
Ubicorder: A Mobile Interface to Sensor Networks

by

Manas Mittal

B.E. Computer Engineering, Delhi University, India (2006)

Submitted to the Program in Media Arts and Sciences
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author
Manas Mittal

Program in Media Arts and Sciences
August 8, 2008

Certified by
Joseph A. Paradiso

Associate Professor of Media Arts and Sciences
Program in Media Arts And Sciences

Thesis Supervisor

Accepted by
Deb Roy

Chairman
Academic Program in Media Arts And Sciences

2

Ubicorder: A Mobile Interface to Sensor Networks

by

Manas Mittal

Submitted to the Program in Media Arts and Sciences
on August 8, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

This thesis presents the Ubicorder. The Ubicorder is a location and orientation aware
sensor network browsing and interactive visualization system together with in-situ
event definition and identification (termed EDITY). The mobile browser allows real-
time viewing of sensor network data, and enables the user to easily establish corre-
lation between physically observed phenomena and their sensor signature. Based on
the observed correlations, events are triggered every time a given set of sensor-value
conditions are satisfied. Event rules can then be recursively combined to detect com-
plex physical phenomena. Through a first-use user study, we evaluate the system for
its usefulness and usability.

Thesis Supervisor: Joseph A. Paradiso
Title: Associate Professor of Media Arts and Sciences, Program in Media Arts And
Sciences

3

4

Ubicorder: A Mobile Interface to Sensor Networks

by

Manas Mittal

The following people served as readers for this thesis:

Thesis Reader
Prof. Steven Feiner

Professor of Computer Science
Columbia University, New York City, NY, USA

5

6

Ubicorder: A Mobile Interface to Sensor Networks

by

Manas Mittal

The following people served as readers for this thesis:

Thesis Reader
Prof. Samuel Madden

Associate Professor of EECS
Massachusetts Institute of Technology, Cambridge, MA, USA

7

8

Acknowledgments

Working on this thesis, has been a remarkable experience. It has given me a unique

opportunity to think deeply about a single topic, for a sustained period of time. For

making all these things possible, thanks is due to many people.

To Joe Paradiso, who gave me freedom to explore and pursue new ideas. His

encouragement and advice have made working on this thesis a memorable experience.

To my readers, Steve Feiner and Sam Madden, for their in-depth comments,

insights and helping me establish a broader context for this work. Steve was extremely

meticulous, and provided a unique HCI perspective to the work. Sam provided big

picture ideas and help situate the work. Together, they were the best readers I could

have had.

To Scott Klemmer, Bjoern Hartmann, and the Stanford HCI crew, for

introducing me to research, showing me how, and giving me the chance to.

To Patrick Winston, for always keeping me excited about learning, and for

injecting humor and perspective into graduate school.

To Ted Selker, for giving me an opportunity, for sharing the joy of building, and

starting the ball rolling.

To Media Labbers, Drew Harry for help with the interface, Adam Kumpf for

getting me unstuck with Java.

To Henry Holtzman and Ishwinder Kaur, for help with the MERL sensor

network.

To friends at the Responsive Environment Group, Mathew Laibowitz, for all

9

the help, and the punchlines that kept me going. Behram Mistree for funny con-

versation and 7-11 trips, and Nan-Wei Gong, who warned me of dire effects should

I step out of the office without finishing, and to Bo Morgan, for intellectual insights

and animated discussion about AI.

To Lisa Lieberson and Linda Peterson for being efficient enough to be (almost)

never noticeable, but always enabling.

To Peggy and Brian, for being around the lab when nobody else was, and for

reminding me about the journey of life.

To friends, Brandon Taylor, Winnie Cheng, Ambika Goel, Kyle Buza,

Takashi Okamoto, Mariya Barch, Susan Yun and Manu Gupta for making

life fun outside of the lab.

To Minna Ha, for being the best friend anyone can have.

Finally, to my Parents, supportive, warm and an epitome of affection, who would

never wonder why their name was last, when it should have been the first.

