GPS (Global Positioning System) was developed to provide location information

for civilian and military use. GPS [94] is satellite navigation system with two dozen

GPS satellites broadcasting precise timing signals by radio to GPS receivers, allowing

them to accurately determine their location, in longitude, latitude, and altitude using

a TDoA scheme. Although the regular GPS system has accuracy of 16 feet, the Wide-

Area Augmentation System (WAAS) and Differential GPS (DGPS) can increase the

accuracy of GPS signals to within 6 feet and 3 feet respectively.

Another outdoor localization system is used for emergencies, exploiting terrestrial

radio signal strength. For the E911 system [12], cellular base stations act as refer-

ence nodes to locate mobile phone telephone users within each cell. These schemes

can be implemented in one of two ways: a mobile station uses signals transmitted

by the base stations to calculate its own position, or the base stations measure the

signals transmitted by the mobile station to estimate their locations. In addition,

a network-based acoustic sniper localization system [41] is able to localize the posi-

tion of a shooter and the trajectory of the projectile using observed acoustic events.

The system is claimed to provide good coverage and high accuracy, being tolerant

against multiple simultaneous acoustic sources, multipath effects, and multiple sensor

failures. Another localization[78] algorithm makes use of additional knowledge of ge-

ometry deployment, where deployment is assumed to form a grid topology, achieving

localization errors as low as 3% of radio range.

Early work at Lincoln Laboratory at MIT used differences of sound at several

stations to passively track aircraft position [40]. A system developed at Vander-

bilt University exploits the phase difference between beating RF carriers to localize

an array of sensor nodes across a football field to cm scale accuracy [37], although

multi-path effects will probably preclude indoor deployment. Stankovic’s group also

developed a system called Spotlight that used a hovering scanning laser range finder

to localize sensor nodes scattered about a large open area [79]. Further survey of
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radiolocation can be found in [12]. However, outdoor localization systems with high

accuracy perform poorly in indoor environments, partially because of multipath ef-

fects. This calls for separate localization algorithms for indoor use.

2.4.2 Indoor Localization System

There are many localization algorithms using radios because 1) most radio transceiver

packets provide radio signal strength indicator (RSSI) values and 2) although it is

highly variable and depends on the environment, RSSI decreases with distance. An

indoor location sensing system, called LANDMARC, [57] uses active RFID to localize.

It has 4 RF readers, 16 tags as reference points and 8 tags to be tracked. All reference

tags are organized in a grid array, and the localization uses the 4 nearest neighbors.

Due to RFID’s limited capability and the controlled environment that was required,

LANDMARC did not show interesting results. The PicoRadio project at UC Berkeley

[7] provides a geolocation scheme for an indoor environment, based on RF received

signal strength measurements and calibrated signal strength maps, which require

an accurate and extensive calibration period. PicoRadio is an ultra small wireless

data transceiver node for sensor/actuator data. Based on the Electromagnetic Field

Attenuation (EFA) map and sampled electromagnetic signal strength, it localizes each

node [1]; the EFA map is generated for each base station, by starting from a set of

acquired samples. During the operational phase, such maps are suitably intersected

to compute the online position of the probe unit with a given attenuation signal. The

EFA map from each reader is sent to the central station for localization purposes. 6

readers were used in MICA2 sensor networks; an area of 10.4 × 7.15 meters has been

considered, giving 1.2 m error with 50% confidence.

RADAR [3], probably one of the most cited localization algorithm using RSS,

presents two methods: an empirical method and method using a radio propagation

model. Both approaches employ three reference points in an area of 43.5m by 22.5m.

The empirical method requires extensive calibration of the relation between distance

and RSS at 70 equally distributed pre-known locations with four different orientations

in each location. This calibration gives the basis to perform triangulization to track
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either static or dynamic objects. The second method employs a radio propagation

model. This technique did not use Rayleigh fading model or Rician distribution model

due to their unrealistic assumptions. RADAR used a Floor Attenuation Factor propa-

gation model, which provides flexibility in accommodating different building layouts,

while taking into account large-scale path loss. Based on this model, it calculates

distance. The first model performs with 2.94m error and the latter performs with

4.3m error. However, the second model is scalable and requires less resources than

the first one. There is always a trade-off between the length of the calibration period

and the algorithm accuracy. The more extensive the calibration is, the better the lo-

calization algorithm with calibration performs. However, more extensive calibration

requires extensive memory use and time, which are not always possible with sensor

networks. Whitehouse [93] suggests some ways to calibrate, which makes it easier for

localization algorithms with a calibration phase, but still requires a comparatively

large amount of memory and effort.

The Cricket location support system [66] provides an indoor location using an

ultrasound signal for pair-wise distance estimation; the distance is estimated based

on the timing of the acoustic signals relative to a trigger broadcast over a radio link.

Based on the estimated pair-wise distance and fixed references with known locations,

each unlocalized node receives a signal from different references in a randomized

schedule to compute a maximum likelihood estimate of location with a granularity

of 4 by 4 feet. As opposed to the Cricket system, where each non-reference node is a

signal receiver, a BAT [28] [27] node transmits ultrasound signals, and these signals

are picked up by an array of receivers mounted on the ceiling. The location of a BAT is

estimated via multi-lateration with a few centimeters of accuracy. An RF base station

coordinates the ultrasound transmissions such that interference is avoided. Although

the Cricket and the BAT set a standard for localization using ultrasound signals,

they require a centralized infrastructure and an “unnatural” signal (ultrasound) that

requires extra measurement tools.

AHLoS (Ad-Hoc Localization System) [72] uses RF and ultrasound transmissions

and does not rely on a preinstalled infrastructure. With a distributed localization
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algorithm running at every node and a small fraction of the nodes aware of their

locations beforehand, nodes can estimate their location even if they are not within

the range with the reference nodes. In the EcoLocation algorithm [100], the unknown

node location estimate is obtained by comparing the constraints obtained from RSS

measurements to the constraint sets of each location grid-point and picking the lo-

cation that satisfies the maximum number of constraints. There can be arbitrarily

many reference and unknown points. This paper[100] presents the Ecolocation algo-

rithm and its comparison with other localization algorithms. It is worth noting the

following equation. The list of the parameters with appropriate values for indoor use

is discussed in Section 5.6.1

RSS(d) = PT − PL(d0)− 10η log10

d

d0

+ Xσ

However, all these localization algorithms rely heavily on the calibration and ex-

ploit an unreliable distance measurement source. The timing of ultrasound signals

and the radio signal strength depend not only on distance, but also on the structure

of the obstructions, temperature, wind and many other factors. Because acoustic and

RF measurements are sensitive to noise, despite the over-determined measurements,

the localization result tends to be coarse. Elnahrawy [17] presents strong evidence

that every localization algorithm using signal strength has the same fundamental lim-

itations and these are unlikely to be overcome without more complex environmental

models or additional localization infrastructure. The metric used were: average tile

accuracy, average precision, average room accuracy, and average room precision. Be-

low, the author would like to discuss two notable works that do not use ultrasound

and radio as major source to estimate the distance. Because these works greatly

influence author’s thinking process, the author would like to discuss them in depth,

comparing these with author’s own work.
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2.4.3 Networked Cameras

For the 2D localization problem with Gaussian noise, Funiak [25] presents an au-

tonomous distributed solution by using information provided by an entire camera

network. Every camera is assumed to be synchronized and it is assumed that there

is only one moving object to detect. These assumptions can be sometimes impracti-

cal; there are usually more than one moving object in real indoor environments and

it’s hard to synchronize the entire network. Both of these two assumptions are re-

laxed in the author’s thesis work to make the localization algorithm more applicable

to a real world deployment. Nevertheless, these two assumptions greatly simplify a

complicated problem.

Synchronized cameras are placed throughout the environment randomly at un-

known locations. Then, as an object randomly moves around, the network automati-

cally estimates the camera’s pose, i.e., the combination of location and the orientation

of the cameras. The object state (See below for detail) needs to be estimated as

well, because these two variables are inter-dependent with each other. The use of

cameras in localization is hardware costly and introduces extra variable to measure,

such as camera’s orientation. This motivates the author to use omni-directional sen-

sors, measuring light, sound, and vibration, in the localization process in order to

eliminate an additional variable at low cost.

For scalability purposes, Funiak uses distributed probabilistic inference on network

junction tree data structures, which were introduced by Paskin[62]. A distributed

algorithm eventually needs to flood the entire network with necessary messages to

achieve accurate performance, and this usually requires exponential growth of resource

use as the number of nodes increases. In order to avoid this exponential growth,

rather than representing the belief state as a monolithic probability distribution over

all state variables, he uses an approximation. In other words, instead of flooding the

entire network with information, nodes transmit data to only subset of the network

to process based on a network junction tree data structure. Intuitively, to avoid the

cost of maintaining dependency information between all variables, dependencies are
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instead maintained between small, overlapping subsets of variables. See Appendix A

for more technical details.

Funiak’s work is designed for updatability and scalability purposes. Funiak tests

this algorithm in simulation for both the third category and the fourth category

of networking algorithms. As expected, the third category performs with smaller

error because every node has the common belief state. Although it is easy in

simulation, letting every node have the common belief state can be cumbersome

in real deployment. One popular way this can be accomplished is to have the base

station periodically broadcast the belief state to the entire network, but this might

cause network traffic congestion and data packet loss.

For updatability purposes, the author instead decided to use a simple average

for both pair-wise distance and coordinate estimation. The author believes that

this greatly reduces the memory usage, saves processing power, and performs well in

comparison to the network junction tree. For scalability purposes, all communication

is done over a multiple hop scheme. As opposed to cluster-forming algorithms, which

might also depend on the network size, the author’s algorithm filters/interprets data

based on communication between one-hop neighboring nodes.

2.4.4 LaSLAT in Ad Hoc Sensor Networks

Taylor [82] presents LaSLAT (Laplacian SLAT) as one of the solution to SLAT prob-

lem. Just like Networked Cameras, as explained in Section 2.4.3, a Bayesian filter uses

distance measurement to the moving target to update a joint probability distribution

over the positions of the nodes, the trajectory of the target and the calibration param-

eters of the network. Only the distance between the global stimulus and the sensors

is measured, avoiding pair-wise distance measurement between sensors. Taylor claims

that measurement noise is automatically averaged out as more measurements become

available, improving localization and tracking accuracy in high-traffic areas. The fil-

tering process is done on the local network, providing online estimates of all locations,

calibration parameters and their uncertainties. There can be multiple targets, mov-

ing arbitrarily through the environment, with no constraint on their trajectory or
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velocity. This algorithm was done in both a central and distributed way, lying in the

third and fourth network categories respectively. Their illustration was performed

on the Cricket nodes[76][66], which are capable of measuring their distance to a mov-

ing reference using a combination of ultrasound and radio pulses in the 2D domain.

The algorithm was also tested in the 3D domain, but showed poor accuracy.