10

Contents

List of Figures 15

List of Tables 17

1 Introduction 19

2 Background 23

2.1 Tricorders . 23

2.2 Browsing Sensor Network Data . 26

2.3 Augmented Reality . 30

2.4 Programming by Demonstration . 32

2.5 Query Languages, Stream Processing, and Data Acquisition from Sen-

sor Networks . 34

2.6 Sensor Scripting . 36

3 Task Model And Interface Design 39

3.1 Browsing . 41

3.1.1 Navigation and Context . 43

3.1.2 Point and Select . 44

3.2 EDITY(Event Definition and IdenTification sYstem) 46

3.2.1 Motivation . 46

3.2.2 Overview . 47

11

3.2.3 Relation with Browsing . 47

3.2.4 Role of Mobility . 47

3.3 EDITY: Grammar . 48

3.3.1 Definitions . 48

3.3.2 Formal Grammar . 50

3.4 EDITY: Simple Rules: Definition, Visualization and Actuation 52

3.4.1 Selecting a Sensor . 52

3.4.2 Filters . 53

3.4.3 Defining and Manipulating Decision Rules 54

3.4.4 Linking Actions, Recording Simple Rules 57

3.5 EDITY: Compound Rules: Combining Rules 58

3.5.1 Design Logic . 58

3.5.2 Boolean Combination of Simple Rules 59

3.5.3 Time Dependency . 62

3.5.4 Linking Actions, Recording Compound Rules 63

3.5.5 Advantages of Rule Setting 64

3.6 Sample Walkthrough . 65

3.6.1 Simple-Rule A,B,C,D,E . 66

3.6.2 Compound Rule (i) . 66

3.6.3 Time Slack . 66

3.6.4 Result . 67

3.6.5 Simple-Rule F . 67

3.6.6 Compound Rule (ii) . 67

3.6.7 Overall Discussion . 68

4 Middleware for Inference and Visualization 69

4.1 Overview . 69

4.2 Example Interface . 70

12

5 Software And Hardware Implementation 73

5.1 Summary and Goals . 73

5.2 High Level Description of the System 74

5.3 Hardware Overview . 74

5.3.1 Mobile Computer System . 74

5.3.2 Extra Hardware . 75

5.4 Sensor Networks . 78

5.4.1 MERL Sensor Network . 78

5.4.2 Spinner Sensor Network . 79

5.5 Software . 80

5.5.1 Software Environment . 80

5.5.2 Discussion . 82

6 Experiment 87

6.1 Introduction . 87

6.2 Study Setup . 88

6.2.1 Infrastructure . 88

6.2.2 Participant Profile . 88

6.3 Study Design . 91

6.3.1 Profile Survey . 92

6.3.2 Introduction . 92

6.3.3 Task . 92

6.3.4 Exit Survey . 95

6.4 Observations and Implications . 95

6.4.1 Completion . 95

6.4.2 Defined Rules . 95

6.4.3 Post-Completion Questionnaire (Likert Scale Evaluation) . . . 96

6.4.4 Post-Completion Questionnaire (Subjective Evaluation) 98

6.5 Successes . 99

13

6.5.1 Browsing . 99

6.5.2 Defining, Manipulating and Using Rules 100

6.5.3 Learning about Sensors and Sensor Networks 101

6.5.4 Interface . 102

6.6 Shortcomings . 103

6.6.1 Limitations and Critical Analysis of the User Study 103

6.6.2 Shortcomings of the System 104

7 Conclusions and Future Work 107

7.1 Future Work . 107

7.1.1 Smaller, Lighter, and Faster 108

7.1.2 Suggesting Rules . 108

7.1.3 Expressivity of Rules . 109

7.1.4 Generalizing the Interface . 110

7.1.5 Interface . 110

7.1.6 Building a Community . 111

7.1.7 New Applications . 112

7.2 Concluding Remarks . 112

A User Study Material 113

B Firmware: USB Code (C) 117

C EDITY Logic Code (Java) 123

Bibliography 145

14

List of Figures

2-1 The Fictional Starfleet Tricorder . 25

2-2 Responsive Environments Tricorder 26

2-3 SensorMap . 28

2-4 Augmented Reality Browsing . 30

2-5 Exemplar, Stanford HCI . 32

2-6 Flexigesture . 34

3-1 Task Model . 40

3-2 Holding the Ubicorder . 41

3-3 Browsing Interface . 42

3-4 Browsing: “Seeing” a person walk underneath the sensors 44

3-5 Browsing: Conveying Sound Levels 45

3-6 Browsing: Conveying Light Sensor Readings 45

3-7 Size of user’s icon, changing to indicate localization resolution 45

3-8 Directed Acyclic Graph Based Representation of Rules 49

3-9 Screen-shot of the Simple Rule Interface 51

3-10 Translation of Sensor Data to Inferences 53

3-11 Screenshot of the Compound Rule Interface 60

4-1 Simple Interface to Define Walking Rules : Initial State 70

4-2 Simple Interface to Define Walking Rules: Marking the Path 71

4-3 Simple Interface to Define Walking Rules: Direction of the path . . . 72

15

4-4 Simple Interface to Define Walking Rules: Manipulating the Time De-

pendency . 72

5-1 Additional Hardware . 77

5-2 MERL Sensor Node . 78

5-3 Spinner Sensor Node . 79