As always, localization algorithms with matrix operations have non-linear Gaus-

sian problems. This non-linearity was handled by approximate linearization by Fu-

niak, and Taylor handles this using Laplace’s method. The technical detail here is

beyond the scope of the thesis, but interested readers are referred to [82] for further

development.

2.4.5 Affine Structure From Sound

Compared to the two aforementioned works, Thrun [83] presents a simple pair-

wise distance measurement scheme and localization method based solely on acoustic

events. He assumes that these acoustic events happen far away enough from the

sensor array that the incoming sound wave hits the sensor array at approximately

the same incident angle, named the far field approximation. The lines connecting

the location of an acoustic event with each of the sound sensors are approximately

parallel. Thus, the distance between two sound sensors is estimated based on the

differential delay times. Using this scheme, Thrun measures the pair-wise distance.

Based on this set of pair-wise distances, the least squares problem is solved to find

the optimum coordinates for all sensor locations. As opposed to distance measuring

tools using camera vision, ultrasound, or radio pulses, audio sound does not require

any special equipment on the moving object’s side and the sound sensor on the nodes

are comparatively cheap. The author decided to use mainly sound in his localization

algorithm. However, far field approximation aims for the 2D localization, thus the

author decided not to use it in his implementation.
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Chapter 3

Related Works: Basis of Author’s

work

Based on the extensive studies of localization outlined in Chapter 2, the author de-

cided to use sound, vibration and light sensor values to estimate the pair-wise distance

and not to use RSS values. The performance comparison between the localization

using sound sensors and the localization using RSS values will be presented in Chap-

ter 6. The localization problem, sometimes called the “sensor layout problem” [26],

states as follows:

Given a set of unlocalized nodes and a mechanism by which a node can

estimate its distance to its neighbors, determine the coordinates of every

sensor via local communication.

To author’s best knowledge, many localization algorithms solve the sensor layout

problem by using one of following techniques or variations of them: lateration al-

gorithms, least-square estimators, Kalman-filtering, mesh-relaxation[31], or spectral

graph drawing. Based on measured distances, the locations are estimated up to a

rotation, translation, and reflection. However, localization sometimes requires precise

global location with accurate rotation, translation, and reflection, and this mandates

the use of reference nodes. Reference nodes know their positions, even before the algo-

rithm begins, and other nodes estimate their locations based on that of the reference
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nodes. Although some attempts [65] have been made to avoid the use of reference-

based algorithms, the author believes that this work was not sufficiently tested in the

field to be applicable to author’s work. Hence, the author decided to use two refer-

ence nodes in his approach. Many schemes used in the author’s pair-wise distance

estimation, as presented in Section 5.6, and the localization algorithms are influenced

by the two localization schemes mentioned in the remainder of this chapter.

3.1 Audio-Based Localization For Ubiquitous Sen-

sor Networks

Ben Dalton [15] at the MIT Media Lab presented an active acoustic source location

estimation method for microphone resources of network-connected heterogeneous de-

vices containing distributed processors and uncalibrated sensors. His method used a

least-square estimator to converge to the true positions and was tested on the Smart

Architectural Surfaces (SAS) development platform in a mixed-device ad-hoc sensor

network. Although this work shows great potential to localize over heterogeneous

devices, these devices are capable of heavy computation, which is not always possi-

ble. His algorithm thus did not consider any resource, memory, or processing power

limitations. He used only the timing of sound pulses and assumed that every node is

synchronized. From this work, the author decided to use sound as one basic measure-

ment to estimate the pair-wise distance. However, the author used a matched filter

algorithm instead of pair-wise ranging to calculate the time delay. Also, the author

used an average-lateration scheme, discussed in Section 5.7, instead of a least-square’s

estimator.

3.1.1 Smart Architectural Surfaces(SAS)

As a brief diversion, SAS[74] are modeled as highly integrated and interactive “smart

spaces” based on a self-organizing network of cells. Each cell is capable of network-

ing, sensing “intelligently” and actuating/displaying. (See Figure 3-1 for illustration.)
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Figure 3-1: Smart Architectural Surfaces tiles mounted on a frame along two glass
walls. A distributed data display can be seen across the screens of one wall. This
picture is excerpted from Dalton’s thesis [15].

The SAS was made to be a unobtrusive, physically and logically re-configurable en-

vironment. Each tile can operate in isolation, but benefits from connection and col-

laboration, favoring the idea of viral networking[46] and the ultimate goal of sensor

networks. This project has a similar goal as PLUG, presented in Chapter 4, in its

unobtrusiveness and viralness.

3.2 Localization and Sensing Applications in the

Pushpin Computing Network

Michael Broxton presented two systems for localizing a network of roughly 60 pushpin

nodes distributed (shown in Figure 3-2) over an area of 1m2[8]. The first was based

on a linear lateration technique, while the second approach utilized non-linear opti-

mization techniques, namely spectral graph drawing and mesh relaxation. Pair-wise

distances are estimated based on ultrasound time-of-flight measurements from three

global opto-acoustic sensor stimuli. With this method, a localization error of 2.30cm

and an error standard deviation of 2.36cm were achieved.
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Figure 3-2: Pushpin experimental setup. This includes an IR spotlight for synchro-
nization and parallel programming. An IR sensitive camera and video monitor are
used to display the IR communication path. This picture is excerpted from Broxton’s
thesis [8].

3.2.1 Linear Algorithm: Lateration

Given the positions of and distances to the reference nodes, Broxton forms a system

of equations for the localization problem in 3D:
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where (x, y, z) is the location of the nodes to localize, (xi, yi, zi) for i = 1, 2, 3, 4 is

the location for reference i respectively and di is estimated distance between nodes to

localize and reference i. With more reference nodes, a linear least squares estimate

can be used. The author uses a similar technique, but in a different format due to

the unavailability of global stimuli that are experienced by all nodes.
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3.2.2 Non-Linear Algorithm: Spectral Graph Drawing (SGD)

SGD constructs the layout using eigenvectors of certain matrices associated with the

graph. This approach originated in 1970 by Hall [35], but was not used much until

it was picked up by Koren [36]. Koren applied the spectral graph drawing scheme to

solve the sensor layout problem [26].

However, this problem does not necessarily have a unique solution. When all
(

n
2

)
pair-wise distances are known without measurement error, the solution is unique;

otherwise, a more sophisticated solution is necessary: SGD. In order to solve this

problem, two main steps are performed. First, an initialization process, where the

1D localization problem is formulated as follows [26]:

~x = arg~x min

[∑
<i,j>∈E wi,j||xi − xj||2∑

i<j ||xi − xj||2

]

where E is the set of connected edges, ~x = {x1, x2, ..., xn} and xi is a x coordinate

of ith node. This function makes intuitive sense because it tries to locate adjacent

nodes close to each other while separating nonadjacent nodes. The same idea has been

applied to formulate the 2D localization problem. After careful manipulation, ~x turns

out to be the v2 eigenvector of D−1W and ~y is v3 eigenvector of D−1W . Here, D is an

n×n diagonal matrix with Dii = deg(i) and W is n×n matrix where wij is the weight

between node i and node j, where weight increases with the estimated distance. v2

and v3 are the eigenvectors corresponding to the second and third largest eigenvalues

of D−1W . These eigenvectors are found by a power iteration method. Once the

initial locations are estimated, an update process is applied. Every node’s location

becomes the weighted centroid of its neighbors. However, this technique requires an

extensive set of pair-wise distances to be measured, which are not always available

in the author’s setting, where distance estimation between two nodes is possible only

when a sonic event near these nodes is audible to both nodes. Therefore, the author

decided not to use this technique.
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Chapter 4

PLUGs

In May 2005, a workshop was held at the Pervasive Computing Conference in Munich,

Germany for the following purpose[97]:

The majority of application studies presented at conferences in sensor net-

work research are exemplars of potential applications suggesting directions

for further research. But they often contribute little to our understanding

of the broader needs of users of ubiquitous systems and the wider poten-

tial of the underlying technologies. Nor do they provide a context within

which the merits of alternative designs can be effectively assessed. Ubi-

comp research could benefit from a better-mapped domain for application

research with established metrics, methods for the selection, analysis and

evaluation of applications and common infrastructures.

As pointed out in the above paragraph, sensor network research needs to be application-

driven. As much as we learned from many lessons with our previous sensor network

platforms such as Pushpin Computing (Chapter 3), we realized that these projects do

not tell us too much besides how they perform in a controlled environment. PLUGs

have been developed to meet application driven goals and to focus on new algorithms

such as routing, data fusion, localization, etc, in an indoor setting instead of focusing

on the hardware issues and power efficient algorithms. Because in most indoor set-

tings, PLUG can have an access to infinite power source, the author and his colleagues
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assume that power is not so much of an issue here. As sensor networks for ubiquitous

computing are expected to merge into everyday electronic appliances, the PLUGs can

be unnoticeable as they are camouflaged in power strip while occupying a minimum

size. The author would like to point out that most of the hardware design and de-

velopment were done by his colleagues in the Media Lab’s Responsive Environments

Group, Mark Feldmeier and Josh Lifton. Its OS and basic applications have been

developed mainly by Josh Lifton and has been debugged and tested by Josh Lifton,

Yasuhiro Ono, Bo Morgan, and the author.

4.1 Motivation

The Kansei testbed [19] at the Ohio State University is designed to facilitate research

on networked sensing applications at scale. This contains a set of heterogeneous

nodes, each dedicated for local computation, storage, data exfiltration, and back-

channel communication, to support complex experimentation. It also contains a

real-time synchronized simulation engine for sensor data display. See Figure 4-1 for

illustration. The ORBIT Radio Grid Test bed (Open Access Research Testbed for

Next-Generation Wireless Networks) [68], developed at Rutgers University’s Wireless

Information Network Lab, has been acclaimed for its usefulness as a wireless network

test bed. It consists of an indoor radio grid emulator for controlled experimentation

and an outdoor field trial network for end-user evaluations in real-world settings. As a

wireless network protocol, it is used for different stages of protocol design, evaluation

and testing. In addition, there are numerous other wireless test beds[44], which are

built for similar purposes. However, these test beds are used only by knowledgeable

researchers and often for artificial purposes. The author believes that the technical

issues sometimes can be easily solved by considering user experiments with non-

technical people rather than exclusive use by technical people, as in the software

engineering domain, where software does not become available to public until its beta

version has been fully tested by non-technical people. Accordingly, the PLUGs are

developed as a “beta version” to test out existing algorithms and devise new ones as
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Figure 4-1: Kansei is a testbed of 210 Extreme Scale Motes (XSM) hooked individu-
ally onto 210 Extreme Scale Stargates (XSS). This provides a test bed infrastructure
to conduct experiments with 802.11b networking and XSMs. The picture is taken
from Kansei’s homepage http://ceti.cse.ohio-state.edu/kansei/

it becomes necessary.

4.2 PLUG Hardware

PLUG contains two parts: a low voltage part and a high voltage part. The low voltage

part contains an AT91SAM7S64 microcontroller, a CC2500 transceiver and sensors.

(See Table 4.1 for detail). The high voltage part mainly acts as a programmable

current provider to each outlet and to the low voltage board. In addition, it includes

fuses and safety devices.

4.2.1 Low Voltage Board

The low voltage board contains two main parts: the AT91SAM7S64 and the CC2500.
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Figure 4-2: PLUG with annotation

42



Parts

Atmel ARM7-based AT91SAM7S64 microcontroller
Analog Devices SSM2211 low distortion 1.5 Watt audio power amplifier
knob to control the volume of the speaker
JTAG interface for programming and debugging the microcontroller
USB connector
Two LEDs
phototransistor sensor
audio microphone
vibration sensor
Chipcon CC2500 2.4 GHz RF Transceiver

Table 4.1: Important Parts in the Low-Voltage Board for PLUG

AT91SAM7S64 microprocessor

The AT91SAM7S64 [2]is a low pincount Flash microcontroller based on the 32-bit

ARM7TDMI RISC processor. It features 64K bytes of embedded high-speed Flash

with sector lock capabilities and a security bit, and 16K bytes of SRAM. The in-

tegrated proprietary SAM-BA Boot Assistant enables in-system programming of

the embedded Flash. Its extensive peripheral set includes a USB 2.0 Full Speed

Device Port, USARTs, SPI, SSC, TWI and an 8-channel 10-bit ADC. Its Periph-

eral DMA Controller channels eliminate processor bottlenecks during peripheral-to-

memory transfers. Its System Controller manages interrupts, clocks, power, time,

debug and reset, significantly reducing the external chip count and minimizing power

consumption.

CC2500

The CC2500 [14] is an integrated multi-channel RF transceiver designed for low-power

(13.3mA in RX, 250 kbps, input 30 dB above sensitivity limit) wireless applications

in the industrial Scientific Medical (ISM) band at 2400-2483.5 MHz. It contains

a separate buffer for 64 bytes received and transmitted data in FIFO fashion. It

also provides a digital radio signal strength indicator (RSSI) and digital link quality

indicator (LQI). Use of the RSSI in localization is further discussed in Chapter 5 and

Chapter 6.
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Figure 4-3: Low-Voltage Part for PLUG

4.2.2 High Voltage Board

This board contains a set of Fairchild Semiconductor MOC3023 6-Pin DIP 400V

Random Phase Triac Driver Output Optocouplers [21], an optically isolated triac

driver device, to control the outage current provided by each outlet. Each outlet

is equipped with Triad CSE-1871 current sensor transformers to measure the AC

current. Thermal heat sink paste is used to better conduct heat between these parts

and their heat sinks. In addition, the high voltage board contains a 20-pin connector

for mating the high voltage board to the low voltage board.

4.3 Software

Due to memory constraints, the operation system and application modules, such

as the hardware testing unit and localization unit, are combined into one package

and uploaded onto RAM. For explanation purposes, the author makes a distinction

between localization-related software and everything else, and the localization-related

software is explained later in Chapter 5. Everything else can be divided into two parts:

the OS and the interface from PC side. In this section, several libraries that constitute
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Figure 4-4: High-Voltage Part for PLUG

the OS are presented along with the PLUG interface.

4.3.1 Low-Level OS

Software is written in the ANSI-standard C. The C Library is written to handle

hardware in different layers.

4.3.2 Basic Module

1. AT91SAM7S64.h: This file was provided by Rowley Associates Limited, who

provided the C compiler that we used. It has wrappers for every component of

AT91SAM7S64 with reasonable mnemonics. This file forms a basis to control

peripherals, such as sensors, the CC2500 transceiver, and outlet current control,

which are all attached to the microcontroller.
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2. types.h: This file defines data types to be used. It includes both signed and

unsigned numbers in 8 bit, 16 bit, 32 bit and 64 bits.

3. system.c and system.h: This defines interrupt tags (see Table 4.2 for detail),

master clock frequency (47923200 Hz), RC oscillator frequency (32768 Hz) and

crystal frequency (18432000 Hz). These frequencies form a basis for the inter-

rupt handler and clock.c and clock.h. For fast system access, system init and

system reset are defined. system init initializes the basic features of the mi-

croprocessor, including the watchdog timer, spurious interrupt handler, master

clock, and hardware interrupt vectoring. In addition, it defines system error

for easy debugging.

4. clock.c and clock.h: The system uses the alarm data structure to create and

manage an arbitrary number of alarm clocks. Each instance of alarm represents

a single task to be performed at a designated time. Although each task occurs

accurately at the designated time, they will encounter delay when multiple

tasks are assigned at the same time. More accurately, multiple tasks assigned

at the same time are handled in the order registered, but with about 15 µs of

delay between two consecutive tasks. Necessary conventional time clocks are

also defined. One second corresponds to 128 Master Clock ticks, making x

seconds to be 47923200x/128 master clock ticks. For example, CLOCK 1 DAY is

defined as 47923200 × 60 × 60 × 24/128 = 32348160000. To implement these,

clock get time is defined to return the time, clock set alarm to set a certain

task at a certain time, clock init to initialize the time, and delay to delay for

an arbitrary number of master clock ticks. delay is needed sometimes before

transmitting data wirelessly to avoid network congestion.

5. pioa.c and pioa.h: This file enables the parallel I/O Controller A. This con-

tains the definition for the PIOA device descriptor structure and functions to

initialize and register the PIO device and PIOA interrupt handler.
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6. adc.c and adc.h: This module converts analog sensor data to 10 bit digital

data. This module defines two functions. The first function, the bit stuffer,

maintains an efficient array of bytes that are stuffed with 10-bit ADC values

by overlapping parts of different 10-bit values within the same byte instead of

considering the 10-bit ADC value as a 16-bit integer. The second function starts

the analog to digital converter (ADC) according to the parameters passed as

arguments. Parameters include information regarding 1) the number of samples

per second, 2) the total number of bits per sample, 3) enabled channels, 4)

number of bits per sample, and 5) the implementation when the sampling is

done. In addition, this file contains the ADC interrupt handler.

7. spi.c and spi.h: This file enables the serial peripheral interface. This con-

tains a definition for the SPI device descriptor structure and four functions to

initialize, register the SPI, set the current SPI device, and indicate whether it

is busy or not.

8. button.c and button.h: PLUG contains one button to take input from the

user. This is defined as one instance of the parallel input/output device (PIOA).

This function defines a structure for Button and the structure contains two

pointers to the events when the button is released and depressed respectively.

Also, it contains an initialization function. This button is used as a simple way

for user to provide input.

9. cc2500.c and cc2500.h: This file provides an interface for the ChipCon CC2500

2.4-GHz transceiver. This forms a basis for network.c and network.h to transmit

and receive data. The transceiver is defined as serial peripheral interface (SPI)

as opposed to parallel input/output device (PIOA) for optimum performance.

This file provides transceiver initialization (cc2500 init), reception initiation

(cc2500 initiate receive) and transmission initiation (cc2500 transmit initiate)

to send any buffered packet in FIFO fashion. In addition, it also defines the

SPI interrupt handler.
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Tags Description

INTERRUPT SYSIRQ System Interrupt
INTERRUPT PIOA Parallel I/O Controller A
INTERRUPT ADC Analog to Digital Converter
INTERRUPT SPI Serial Peripheral Interface
INTERRUPT US0 USART 0
INTERRUPT US1 USART 1
INTERRUPT SSC Synchronous Serial Controller
INTERRUPT TWI Two-wire interface
INTERRUPT PWMC PWM Controller
INTERRUPT UDP USB Device Port
INTERRUPT TC0 Timer/Counter 0
INTERRUPT TC1 Timer/Counter 1
INTERRUPT TC2 Timer/Counter 2

Table 4.2: Interrupt Tags for PLUG defined in system.h /citedatasheetAT

10. leds.c and leds.h: This file provides ways to toggle, blink and turn on/off

both red and green LEDs. These LEDs are used to let the user know of arbitrary

program status.

11. speaker.c and speaker.h: This initializes the peripherals necessary to control

an attached speaker using the pulse width modulation (PWM) controller. This

file defines a structure for Sound t and Speaker t, both of which are used to

make sound. In addition, it defines a PWM interrupt handler to play audio

through the speaker.

12. switches.c and switches.h: This file provides ways to turn on/off the cur-

rent to each outlet. It initializes each outlet with “on.”

13. usb.c and usb.h: This file provides an interface to transmit/receive data from

the microcontroller over the USB 2.0 port. This file contains functions to ini-

tialize, read/write data, and send null packets. In addition, it also contains a

USB interrupt handler.
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4.3.3 High-Level OS

1. random.c and random.h: This contains a function for a random number gen-

erator for both 16 bit and 32 bit values. This function uses an instantaneously

detected sound and light sensor values and a standard signed random generator.

2. network.c and network.h: This defines the function for packet transmission

and reception and initialization. In addition, this file defines the structures for

networking, namely Packet, Neighbor and Network. Packet contains payload

length, destination address, starting address, type of the packet and payload

content. The network packet type is listed in Table 4.3 with its description.

Each node is allowed to have a maximum of 16 neighbors and keeps track

of each neighbor’s information, such as local address, link quality (provided

by CC2500), radio signal strength indicator (provided by CC2500), packets

received, time when the last packet has been received, and its global address.

The data structure of Network contains a pointer to the most recently received

packet, its local address and the global address. The node’s local address is

generated randomly every time it initializes; although it is unique among its

neighbors, it is not necessarily unique in its entire network. However, its global

address is unique in its entire network and it does not change.

3. gradient.c and gradient.h: This creates, removes, and refreshes the gradi-

ent. This file provides functions to initialize, create, refresh and remove the

gradient and update the gradient table. A gradient is created when the source

is triggered and it acts as a communication path from the source to all the

other nodes within a specified maximum number of hops. This specified maxi-

mum number of hops can possibly form a cluster inside a network so that the

“infection” does not affect other clusters.

4. sounds.c and sounds.h: This function defines what we term a chirp sound,

ramp sound and noise burst sound. This function is used to generate the natural

sounds in the author’s algorithm.
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Tags Description

PACKET BROADCAST send to all neighbors once
PACKET PING send to a specific neighbor
PACKET REQUEST TO SEND beginning of an acknowledged

packet transaction
PACKET CLEAR TO SEND recipient’s response to request

to send if clear
PACKET ACKNOWLEDGE recipient’s response to successful

acknowledged packet receipt
PACKET FAILED recipient’s response if not clear to send

or packet didn’t arrive
PACKET NETWORK BROADCAST broadcast to all nodes

in the network
PACKET GRADIENT BUILDER builds gradient according

to the specified maximum hop count limit.
PACKET GRADIENT REMOVER removes a given gradient by

removing the gradient routing table
PACKET GRADIENT CLIMBER traces a given gradient back to its

source by following a path routing table.
PACKET GRADIENT CLIMBER BUILDER traces a given gradient back

to its source by following a path routing
table. Along the way,
it creates a new gradient along the path so
that the original gradient source
can reply through a direct path.