5-4 Early Flash Interface . 81

6-1 Test Setup: Location of Nodes . 89

6-2 Participant Profile: Domain Knowledge About Sensor Networks . . . 90

6-3 Participant Profile: Related Knowledge 91

6-4 The Microscope Workbench and Ambient Light 93

6-5 Spinner Node Deployed Next to the Microscope Workbench/Soldering

Station . 94

6-6 Usefulness of the Ubicorder . 97

6-7 Usability of the Ubicorder . 98

6-8 General Questions about the Ubicorder, and sensor networks 99

6-9 Essay type answers to: What do you like most about the Ubicorder . 100

6-10 Essay Type Answers to: What do you not like about the Ubicorder . 101

6-11 Essay type answers to: Did using the Ubicorder give you new ideas for

inference rules that you could design ? If so, please mention some below102

6-12 Essay type answers to: What do you think about the idea of being able

to see, in real-time, the sensor data collected. Would you want such a

system, to say, control your home lighting? 103

6-13 Essay type answers to: Any additional comments, and last thoughts ? 104

A-1 consent form . 114

A-2 Instructions . 115

16

List of Tables

3.1 Filters . 54

5.1 Threads: Functionality, and Lifetime 84

5.2 Class Structure of Ubicorder’s Software 85

5.3 Class Structure of Ubicorder’s Software(continued) 86

17

18

Chapter 1

Introduction

Ubiquitous computing [61] propounds a vision of computation woven seamlessly into

our everyday life. This work approaches ubiquitous computing from the perspective

of sensor networks.

Sensor networks are sets of electronic sensors that can compute and communicate

to determine sensor data patterns not visible otherwise. Data thus collected from

these sensor networks can “extend our perception of the physical world, in both

space, time and modality” [39]. Recent advances now make it possible to augment

almost all devices with wireless transceivers and processors.

For any sensor network platform to be effective for ubiquitous computing applica-

tions, the system must be versatile enough to be usable in scenarios and applications

not originally envisioned by the designer. One approach for providing such flexi-

bility is to make the system easily user programmable. This enables end-users to

drive the application scenarios, and to utilize their contextual knowledge about the

environment.

Deploying a sensor network for ubiquitous computing involves, first, choosing and

deploying sensor nodes, second, programming the system to infer meaningful infor-

mation from sensor data, and third, utilizing this information for user convenience.

Observing and interpreting data from these sensor networks is an involved task, and

19

is often a limiting factor in the applicability and deployability of such networks for

ubiquitous computing. Applications are frequently “hard-coded,” further restricting

use to predefined applications. Such a system does not fully utilize the end-user’s

context and domain knowledge about the environment and the application.

The focus of this work is on the second and third steps, i.e., assisting the user

in programming the system to infer meaningful information from sensor data, and

to help users utilize the sensor data. It does so in three ways; first, by helping the

user to discover the sensor network, i.e., locate the sensor nodes, and the sensors they

have. Second, as an aid to view real-time sensor data, i.e., view, explore and navigate

through large quantity of sensor data, and third, by providing tools to help user

interpret the sensor data, i.e., by enabling users to define, manipulate, evaluate and

tweak inference rules. The system then processes these inference rules, identifying for

the user when inferred events occur.

We refer to the first two activities, i.e., discovering and viewing sensor data as

browsing. The Ubicorder is a mobile device that allows users to view near-real-

time sensor data from multiple sensors. Discovery and exploration are facilitated by

incorporation affordances such as selection of sensor node by physically pointing to

it, and by using context information about the user’s orientation and location.