Table 4.3: Network packet type

5. vibratab.c and vibratab.h: The vibration sensor is defined as PIOA device.

This file provides a structure for the vibration tab in addition to its initialization

function.

6. hardware test.c and hardware test.h: Everytime the hardware is turned

on, this function checks for the hardware soundness.

4.4 PLUG Interface from the PC side

This package is written in python and consists of three files.
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1. plug.py: Under class LocalPlug, this defines functions to transmit necessary

commands to the designated PLUG over the USB port. These commands in-

clude createGradient, refreshGradient, startDataCollection, stopDataCollection,

getID, requestNetworkPacket, printAllNetworkPackets, logNetworkPackets,

and getNeighbors. When any of these commands is called, certain constants

are transmitted over the USB cable to the connected PLUG. Under the class

NetworkPacket, this provides ways to parse the network packet and print it

in readable way. As defined in the firmware, each network packet contains

payload length, destination address, source address, message type and actual

payload. In addition, it also contains RSSI, link quality indicator (LQI) and

cyclic redundancy check (CRC), all of which are provided by CC2500 packet.

2. plugutil.py: This defines different functions to convert integers to various

formats, necessary to process data.

3. plugusb.py: This is an interface to usb.c and usb.h in firmware. It defines

functions to transmit/receive data from PLUG over USB 2.0. In addition, it

provides a way to look for a device with particular vendor ID, product ID and

interface ID among devices available on USB buses.

4.5 CrossWorks

The CrossWorks development tool is used to upload and debug the applications for the

AT91SAM7S64 microprocessor. The CrossWorks for ARM is a complete C develop-

ment system for microprocessors, consisting of the ARM GCC C compiler, the Cross-

Works C Library and the CrossStudio integrated development environment (IDE)[45].

Its C Library has been redesigned for specific use within embedded systems conform-

ing to the ANSI and ISO C standard. Key features of the IDE are debugging tools

in addition to the source code editor, project organizer, and build system. An ARM

Hardware Debugging tool lets you use the integrated debugger to step through the

software on the target board. An ARM Flash Programming and Debugging tool lets
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Figure 4-5: Screenshot showing CrossStudio for ARM IDE

you download your programs directly into Flash and debug them seamlessly from

within the IDE.
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Chapter 5

Localization Based on Natural

Phenomena

Most sensory data has only limited utility without location information, and man-

ual node localization becomes impossible for large, inaccessible, or mobile sensor

deployments. Accordingly, autonomous localization is crucial for many sensor net-

work applications. Our goal is to develop a distributed localization algorithm for

the PLUG indoor sensor network by analyzing sound and light sensory data from

naturally occurring phenomena and synthesized emulations of background transient.

Our approach has two main phases: passive and active. The system enters an active

mode when its sensed region stays relatively silent and stable, hence assumed to be

unoccupied. Otherwise, it stays in the passive mode. In the passive mode, each node

waits for sonic transients, collects sound sensory data, compares its highest sound

peak to synchronized sound peaks from other nodes in its neighborhood and esti-

mates its distance. In the active mode, each node occasionally generates recorded

mimics of natural phenomena, such as sonic transients (e.g. pencil dropping or water

glasses clinking), or manipulates an attached light source.

As explained in Chapter 4, the PLUGs are subject to conservative resource limi-

tations, with limited processing power and memory. Thus, an attempt has been made

to avoid intensive computation and memory use, but to still obtain decent accuracy

in localization. Here, the author would like to make a distinction between a rang-
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ing scheme and a localization system. Our ranging scheme, which consists of active

and passive schemes, estimates pair-wise distances, whereas the localization system

localizes each node based on the set of pair-wise distances. The active localization

refers to the localization system employing the active ranging scheme, whereas passive

localization refers to the localization system employing the passive ranging scheme.

Although the ranging schemes are executed on the PLUG, the localization algorithm

runs on the base station; this explains why the author’s algorithm lies directly in the

third network category, which was discussed in Chapter 2.

5.1 Objective

The localization algorithm needs to estimate each PLUG’s location based on pair-wise

distances and display it on a building map. Decent accuracy needs to be achieved over

reasonable time periods up to a simple reflection for both active and passive mode.

Then, it should be able to display this information on a map on the base station’s

host PC. In addition, PLUGs need to determine whether they are in the same room

or not based on the light sensory data and perhaps infer they are on the same surface

or not from the vibration sensor data, which also needs to be displayed on the base

station’s host PC.

5.2 Problem Statement

Distances are estimated using a TDoA scheme based on either recorded mimics of

natural sound or random sonic transients. Although the author does not have any

control over the random sonic transients, the author does have control over recorded

mimics of natural sound. These mimics need to be loud enough to have decent

detection range but soft enough to be relatively unobtrusive. As pointed out earlier

in Chapter 2, fine synchronization is important for the TDoA scheme. Because the

pair-wise distance estimation relies on synchronization, synchronization is needed

between all nodes that can detect the sounds, e.g. all nodes in the neighborhood.
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The localization algorithm needs to produce correct relative location with correct

rotation and translation. The localization scheme is targeted for both room-scale use

and floor-scale use, and these two different targets need to be implemented differently.

Although the experiment is done only for room-scale localization, the idea of how to

expand it to floor-scale localization is discussed in Chapter 7. In this chapter, only

the room-scale localization is discussed. In addition, the application needs to estimate

the approximate location of the room with estimated size based on the collected light

sensory data and the estimated location of PLUG.

5.3 Assumptions

As pointed out earlier, there are two reference PLUGs which already know their loca-

tion before the algorithm executes. One of these PLUGs is connected with hardware

to the PC for data logging purposes. Note that this PC will be referred to as the base

station throughout the thesis. It is assumed that a PLUG does not have more than

16 neighbor PLUGs, which is a reasonable assumption. As a comparison, Broxton [8]

made the same assumption about the number of neighbors in an even denser sensor

network test bed, 60 nodes over 1m by 1m area, and still achieved a reasonable local-

ization accuracy. Different PLUGs are assumed to be in the same room if they detect

a similar light change pattern almost simultaneously within radio reception range.

Although this is not always necessarily true, the author believes that these interpre-

tations are reasonable to deduce room boundaries from the light sensory data. Unlike

research projects introduced in Chapter 2, moving object location is not estimated.

5.4 Procedure

Before the localization algorithm executes, each PLUG transmits its UID to its neigh-

bors, and this is performed on the network layer. Depending on the environmental

states, each PLUG enters either active mode or passive mode. The PLUG enters ac-

tive mode when it senses “silence” for certain time, meaning that the room is probably
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unoccupied, much like a cricket that chirps when animals are not nearby. Of course,

in a perfect world, sensory data should not change at all in “silent environments.”

However, this is not true in the real world, where there is always some level of back-

ground noise. Hence, the possible noise in sensor measurements needs to be taken

into account. Thus, the environment is defined to be “silent” if each sampled sensory

data has not changed over ± 10% from sampled sensory data at the previous time

slot for approximately 30 minute continuously (a discriminant can also be applied to

average background noise). Otherwise, the PLUG enters the passive mode. When the

entire network determines that the environment is “silent,” PLUGs perform active

localization.

Every PLUG keeps track of the set of its neighbors and the estimated correspond-

ing pair-wise distance to them. Based on the results from active and passive ranging

schemes, each PLUG updates the set of pair-wise distances by a simple averaging

operation. More detail on this algorithm is discussed in Section 5.8. Upon request

from the reference PLUG, which is triggered by the base station, every PLUG trans-

mits its set of pair-wise distances to the base station over a pre-determined network

gradient. This network gradient is also created in the network layer before the local-

ization algorithm begins. More detail on how the gradient is managed is presented

in Chapter 4. In addition to the pair-wise distances, every PLUG keeps track of its

estimated room index and transmits its room index information to the base station in

a similar fashion over the pre-determined gradient, where the room index is estimated

from light sensor data. As the base station receives the pair-wise distances and room

information from PLUGs, and if it has enough distance information to localize the

PLUG, it displays the location of the PLUG with corresponding room index on the

map.

5.5 Preliminary Methods

The method described in this section was ruled out after careful consideration and

implementation. However, the author believes that it is still worth mentioning. For
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easy explanation in this particular section, the author arbitrarily picks any two non-

reference PLUGs and name those PLUG A and B. PLUG A collects sound samples

for 0.5 seconds and divides the sound wave into 4 time frames of equal length. Then,

the peak sound value is picked from each time frame with the corresponding timing.

PLUG A transmits 4 peak sound values with corresponding timing to its neighbor

PLUG B. PLUG B estimates the pair-wise distance between A and B by comparing

its own 4 peak sound values and corresponding timing with those of PLUG A. Trans-

mitting the entire waveform would be ideal to calculate the delay. But this would

result in excessive network traffic and delay in the microcontroller, which certainly

are not wanted. Hence, the author chose 4 time frames to avoid network traffic, but

to calculate sound delay accurately. However, this did not perform well. As shown

in Figure 5-1, the author took an average over many samples. Although the average

sound delay seems to converge to the right values, it still contains many errors after

many trials. Based on these results and those of his colleagues [8], the author devised

different acoustic approaches to estimate the distance. More details on each algorithm

are found in the following sections.

5.6 Ranging scheme: Active Ranging and Passive

Ranging

Both active localization and passive localization have been examined in depth in many

previous studies. However, to the author’s best knowledge, no work has focused on

the combination of these two with practical assumptions. Many approaches to active

localization have been studied under the assumption that every activity is controlled.

Global pinging on the entire network is one popular example of controlled environmen-

tal activities, which usually localizes rather easily using triangulization techniques.

However, this assumption is rather impractical for extended indoor environments,

where numerous random events happen. The author believes that it is possible to

control a small subset of the network environment instead of the entire network and
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Figure 5-1: The estimated pair-wise distance average over many samples using pre-
liminary methods which were ruled out for its poor performance. x-axis represents
number of samples taken and y-axis represents the estimated distance in m.

cough!! 
cough!!

PLUG

gotcha!
know where you are!

PLUG

Figure 5-2: Active Localization: When no activity has been recorded for certain time,
the PLUG network goes into active-localization mode. In this mode, during every
allocated time slot, one PLUG makes one of several recorded natural sounds, such as
coughing, and other PLUGs listen. Every action is done in synchronized manner.
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decided to base his ranging algorithm on local acoustic activity. By contrast, for

passive localizations, although the environmental activities are not controlled, the

system assumes that there is only one unique event in its neighborhood. Overall,

active ranging performs better than passive ranging because every “controlled” event

does not have as much randomness as a “natural” unique event does. But it is not

realistic to always assume that environment is always controllable enough to use ac-

tive ranging. The author proposes to use these two schemes opportunistically and

claims that this combination is applicable to the indoor setting for localization. More

precisely, as shown in Figure 5-3, the active ranging executes when the environment is

assumed to be unoccupied and silent; otherwise, the passive ranging executes. Figure

5-3 also presents when the room index for each PLUG is determined. More detail on

room index determination is shown in Section 5.6.2. Their performance is shown in

Chapter 6.

5.6.1 Active Ranging

Because the environment is found to be silent, hence controllable, it is easy to devise

active schemes. The author proposes three ways to control the environment.

Mimics of Natural Sounds

Each PLUG is initially preloaded with two what we term “natural sounds”: a pen

dropping sound, called “tung” (index 0) and water glass clinking sound, called “cha-

lang” (index 1). Both of these sounds were recorded on a PLUG in 10 bits with a

4KHz sampling frequency. Each PLUG takes a turn to make the designated sound,

from PLUGs with smaller UID to those with larger UID’s. During each allocated

time slot, one designated PLUG 1) randomly chooses the index for the natural sound

to play, 2) broadcasts a packet with its UID and the index of the chosen sound for

synchronization purposes, and 3) makes a sound. During that allocated time slot,

other designated PLUGs enter listen-mode. In listen-mode, a PLUG 1) receives an

index of the chosen sound while it waits for two seconds to hear from its designated
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Active RangingPassive Ranging Passive 
Ranging

Light transient:
point where the room index is determined

Assumed to be 
unoccupied

Figure 5-3: Light and Sound behavior over three hours: As explained in Section
5.6.2, the room index is determined when the light transient happens. ranging scheme
alternates between active and passive depending on whether the surrounding is silent
or not.
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PLUG, 2) collects the sound sensor data and runs a matched filter against the corre-

sponding preloaded sound, 3) calculates the time delay from the matched filter’s cross

correlation peak, and 4) calculates the pair-wise distance to the sound origin. These

PLUGs in listen-mode calculate the time delay by a matched filter scheme, which is

discussed in Section 5.6.1.

(a) Loud “tung” sound, clipped sound (b) Soft “tung” sound, unclipped sound

Figure 5-4: Due to its plateau effect, part (a) was initially ruled out and part (b) was
used. However, to increase the detection range, the loud “tung” sound, part (a), was
decided to be used.

Initially, the author used the soft “tung” sound to estimate the distance. The soft

“tung” sound was intentionally recorded to avoid the saturated plateau at the top of

the sound wave. If the sound is too loud, a long series of 1023, the highest sound

sample value is presented, hence a plateau effect happens, as indicated in Figure 5-4.

The plateau effect makes the “tung” sample sound relatively more artificial than the

one without the plateau. However, in the soft “tung” sound case, the detection range

was only about 20 cm, which is too small for the indoor localization environment.

However, the loud “tung” sound gives a detection range of over 2.5 m. Accordingly,

the author decided to use the loud “tung” sound. Following a similar process, the

“chalang” sound, as shown in Figure 5-5, was picked. With a better amplification and

speaker system, or a more selective audio pre-filter and omni-directional microphone,

the sound without saturated plateau would probably work at much larger range.

Note that, although we term them “natural” sounds, dropping pencils and glasses
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Figure 5-5: “chalang” sound when two glasses touch

clinking may not be natural for most environments. Our algorithm prefers sounds

with a fast attack transient. Many other sounds fit this criterion; with more onboard

memory, a wider variety of sound samples can be stored, including sounds that may

be more natural and subtle in different deployed environments.

Estimating time delay using a Matched Filter

The estimated distance should simply follow Equation 5.1:

distance = speed of sound× estimated time delay (5.1)

The time delay can then be calculated using the matched filter (see Figure 5-6 for

illustration). The PLUGs calculate the cross-correlation of the delay-shifted version

of the recorded sound wave and received sound wave for every possible delay value.

They look for the maximum cross-correlation value and corresponding delay value

in the quadratic interpolated graphs, which is the best-fit quadratic graph across
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the cross-correlation values with minimum least square error. Three cross-correlation

values, y1, y2, and y3 with corresponding time stamps, x1, x2, and x3, are needed

to devise the interpolation and after many trials, the author finds the following way

to be the optimum. y2 is the highest peak cross-correlation value with x2 being

the corresponding time delay. x1 = x2 − 1, one unit time earlier than x2, and y1

is the cross-correlation value corresponding to time delay value x1. As x3 is larger

than x2, (x3, y3) is the point right before the cross-correlation values start increasing.

An alternate way, more mathematically robust but not necessarily showing better

performance, is presented in Appendix B. After careful calculation, the coefficients

for the quadratic interpolated graph, y = ax2 + bx + c, turn out to be following:

a = (y1−y2)(x2−x3)−(y2−y3)(x1−x2)
(x2−x3)(x2

1−x2
2)−(x1−x2)(x2

2−x2
3)

b =
(x2

2−x2
3)(y1−y2)−(x2

1−x2
2)(y2−y3)

(x2
2−x2

3)(x1−x2)−(x2
1−x2

2)(x2−x3)

c = y1 − ax2
1 − bx1

Although the speed of sound changes according to the temperature of the medium,

the author decided to use 34800 cm/s for the speed of sound, which corresponds

to the speed of sound at 28 ◦C. The correlation value is maximum at − b
2a

, which

is the estimated delay time. The estimated distance is − b
2a
× speed of sound ×

1

sample frequency = − 34800b
4000×2a

.

Artificial Natural Light

The PLUG is able to switch on/off a light source attached to any of its outlets.

Based on the measured current pattern, the PLUG can usually guess whether the

attached device is a light source or not. All PLUGs with a light source attached take

turns, switching on/off a light, from the PLUG with the smaller UID to that with

a larger one, in similar fashion that artificial natural sounds were created. During

each allocated time slot, one designated PLUG 1) broadcasts a packet with its UID,

2) waits for two seconds and then 3) switches on/off a light. During that allocated

time slot, other designated PLUGs are in listen-mode. In listen-mode, a PLUG 1)
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quadratic interpolation

interpolated maximum at 0.0055

(x1,y1)

(x2,y2)

(x3,y3)

Figure 5-6: Cross correlation value when speaker and microphone are 20 cm apart.
Substituting values into Equation 5.1, the estimated time delay should be 20cm

34800cm
=

0.00057. As shown, the expected time delay is close to the estimated one with
0.00002s = 20µs difference.
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Figure 5-7: Estimated distance using Equation 5.2 and RSS values for different pair-
wise distance values in relative radio silence.

receives packets while it waits to detect its designated PLUG turning on/off light , 2)

expects to detect the light behavior after two seconds, and 3)concludes whether both

PLUGs are in the same room or open area. However, the implementation had poor

performance, partially because determining whether a light source is attached or not

to a PLUG can be erroneous. Instead, the author decided to use the light sensory

data for room estimation in passive mode, where all nodes compared results with one

another when they encountered a common change in ambient light.

Radio Signal Strength (RSS)

This is one of the popular techniques used in ranging schemes for sensor networks

and has been extensively studied in RADAR [3] and Ecolocation [100], both of which

were presented in Chapter 2. First, let us look at the bright side of RSS (Radio Signal

Strength), namely its ranging technique. As shown in the graph in Figure 5-7, the

RSS can sometimes be a good indicator of pair-wise distance in relative radio silence

and in the absence of significant multipath effect: log RSS values are seen to decrease
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Figure 5-8: RSS values for different pair-wise distance values when a cellular phone
is nearby. The noisy RSSI values most probably result from other radio signals and
multipath effects.

almost proportionally as the pair-wise distance increases. Let us review the equation

on RSS (in dBm) vs distance presented in [100]:

RSS(d) = PT − PL(d0)− 10η log10

d

d0

+ Xσ − C (5.2)

where, PT is the transmit power and PL(d0) is path loss for the reference pair-

wise distance of d0. η is the path loss exponent and the random variation in RSS is

expressed as a Gaussian random variable of zero mean and σ2 variance. C is a constant

that depends on the type and number of obstructions between the transmitter and

the receiver. The values for each variable are summarized in Table 5.1.

The results from Artificial Natural Light method can roughly determine whether

C is zero or non-zero, which can be helpful estimating the value of C. However,

estimation of C is not enough. Other parameters need to be accurately measured,

and this requires careful calibration beforehand. Even with careful calibration, the

localization has rather poor accuracy (approximately 3m) in an indoor environment.
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Parameter Typical value

PT 4dBm
PL(d0) 55dB

η 4 (indoors)
σ 7 (indoors)
α 25
λ 15

β(= α
λ2 ) 0.11

γ 0.1
ρ 8

Table 5.1: Values used for RSS equation parameters

RSSI is susceptible to external biases such as interference, shadowing and multipath

effects, as well as environmental variations such as changes in temperature and hu-

midity [72]. These physical effects are difficult to predict and depend greatly on the

actual environment in which the system is operated. Because RSS values are sensitive

to noise, as shown in Figure 5-8, and multipath, they are not robust to estimate the

pair-wise distance, thus the author decided to rule out this RSS option.

Final Remark

Among the three active ranging schemes mentioned, the author decided to use only

sound. The comparison between active ranging using sound and that using RSS values

is presented in Chapter 6. Table 5.2 summarizes the active ranging scheme. Here, the

“update” process is a simple average based on many estimates. The algorithm keeps

track of the number of estimates, current distance estimation, and average. When

it takes new estimation, it calculates the new average and replace these variables

accordingly.

5.6.2 Passive Ranging

In passive mode, because the environment is not controllable, each PLUG does not

know which sound it will hear or which light pattern it will detect. The author believes

that the best we can do in passive ranging with optimum network traffic loading is

to look for the sharp transients in the collected sensor data. For sound, each PLUG
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ACTIVE RANGING
for i=1 to MAXUID

if CURRENT UID == i

goto ACTIVE PLAY
else

goto ACTIVE LISTEN

ACTIVE PLAY
1. Choose sound index k randomly among {1, 2}.
2. Broadcast a packet with UID i and k.
3. Make Sound of index k

ACTIVE LISTEN
1. Receives UID i, and k.
2. Records the artificial sound.
3. For each possible time delay, calculates the cross-correlation
between the recorded sound and preloaded sound of index k.
4. Looks for the largest cross-correlation and its corresponding time delay.
5. Estimates the pair-wise distance using time delay and updates
the pair-wise distance.

Table 5.2: Active Localization Algorithm

transmits the timing of the first significant sound peak in the sonic transient. Note

that the sample is not divided into 4 time frames to choose the 4 sound peaks from

each time frame as in Section 5.5. Only one sound peak is chosen from entire period

for ranging and it is found to perform better than that preliminary method. Based

on the change in light sensory data, each PLUG estimates the room index.

Sound

In passive mode, as soon as any PLUG detects a sonic transient, it synchronizes the

neighborhood and declares itself as a temporary leader. On receiving the synchro-

nization packet, every other PLUG samples a 0.4 second interval of sound, then also

looks for the peak in their sample and stores its corresponding timing. The rela-

tive timing is assumed to be a differential time delay, and based on this delay, the

PLUG estimates the pair-wise distance to the temporary leader simply based on the

Equation 5.1. Here, it is assumed that there is no saturated plateau effect in the sam-

pled sound: under the saturated plateau effect, the time stamp might not necessarily
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Heard something!
Get ready
everyone!!