The challenge in viewing sensor data is to make the system scalable, i.e., view large

amounts of data, from a large number of sensor nodes. One approach to address this

constraint to to recognize that the user is interested is raw sensor data only to the

extent that it enables inferences of occurrence of events of interest. The Ubicorder

therefore provides explicit support to design inference rules that translate sensor data

to meaningful higher-level information.

We introduce a grammar and interface to aid in the definition, manipulation and

tweaking of inference rules. Borrowing from the programming by example/demon-

stration communities, the Ubicorder’s EDITY (Event Definition and Identification

System) allows users to define inference rules by performing or observing the action,

20

correlating it visually with the sensor data thus observed corresponding to this ac-

tion/phenomena, and thereby designing a simple rule to infer when such actions in

the future. The Ubicorder can then detect these events in the future. The mobility

of the Ubicorder allows the user to be at the location of event of interest, and quickly

match the inferred action with the ground truth.

Finally, we believe that the Ubicorder will make sensor networks more accessible

and useful for a larger community of users. The Ubicorder’s browsing system is

targeted for ordinary end-users. While EDITY system has a higher threshold for use,

we hope that the graphical, easy to use interface will promote experimentation by

ordinary end-users.

Contributions

The major contributions of this thesis are :

• A mobile sensor data browsing system that enables easy exploration of sensor

data, and in turn, augments human perception over “space, time, and modality”

[39].

• A system to enable the user to create inference rules corresponding to data

patterns to aid in interpretation of sensor network data.

• An interface that allows such rules to be evaluated, experimented with, and

tweaked in-situ.

.

21

22

Chapter 2

Background

This work builds upon, and draws inspiration from several areas of research. This

chapter contrast this work from prior art, and motivates the design of the functionality

and features of the Ubicorder.

2.1 Tricorders

The Ubicorder is inspired by the “Starfleet Tricorder,” a fictional device from the

science-fiction TV series, Star Trek [26]. The tricorder is a handheld device that

scans an area, and interprets and displays the data resulting from the scans [33,

63]. When pointed in a particular direction, the tricorder uses its sensors (built into

the handheld) to scan for virtually any information about that direction. Typical

scenarios ranged from scanning for “novel life forms” and “energy sources” to the

more mundane readings for radiation levels and atmospheric pressure. Similar to the

Starfleet tricorder, the Ubicorder scans, interprets, and displays information about

the direction in which it is pointed. However, unlike the tricorder, the Ubicorder does

not contain all the sensing abilities within the handheld, but instead gleans such data

from locally available sensor network.

Many attempts have been made to instantiate such a tricorder. These efforts can

23

be categorized into two main categories: first, researchers have built new sensors that

provide Star Trek tricorder-like ability to sense from a distance; and second, projects

that use commonly available sensors and attach them to a handheld computer.

In the former category, devices such as portable mass spectrometers have been

touted to provide tricorder-like functionality. For example, in their paper [14] in

Science, the authors term a briefcase sized mass spectrometer that can “scan” mass

spectra on ordinary samples as a tricorder. Although this paper describes an early

research prototype, with time, such a sensor will become feasible and inexpensive.

In turn, interpreting data from such devices and appropriately displaying it to users

would become vitally important.

The TR-107 Tricorder Mark 1 [34] by Vital Technologies Corp., is an example of

the latter type of device. This device is essentially a collection of sensors attached

to a LCD display. Unfortunately, the sensors only report basic readings from their

immediate surroundings. There is an Electromagnetic Field Meter, a Colorimeter and

a Light meter. Others have released software that “simulates” the interface of real

tricorder, designed to execute on a palm pilot(handheld) [30]. The palm pilot version

does not incorporate any environmental sensors, and the software exists primarily as

entertainment.

In principle, the primary focus of these tricorder replicas is to either collect or

display data. Like the original Star Trek tricorder, the Ubicorder collects, displays

and “interprets” the data, as discussed later.