OK! heard 
something too!

PLUG

OK! heard 
something too!

Figure 5-9: Passive Localization

represent the proper time delay.

Now, let us look more carefully at how the time delay value is estimated. For easy

explanation, let us call the temporary leader PLUG “A” and one of its neighbors

“B.” The time delay is maximum when the sound source, PLUG A and PLUG B are

in line; the time delay is minimum when the sound source is equally distant from the

PLUG A as from the PLUG B. Thus, the maximum value among the collected time

delay values should be equal to the distance between the PLUG A and B, scaled by

the speed of sound. However, the maximum value is sensitive to noise and multi-path,

hence caution needs to be taken into consideration. Figure 5-10 shows the distribution

of the collected sound delay values; the data were collected from busy areas in one of

MIT college dorm for 20 hours. As shown in the graph corresponding to the values

between node 4 and 6, simply picking the maximum might distort the estimation. In

this case, the maximum is some value between 35 and 40, but it would be ideal to pick

some value between 20 and 25 instead of the value between 35 and 40 because the

value between 35 and 40 is at an extreme tail and probably results from multi-path.

The author decided to “intelligently” pick the maximum time delay by choosing it only
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Figure 5-10: Distribution of the collected delay values. x axis values represent time
delay values, where unit time delay corresponds approximately to 9cm.

if the maximum value is within three standard deviations from its mean (after many

trials, three standard deviations perform better than other choices). This method

is empirically proven to perform well; the performance comparison between different

methods are shown in Section 6.5.2.

It would be ideal if each PLUG could transmit/receive the entire sampled sound

wave. Then, each PLUG would be able to estimate the distance using the matched

filter as in the active ranging scheme. However, this would result in massive network

traffic unless the entire sound wave can be compressed into few constants, e.g. wavelet

coefficients. These few wavelet coefficients might be sufficient to estimate distance

more accurately. In fact, there have been several studies in medical and sonar fields,

detecting and classifying the received sound through a transient model using few

wavelet coefficients [88] and this can be an interesting extension of the author’s thesis

work.

In addition to the delay value, the amplitude of sound peak could be a reasonable
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Figure 5-11: Sound Peak value vs pair-wise distance

measure to help estimate the pair-wise distance as it attenuates with range as shown in

Figure 5-11. As expected, the sound peak value decreases proportional to the squared

pair-wise distance. Thus, the peak values can be compared between neighboring

PLUGs to make the estimation more accurate. Despite its great performance in this

controlled situation, the peak values turn out to be sensitive to the noise, outliers,

saturated plateau effect, and multipath effect. Thus, the author decided not to use

peak value for his ranging scheme. For performance comparison, ranging results based

on peak values are presented in Chapter 6.

Light

The room indices are initialized to be the PLUG UIDs. Once neighboring PLUGs

determine that they detect the similar light patterns in the approximately same time

slot, they agree on the same estimated room index, modify their room indices accord-

ingly, and transmit the room index to the base station for updating.
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dist1

dist2
dist3

Node3’ (x3’,y3’)

dist3 dist2

Figure 5-12: For easy illustration of linear localization algorithm

5.7 Localization Algorithm: average-lateration scheme

Based on Active and Passive ranging schemes, pair-wise distances are calculated.

Now, the locations of the PLUGs need to be estimated and displayed. The author

presents a linear algorithm. This algorithm is a standard localization algorithm,

similar to the one presented by Broxton [8] and many other authors. However, because

not every pair-wise distance is available at the same time, the PLUG is displayed on

the map screen only when all necessary information is collected. Although the ranging

software is executed on the PLUG, the localization algorithm runs on the base station.

5.7.1 Linear Localization Algorithm: Lateration

The base station keeps track of dist info, the list of received information on pair-

wise distances. Every node’s location is estimated using a triangulization method,

i.e., the location of a new node (node3) is determined based on the location of two

reference nodes (node1) and (node2). See Figure 5-12 for illustration. In addition,

dist info needs to contain the distance dist2 between (node1) and (node3) and
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distance dist3 between (node2) and (node3). The node is defined to be a reference

once the updated count exceeds a threshold. Once the base station receives four

pieces of information: location of (node1), location of (node2), dist2, and dist3, the

algorithm checks whether dist1, dist2, and dist3 can make a triangle by checking

the following inequality:

dist2 + dist3 > dist1

dist1 + dist3 > dist2

dist1 + dist2 > dist3

The x coordinate of new node is following:

first angle = arctan( y2−y1
x2−x1

) + arccos( (dist22+dist12−dist32)
(2∗dist1∗dist2)

)

first slope = tan(first angle)

x = first slope∗x1−y1−second slope∗x2+y2
first slope−second slope

The y coordinate of new node is following:

second angle = arctan( y1−y2
x1−x2

) + π − arccos(dist3
2+dist12−dist22

2∗dist1∗dist3
)

second slope = tan(second angle)

y = first slope∗y2−second slope∗y1+first slope∗second slope∗(x1−x2)
first slope−second slope

However, there are two solutions that satisfy the above constraints due to the reflec-

tion issue as seen in Figure 5-12; both (node3) or (node3’) satisfy the constraints.

The author would like to present a simple method to decide between these two. Both

(node3) and (node3’) calculate average distance to its localized neighbors respec-

tively. The node which has the smaller average distance to its localized neighbors

is picked to be the new node’s location. Note that each node calculates the aver-

age distance to only its localized neighbors and not to its unlocalized neighbors. The
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intuition behind this method is that the node is likely to be physically closer to its

network neighbors. Then, it updates the location of node3 and the updated count

attribute for node3 increments by 1.

5.8 Localization Software

The localization module consists of two sections. One section is uploaded in every

PLUG and is written in ANSI C. This part is written based on the software discussed

in Section 4.3. The other section is loaded into the base station, which is attached to

the reference PLUG, and is written in Python.

5.8.1 Localization Application

localization.c and localization.h: This software consists of two parts: active

localization and passive localization. These two parts perform tasks as discussed in

Section 5.6.1 and 5.6.2. The PLUG stays in passive mode most of the time, except for

when every PLUG in the entire network determines that the surroundings are silent.

5.8.2 Location Simulator Interface from PC side

plugloc.py: This defines class node with attributes x coordinate, y coordinate, ID,

updated count(the number of update), isRef, and room id. isRef is True if the

node is really a reference PLUG or the node has been updated over the threshold

number. Based on the location of the reference PLUGs and received set of dis-

tances, it estimates each PLUG’s location. Class nodenetwork is also defined with

the attributes room size, rooms (array of room ID’s), network size, nodes (array of

node’s), IDs (array of PLUG ID’s), packet (location network packet), and parser

(the parsed information of network packet). This class has a function to update data,

to add newly found nodes to the network, to update room indices, to update pair-

wise distances, and to calculate the x and y coordinates based on the set of pair-wise

distances. Class new dist is defined to keep track of received network packets that
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room indicator

reference PLUG

PLUG localization viewer

Figure 5-13: PLUG Localization Simulator

have not been processed yet. Class loc data parser and loc ApplicationPacket

are used to parse the received network packets. Global function visualize is used

display each PLUG’s x and y coordinates in addition to its room ID. If different

PLUGs share the same room ID, a square is drawn around them to include these

PLUGs. Figure 5-13 is a screen shot from the PLUG Localization Simulator. This

simulator has been greatly modified from PLUGview.py, which was written originally

by Responsinve Environments Group colleagues, Yasuhiro Ono and improved by Josh

Lifton to simulate the raw sensory data on the map.
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Chapter 6

Empirical Data Analysis

In the following empirical studies, every sound is sampled at 4 KHz. The data for

both active and passive ranging are presented. Simulation data for localization using

active ranging and that using RSS values are presented and compared. Both passive

and active localization data of PLUGs, when they are deployed on the floor, are also

presented. It is proven empirically that active localization performs far better than

passive localization or localization using only RSS values both in simulation and real

deployment.

6.1 Pair-wise distance estimation using Matched

Filter: Active Ranging

In active ranging, speakers and microphones are positioned so that they face each

other and the pair-wise distance is estimated using a matched filter as discussed in

Section 5.6.1. The estimated distance values with corresponding errors are shown in

Table 6.1. The average error is 2.1cm, and this is remarkable performance considering

that one sound sample represents 34800cm/s 1s
4000

≈ 9cm. The distance estimation

performs relatively poorly across short distances. This is attributed to the ambiguous

sound source location between two PLUGs due to its bulky size and saturation of

the microphone’s signal. Furthermore, the matched filter scheme is robust against
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Distance (cm) Average (cm) Standard Deviation (cm)

10 10.3208 1.4455
20 26.1864 2.5281
30 28.1696 3.5058
40 37.0939 0.6072
50 46.5141 1.8217
60 56.6780 1.2395
70 66.8419 1.8551
80 83.2032 1.0517
90 87.1696 1.6066
100 102.2915 1.2395
110 112.9511 1.0517
120 121.8755 1.6066
130 130.7999 0.7012
140 141.7075 1.9520
150 151.1276 2.1035
160 161.2915 0.7437
170 170.9596 1.8551
180 180.3797 1.5282
190 186.5772 2.7269
200 199.2201 0.9916
210 208.6403 0.9916

Table 6.1: Estimated distance, averaged over 5 samples, with corresponding standard
deviation for active ranging

background noise such as air conditioning, fans, computers, and music. As shown in

Table 6.1, the standard deviation is approximately 1.58cm on average, which indicates

its robustness against background noise.

6.2 Pair-wise distance estimation using Peak Find-

ing: Passive Ranging

In passive ranging, speakers and microphones are positioned so that they face each

other, and the sound peak and corresponding time delay are used to estimate dis-

tance as discussed in Section 5.6.2. The estimated distance values with corresponding

errors are shown in Table 6.2. For experimental purposes, a metal clinking sound was

used. The sound source was in line with two PLUGs. The average error per tran-
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sient is 50.96cm, which is far worse than active localization’s. Nonetheless, this is

remarkable performance considering that one sound sample represents ≈ 9cm and

the environment is not controlled like in active mode. In addition, passive ranging

performs a little better than ranging using RSS, which had approximately 57.75cm

error on average as discussed in Section 6.3. In passive mode, the estimation performs

relatively poorly at long distance. This is attributed to the reason that if two PLUGs

are further apart, it is more likely that these PLUGs misinterpret different sounds

as being from the same sound source, or the transient peaks differ due to multipath,

dispersion, etc. The distance estimation using passive ranging is not robust, as the

standard deviation is 158.95cm on average, which is far worse than that of active

ranging. The estimation result is more sensitive to background noise and multipath

than active ranging. Sound amplitude peak values are also summarized in Table 6.2.

As shown in the table, there is no particular correlation between peak values and

distance in the real deployment, because the randomly generated sound waves have

different sound peaks. Sound peak values can be used in controlled environments

where the sound peak attenuates proportionally to the power (2 to 4) of distance.

However, passive ranging depends on random sound transients, so does not provide

right setting to exploit sound amplitude peaks in distance estimation. The metal

clinking used on the sound transient in these tests is perhaps quite ideal for passive

ranging based on peak timing; other naturally occurring sound maybe less ideal. As

the sound source was in line with the PLUGs, the time delay was maximized and the

distance between PLUGs is the speed of sound scaled by the measured time delay.

In general, this condition does not hold, hence as explained in Section 5.6.2, a fit was

employed to estimate the maximum delay.
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Distance (cm) Average(cm) Standard Deviation (cm) sound peak

10 15.78 34.94 1023
20 20.13 60.73 1023
30 33.18 94.38 1023
40 44.06 112.58 896
50 61.46 82.17 896
60 56.02 65.46 891
70 61.46 46.43 839
80 94.09 58.55 897
90 77.78 78.45 890
100 85.39 98.95 725
110 88.65 97.63 1023
120 99.53 93.28 1023
130 115.85 210.55 1023
140 99.53 87.83 1023
150 148.48 105.68 1023
160 159.36 159.29 655
170 235.5 527.15 1010
180 281.18 890.4 773
190 268.13 278.43 633
200 159.36 86.33 853
210 104.97 68.75 1023

Table 6.2: Estimated distance, averaged over 5 samples, with corresponding standard
deviation for passive ranging, in response to metal clinking sound.
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Distance (cm) Average(cm) Standard Deviation (cm)

50 2.19 9.65
100 84.92 14.67
150 156.89 7.22
200 365.89 40.55
250 196.94 18.64
300 243.17 15.53

Table 6.3: Estimated distance, averaged over 200 samples, with corresponding stan-
dard deviation for distance estimation using RSS.

6.3 Comparison with Simulated Localization Us-

ing RSS

The author used a quiet radio environment to collect RSS values to measure distance.

Table 6.3 summarizes the pair-wise distance with its standard deviation over The

error is 57.75cm on average, which is worse than the pair-wise distance estimation

using either active or passive ranging schemes. Here, the author would like to note

that this error using RSS can be exponentially worse with only minor radio activity

or multi-path effects. As shown in Figure 6-1, localization using active sound has

2.98cm accuracy whereas localization using RSS has 197.68cm accuracy.
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(a) Localization using RSS
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(b) Localization using sound

Figure 6-1: (a) Localization using RSS error analysis plot. This has 197.68cm accu-
racy. (b) Localization using sound error analysis plot. This has 2.9cm accuracy.
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Figure 6-2: Layout for Simulation. The figure is not drawn to perfect scale.

6.4 Simulated Localization Results

To validate the localization algorithm, the author used a valid set of randomly chosen

pair-wise distances for simulated localization. As expected, the system performs with

no error when there is no measurement error included. The active localization was

simulated using the pair-wise distance values from Table 6.1.

6.4.1 Randomly chosen pair-wise distance for localization

Here, pair-wise distances and the number of PLUGs are randomly chosen to simulate a

PLUG deployment. As shown in Figure 6-2, the distance between PLUG 1 and PLUG

2 is 10m. PLUG 1 and PLUG 2 are assumed to be the reference points, meaning

that they already know their position before the localization algorithm executes.

However, the distance between two reference points still needs to be estimated in

order to calculate the factor that is used to scale every pair-wise distance on the

map. In other words, the actual 10m distance cannot be drawn on the computer
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Figure 6-3: PLUG 1, 3, and 4 are determined to be in the same room. PLUG 2, 5,
6, and 7 are determined to be in the different room.

screen; rather, it needs to be scaled down. Based on the initial positions of PLUG 1

and 2, the distance between PLUG 1 and 3, and the distance between PLUG 2 and

3, the location of PLUG 3 is estimated using the lateration scheme as explained in

Chapter 5. All the other PLUG locations are calculated using similar methods. The

final localization display is shown in Figure 6-3 and its corresponding step-by-step

localization is shown in Figure 6-5. As shown in Figure 6-3, the location is estimated

with 0cm error. This shows that as long as the pair-wise distance estimation is correct,

localization is almost error-free except for possible reflection.

Figure 6-3 shows the estimated room shapes based on the estimated location of

PLUGs and the detected light pattern. Two PLUGs are determined to be in the same

room if they detect a similar light behavior. Once they are determined to be in the

same room, a square is drawn around these PLUGs as shown in Figure 6-3.
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6.4.2 Simulated active localization

Twelve PLUGs are simulated on 9m× 6m testbed and compared with real locations

for error analysis as shown in Figure 6-4. PLUG 1 and 2 are reference PLUGs.

Only the estimated distances between direct neighbors are fed to the system for the

localization. The set of distances is shown in Figure 6-4 (a). It is worth noting that

only the distance between neighbors are available, and this causes significant error

propagation, which is discussed shortly.

The average error in the location, using the distance measurements from Table

6.1, turns out to be 7.97cm. However, as shown in the plot, most of the errors are due

to the outliers, PLUGs 8, 9, 11, and 12. Without these outliers, the location error is

5.55cm on average, which is comparable to the pair-wise distance measurement error,

which is 2.1cm.
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150 150
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150

150 150

150
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150150
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150150
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150

150

150

150

time frame 0

time frame 3

time frame 2

time frame 1

time frame 4

(a) PLUG localization viewer (b) Localization divided into time frames

Figure 6-4: (a) Simulation of the 12 PLUGs’ deployment on 9m× 6m test bed. (b)
PLUG 1 and 2’s locations are estimated initially in time frame 0. Based on these
locations, the location of PLUG 3 is estimated in time frame 1. Based on these three
locations, PLUG 4 and 8’s locations are estimated in time frame 2 and so forth.

Now, let us analyze the error of the outliers more carefully. As shown in Figure

6-4(b), the locations of PLUGs are estimated in a certain time frame. However,

locations estimated in later time frames are less accurate than the ones in earlier

time frames, and this error is presented separately for each time frame in Table 6.4.

This can be explained easily in Figure 6-6: the error propagates over a time frame.
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Time Frame error in average (cm)

Time Frame 0 0
Time Frame 1 4.12
Time Frame 2 9.65
Time Frame 3 10.21
Time Frame 4 10.46

Table 6.4: Estimated distance with corresponding errors

Let us consider two PLUGs 4 and 8 in time frame 2. The location of PLUG 4 has

a 5cm error and that of PLUG 8 has 14.31cm error. Because the location error for

PLUG 8 is relatively large compared to that for PLUG 4, the PLUGs whose locations

are based on PLUG 8 are expected to have worse location estimation than those based

on PLUG 4, which is exactly what Figure 6-6 shows. PLUG 11 and 12, which have

10.29cm and 15.26cm errors respectively, perform worse localization than PLUG 10,

which has only 5.83cm error.

Because the algorithm is based only on the sound and sound has limited range

(about 3 − 4m), the author’s localization is based solely on the local information,

which include locations of its one hop neighbors and its estimated distance to one

hop neighbors. When the local information is faulty, to author’s best knowledge,

there is no way to improve the error performance without redundant sources of data.

Here, it is worth noting that once the global information is available to entire PLUG

network, mesh relaxation [8] and many other techniques can be used to improve the

error propagation.

However, the author’s localization algorithm is intended for the long-term de-

ployment. Thus, the best hope for better performance is when pair-wise distance

estimation converges to the true distance. Once the pair-wise distance estimations

are accurate enough, the PLUG localization system can localize the PLUGs, even

with correct rotation and transposition.
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(a) PLUG 1 and 2 initiliazed (b) PLUG 3’s location is estimated

(c) PLUG 4’s location is estimated (d) PLUG 6’s location is estimated

(e) PLUG 5’s location is estimated (f) PLUG 7’s location is estimated

Figure 6-5: Steps for simulated active localization: (a) PLUG 1 and PLUG 2 are
reference points. Thus, these two points are already given even before the localization
algorithm starts. (b) Based on the positions of PLUG 1 and 2 and received distance
information, PLUG 3’s location is calculated. (c) Based on the positions of PLUG
1 and 3 and received distance information, PLUG 4’s location is calculated. (d)
Based on the positions of PLUG 3 and 4 and received distance information, PLUG
6’s location is calculated. (e) Based on the positions of PLUG 1 and 4 and received
distance information, PLUG 5’s location is calculated. (f) Based on the positions of
PLUG 2 and 5 and received distance information, PLUG 7’s location is calculated.
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Figure 6-6: Error analysis plot for simulated active localization. The error is 7.97cm
on average.
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Figure 6-7: Error analysis plot for simulated passive localization. The error is
103.06cm on average.

6.4.3 Simulated passive localization

A similar method was used to simulate the passive localization. The error analysis is

shown in Figure 6-7. The average error in the location, using the distance measure-

ments from Table 6.2, is 103.06cm; this is worse than the error in simulated active

localization. However, compared to the error in pair-wise distances from passive lo-

calization (50.96cm), the author believes that the location error is decent. This error

is somewhat optimistic in simulation compared to the real deployment, where the

real deployment estimates maximum time delay based on different types of acoustic

stimuli that come from a variety of angles, not just in-line with the pair of nodes,

as discussed in Section 5.6.2. Please note that, explained previously, the further the

nodes are placed from the reference nodes, much larger error the estimation is.
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PLUG III JTAG Program Connector

USB 2.0 
Connector

Current Outlet
PLUG VI

Figure 6-8: Deployment for active and passive localization test. This figure is an-
notated with base station, 2.0 USB connector for data collection, and 6 PLUGs
connected each other for power. The PLUG5 was unlocalized due to its hardware
failure.

6.5 Real Localization Results

For tests in a real deployment, 6 PLUGs were deployed in 7m by 5m dorm hallway

as shown in Figure 6-8. The setup was not optimum for testing purposes. Due to its

small size, sound reverberation and packet loss due to multi-path were prevalent. 6

PLUGs are positioned so that microphone, speaker and phototransistor face upward,

the normal orientation of the PLUG platform. For performance comparison, active

and passive localization are separately performed.

6.5.1 Active Localization

The active localization was not executable with the current system. If microphones

and speakers do not face each other, the detection range with decent pair-wise distance

estimation error is approximately 20cm, which is poor performance considering that

the size of PLUG is always 15cm. Also, multi-path reflection off the walls and ceiling

90



would probably dominate over the direct PLUG-PLUG path. However, if the speaker

and microphones are omni-directional, the author predicts that the active localization

could perform as well as the simulation results show.

6.5.2 Passive Localization

On the contrary, the sound sources for passive localization tend to be omni-directional.

Thus, the passive localization did not encounter the same problem that the active

localization had. This localization responds to sounds such as door banging, pencil

dropping, phone ringing, etc. The setup was untouched for approximately 20 hours

while natural indoor sounds occurred. The ranges between pairs of nodes were es-

timated to be the non-outlier maximum as indicated in Section 5.6.2 and shown in

Figure 6-13. This is expected in the absence of multi-path effects. The maximum de-

lay corresponds to sound travelling directly from one node to the next with the source

in-line with the node seperating, hence spanning their actual distance. Multi-path

effect is also shown in the estimation error between node 1 and 2 in Figure 6-13; the

error increase back up 14 hours after the deployment because multi-path distance is

always longer than the actual distance.