This work has evolved from the Responsive Environments (Resenv) tricorder. De-

veloped by the MIT Media Lab’s Responsive Environments group (jointly with Josh

Lifton, Michael Lapinski, and Joe Paradiso) [43, 40]. The Resenv tricorder is a loca-

tion, orientation, and network-aware handheld device used to interface in real-time

to a wireless sensor network embedded in a surrounding domestic and occupational

environment. Physically, the Resenv tricorder uses a Nokia N770 Internet tablet for

display and user input purposes, a wireless radio, a 3-axis compass with electronic

24

Figure 2-1: The Starfleet Tricorder, (a) The Art of Star Trek Version , (b) The Next
Generation version. Image c©Paramount Pictures/CBS Studios

gimballing to ascertain absolute orientation in three dimensions (with up to 80o tilt

compensation), a battery pack power supply, and a plastic case to hold it all together.

The device knows its approximate orientation thanks to its electronic compass. This,

combined with coarse localization (based on Radio Signal Strength Indicator(RSSI))

from nearby embedded sensor nodes, allows for real-time point-and-browse function-

ality while physically roaming within the sensor network itself.

The Resenv tricorder polls and displays data from the “Plug” [41, 40] sensor

network that was deployed on the third floor of the MIT Media Lab. The network

comprised of 30 such “Plug” nodes. The “Plug” is a power strip augmented with

sensors and a wireless radio. It comes with light, temperature, vibration and sound

sensors. Additionally, it also reports the (electric) current and voltage draw from

each of its power points.

The Resenv tricorder’s data visualization is in the form of icons overlaid over a

two-dimensional map of the third floor of the MIT Media Lab. The icons correspond

to the “Plug”sensor nodes, and change form to represent sensor data. For example,

the icons jitter to indicate vibration, display radial lines that represent light levels,

a variable speed rotating needle represents power consumption, concentric circles of

varying diameter indicate sound, and the icon color changes if there is a loss of wireless

connectivity. An individual sensor node can be selected by tapping on its icon. Doing

25

Figure 2-2: The Resenv Tricorder, (a)Form Factor (b) User Interface [43]

so brings up a set of seven bar graphs, each corresponding to a moving average of a

single sensor reading (Temperature, Light, Motion, Vibration, Current draw for each

of the four outlets).

While the Resenv tricorder scans the area and displays the raw sensor data streams

of the selected sensor node, it is difficult to simultaneously monitor sensor data from

multiple nodes. Multiple bar charts can be displayed, but the limited screen real

estate limits the number of charts that can be coherently displayed. Additionally,

Interpreting data from such multiple charts is difficult for users. The changing icons

only convey the data coarsely, i.e., the approximate value. More accurate values may

be essential for meaningfully inferring form the sensor data.

In order to build a more scalable system, we recognize that the user’s interest in

the raw data is limited to the extent that such data can be used to infer the occurrence

of some event. The Ubicorder therefore provides explicit support to design rules that

translate sensor data to meaningful higher-level information.

2.2 Browsing Sensor Network Data

There are varied applications for sensor networks, and these applications drive the

constraints with regards to displaying and processing of such data. Some sensor net-

works are deployed for data collection, with the data analyzed primarily by scientists

26

and engineers. For example, in [47], the authors describe a sensor network deployed

to monitor bird habitats. In another example, [32], researchers deployed a network

of sensors to monitor the long term health of bridges, and other infrastructure. Such

applications often involve no interfaces beyond graphs, and rely on expert knowledge

of the user to draw conclusions.

Other sensor networks are designed to be used by ordinary users. For example,

“Streetline” [59] is a parking space monitoring system, soon to be deployed in the city

of San Francisco, California, USA. The system uses a network of wireless sensors to

help car drivers find empty parking spots. While the information has to be displayed

in near-real-time and intended for ordinary users, the application is narrowly defined

and not readily extensible.

The situation is often different in ubiquitous computing (ubicomp) deployments

of sensor networks. Most ubicomp applications require the gleaned information with

little or no latency, with the visualization designed to be understandable enough for

ordinary users. Additionally, ubicomp targets ordinary users in typical environments

(home, office) and a deployed sensor network would ideally be shared across differ-

ent applications. Therefore, the interface should be versatile enough to be shared

between applications. Finally, given the scope of ubiquitous computing applications,

the interface must be usable on a mobile/portable device.

The Ubicorder attempts to build such a general purpose sensor network interface

designed for ubiquitous computing applications. The realm of general purpose sensor

networks, and the interfaces thereof, provide for some interesting comparison with

the Ubicorder.