Figure 6-10 shows 46.08cm error 10 minues after the deployment; Figure 6-11

shows 39.12cm error 1 hour and 36 minutes after the deployment; Figure 6-11 shows

20.3cm error 12 hours and 30 minutes after the deployment. The corresponding

location estimation error for each node over 14 hours is shown in Figure 6-9. The

PLUG 5 was unlocalized due to its hardware failure. As shown in both plots, the

error improves as more data is available and this validates the author’s algorithm.

It is worth noting following to make the plots more understadable. Because of

the different locations of the PLUGs, all PLUGs did not receive the same number

of triggers. The distance between node 1 and 2 is collected over 102178 collected

samples. The distance between node 1 and 3 is collected over 54 samples. The

distance between node 1 and 4 is collected over 160 samples. The distance between

node 1 and 6 is collected over 217 samples. The distance between node 2 and 3

is collected over 102188 samples. The distance between node 2 and 4 is collected
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Figure 6-9: The error in location estimation using passive localization algorithm; the
error changes over 20 hours.

over 102382 samples. The distance between node 2 and 6 is collected over 102370

samples. The distance between node 3 and 4 is collected over 255 samples. The

distance between node 3 and 6 is collected over 210 samples. The distance between

node 4 and 6 is collected over 431 samples.
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Figure 6-10: Error analysis for passive localition 10 minutes after the PLUGs have
been deployed. It has 46.08cm error on average.

Figure 6-11: Error analysis for passive localition 1 hour and 36 minutes after the
PLUGs have been deployed. It has 39.12cm error on average.
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Figure 6-12: Error analysis for passive localition 12 hours and 30 minutes after the
PLUGs have been deployed. It has 20.3cm error on average.
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(a) For link between (node 1 and 2), (node 1 and 3),
(node 1 and 4), (node 1 and 6), and (node 2 and 3).

(b) For link between (node 2 and 4), (node 2 and 6),
(node 3 and 4), (node 3 and 6), and (node 4 and 6).

Figure 6-13: (a) (b) The error in pair-wise estimation based on the estimated time
delay; the error changes over 20 hours. 95
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Chapter 7

Closing Remarks

The goal of this thesis is to develop a distributed localization algorithm for the PLUG

indoor sensor network by analyzing sound and light sensory data from naturally

occurring phenomena. The author’s approach has two main phases: passive and

active. The system enters an active mode when its sensed region stays relatively

silent and stable. Otherwise, it stays in the passive mode. In the passive mode, each

node estimates its location based on sound sensory data and emulates the indoor

environment based on light sensory data. In the active mode, each node estimates its

location based on the occasionally generated mimics of natural phenomena, such as

sonic transients (pencil dropping, coughing or water glasses clinking) or light source

manipulation.

It is worth re-mentioning that, at least in the limited set of experiments that

we ran, active ranging performs better than passive ranging, which performs some-

what better than ranging just using RSS. Active ranging had 2.1cm error on average,

passive ranging had 50.96cm error on average, and ranging using RSS had 57.75cm

error on average. For particular data with active ranging, simulated active localiza-

tion achieved 2.98cm error on average, whereas the simulated localization using RSS

ranging achieved 197.68cm error on average in radio silent environment. Simulated

active localization achieved 7.97cm on average, whereas simulated passive localiza-

tion achieved 103.06cm on average. Passive localization in a 20-hour long deployment

showed that the error improves over time as more sensor data is available. In a test
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with 6 PLUGs in 7m by 5m dorm hallway, we achieved passive localization errors

of 46.08cm, 39.12cm, and 20.3cm when 10 mintues, 1 hour and 36 minutes, and 12

hours and 30 minutes passed after deployment respectively. Due to hardware lim-

itations, active localization in real deployment was not executable. However, the

author believes that modest hardware improvement will make it perform as well as

the simulation for active localization. Although both ranging schemes and localiza-

tion algorithms show good performance, there are still many possible extensions of

the author’s work as outlined below.

7.1 Future Work

Passive ranging can be improved by transmitting the entire sound wave and using

the matched filter. However, the author worries that this might cause excessive

network congestion. Currently, network packets with a maximum of 64-bytes can

be sent at one time. The sound wave, recorded for 0.5 s in 4 KHz and 10 bits,

has 0.5 s × 4000 Hz × 10 bits × 1 byte
8 bits = 2500 bytes size. This requires 2500

64
= 40

transmissions and receptions to send the entire 0.5 second long sound wave. If this

is done by PLUGs in a neighborhood, this will certainly cause network congestion,

so the author decided to rule this option out. However, this issue can be avoided in

two ways. Problems from traffic can be minimized by adopting more sophisticated

network schemes using TDMA, CDMA, or FDMA, or any combination of these,

which the author believes is plausible. Then, transmitting the entire sound wave and

using a matched filter to estimate the distance would greatly improve the passive

ranging performance. The second option is transmitting a compressed version of the

waveforms instead of entire sound wave. Vacher [88] showed that 7 wavelet coefficients

(in a wavelet coefficients tree of 3 depth levels) can reasonably model sound transients

and hence might improve the passive ranging accuracy.

In addition, because the PLUG is also equipped with a vibration sensor, it can

also be useful to extract additional context; for example, different PLUGs can be

assumed to be on the same surface if they detect the similar vibration behavior, just
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like different PLUGs are assumed to be in the same room once they detect a similar

light pattern. The entire localization system introduced in this thesis focuses on the

room-scale localization. However, a similar localization method can be targeted for

floor-scale use with simple modifications.

7.2 Conclusion

Technology Review [70] has picked sensor networks as one of top 10 emerging areas

in its 2006 special report. Sensor networks have an enormous number of potential

applications and more that are not even possible to list. However, there are still much

research that needs to be done to make them robust and useful; localization especially

indoors, is one of the issues. In this thesis, the author attempts to localize the PLUG

sensor network and to draw coarse indoor environmental context (e.g. room borders)

based on the sound and light sensory data collected from the PLUGs. However, there

are many more interesting extensions of this work, and the author would like to invite

the readers to explore those options.

99



100



Appendix A

Brief Technical Detail for

Networked Cameras [25]

Funiak [25] formulates SLAT as a probabilistic inference task, where he maintains

a joint distribution over possible object state. object state includes the object’s

velocity, location, and camera poses, given the images collected by the network. He

focuses on two issues: algorithm’s updatability and its scalability. First, let us talk

about techniques used to update calibration. As often as it is in the field, representing,

either exactly or approximately, unknown variables as Gaussian simplifies the prob-

lem. The author thus assumes unknown linear variables as Gaussian distribution and

employs relative over-parameterization (ROP) and conditional hybrid linearization

to approximate nonlinear variables as Gaussian. With a Gaussian representation of

variables, ideas from Kalman filtering have been used to update variables with new

observations. More precisely, the dynamic probabilistic SLAT process is divided into

three phases: estimation, prediction, and roll-up. The estimation phase at time t

is based solely on the previous belief state at t − 1 and current observation ot.

belief state at time t represents updated estimations for variables, object’s state

and camera pose, based on observation up to time t.

Getting into a little more technical detail, let me briefly explain relative over-

parameterization (ROP) and conditional hybrid linearization. Let’s take a step back

and think about what we are actually estimating. Although our goal is to estimate
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camera pose, the object state needs to be estimated as well. ROP provides a way

to represent both the camera pose and the object state. Object state is represented

with two variables, Mx
t , x-coordinate at time t, and My

t , y-coordinate at time t, and

these two variables are updated using following matrix operation:

Mt =



Mx
t

My
t

M ẋ
t

M ẏ
t


=



1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1





Mx
t−1

My
t−1

M ẋ
t−1

M ẏ
t−1


+



0

0

ε

ε



where (Mx
t , My

t ) is the object position and (M ẋ
t , M ẏ

t ) is its velocity, and ε is a white

noise variable giving additive noise in velocities. The camera pose is represented by

three variables, u, v and φ. u is the distance from the object to its projection on the

camera’s image plane and v is the distance from this projection to the camera’s center.

As opposed to other conventional coordinate systems such as Cartesian coordinates

or Polar coordinates of the camera and object, ROP makes it easier to approximate

variables as Gaussians to apply Kalman filtering for the large camera network.

There is one other nonlinearity that needs to be approximated: the periodicity

of the angle φ. In order to exploit the simple property of Gaussian variables, the

periodicity needs to be eliminated. This problem is addressed in hybrid conditional

linearization. Summing over all terms conditioned on several fixed angle (φ) values,

we have a mixture of Gaussians. A mixture of Gaussian can be simplified to a single

Gaussian by instantiated observation. This whole linearization process is called hybrid

conditional linearization.
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Appendix B

Alternate Quadratic Interpolation

Here, the author uses every data collected to find the best-fit quadratic algorithm,

y = ax2 + bx + c, by minimizing following value:

∑k
i=1(yi − (ax2

i + bxi + c))2

where yi and xi for i = {1, 2, ..., k} are cross-correlation values and its correspond-

ing time stamp and k is the number of available data points (See Figure B-1 for

illustration). In other words,

{a, b, c} = arga,b,c min

[
k∑

i=1

(yi − (ax2
i + bxi + c))2

]

Thus,

a = arga
d
da

∑k
i=1(yi − (ax2

i + bxi + c))2 = 0

arga

[
a

∑k
i=1 x4

i +
∑k

i=1(bx
3
i + (c− yi)x

2
i )

]
= 0

Thus,

a = −
∑k

i=1(bx
3
i + (c− yi)x

2
i )∑k

i=1 x4
i
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(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

(x5,y5)

(x6,y6)

interpolated quadratic parabola with least minimum square error

Figure B-1: Here, k = 6

Similarly,

b = −
∑k

i=1
(ax3

i +(c−yi)xi)∑k

i=1
x2

i

c = 1
k

∑k
i=1(yi − ax2

i − bxi

Setting p =
∑k

i=1 xi, q =
∑k

i=1 x2
i , r =

∑k
i=1 x3

i , s =
∑k

i=1 x4
i , m =

∑k
i=1 yix

2
i , n =∑k

i=1 yixi, and, l =
∑k

i=1 yi and after simple manipulation, we have:


s r q

r q p

q p k




a

b

c

 =


m

n

l


Rearranging, we have:


a

b

c

 =


s r q

r q p

q p k


−1 

m

n

l
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From this, a and b are calculated. Just like the calculation in Chapter 5, the corre-

lation is maximum at − b
2a

and the estimated distance is − 34800b
4000×2a

. As mentioned in

Chapter 5, this scheme is mathematically more robust because it takes every collected

sample into account for the estimation. However, this method does not perform bet-

ter than the one presented in Chapter 5 because the estimation is sensitive to outliers;

most of the structure in the correlation peak is defined by the few maximum points.
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