Microsoft Research’s SensorMap Project [54] is an example of one such system.

SensorMap is a general purpose platform for exposing sensor data culled from a variety

of sources. The interface consists of a Google maps [20] like map overlaid with icons

indicating the location of sensor node deployments. The icons encode sensor value.

For example, the color of the car icon changes from green to red to indicate traffic. The

27

Figure 2-3: SensorMap Interface, (a)Web Page Snapshot(b)Icon Overlay [54]

authors hope that other application developers will build upon this interface and the

exposed sensor data, similar to Google map mashups (web applications that combine

data from multiple sources to create new and interesting applications, for example,

a service that pulls “for rent” classifieds from one web site and overlays them on a

map) [12] but with real-time sensor data instead. While the interface is for sensors

spread out over a few miles rather than indoors, the intent to expose sensor data

in order to encourage exploration of sensor data parallels the Ubicorder’s objective.

SensorMap encourages such exploration by developers. These developers would, in

turn, make mashups to be used by the general populace. The Ubicorder’s browsing

aspect targets ordinary end-users, while the event definition/manipulation subsystem

(termed EDITY) targets “advanced” end-users and “sensor network utility workers”.

. We hope that given the graphical nature of the interface, ordinary end-users will be

able to learn to use EDITY over time.

Researchers at Mitsubishi Electric Research Laboratories(MERL) [28] in collab-

oration with Ishwinder Kaur [31] (later at the Media Lab) have used a network of

passive infrared (PIR) sensors mounted on the ceiling to collect data and use it for

indoor space usage. A similar setup of such sensors now exists at the Media Lab, and

28

is one of the sensor networks polled by the Ubicorder. The authors also describe a

“gestural query interface” where the query is in the form of a path drawn on the map.

The system then does SQL queries corresponding to given sensor nodes and displays

when the user might have taken the path. Our work differs in several respects. First,

the MERL system is tied to a particular type of sensors (PIR movement sensors), in

a particular configuration (ceiling-mounted), and for a particular application. Our

system, on the other hand, is designed for any set of sensors (binary, discrete and

continuous output), placed in any configuration for general purpose examination of

sensor data. Second, our interface is designed to allow and encourage quick, end-user

exploration of sensor data, and declaration of sensor network templates. Third, the

Ubicorder is portable and visualizes near-real-time sensor data, again with an intent

to assist the user in correlating sensor data with physical actions or phenomena of

user interest. The MERL system, on the other hand, typically runs on large, non-

portable displays, and visualizes previously recorded data. Finally, the objective of

the MERL work is to support analysis of space utilization using sensor data. Instead,

our work aims to support end-users in utilizing sensor network data.

Mobile platforms are often used as sensor network configuration tools. For exam-

ple, the Great Duck Island sensor network project [47] for habitat monitoring was

one of the first systems to use a handheld Personal Digital Assistant (PDA) as a net-

work management tool. Going beyond network management to actual sensor data,

in [13], the authors use a PDA to display the availability of nearby conference rooms.

Similarly, Maroti et al.’s [48] Sniper localization system uses a handheld as an output

device, i.e., to display the Sniper’s location as computed by the system.

Finally, the idea of a general purpose sensor network user interface ties well with

the idea of Mobiscopes [4]. A mobiscope refers to a collection of distributed mobile

sensors projected into a taskable sensing system that is able to achieve high-density

sampling of a given area through mobility. An individual sensor node may participate

in more than one mobiscope. The Ubicorder represents a mechanism to browse the

29

Figure 2-4: Augmented Reality (AR) Browsing [9]

available sensor network infrastructure, and build, deploy, and tweak mobiscopes.

2.3 Augmented Reality

The Ubicorder aims to empower users to interact with the world around them. The

field of augmented reality (AR) has similar objectives, and inspired us to work in

this direction. AR deals with “augmenting” the real world with computer-generated

information. In one approach, a transparent heads up display is used, in which

computer generated information and visuals are overlaid with objects. An example

of an AR interface is a heads up display system used in military aircraft. For example,

information about the horizon is overlaid over the pilot’s view.

Feiner et al. [18] laid out the foundations of AR as a mechanism to interact with

the surrounding real world. In another paper, the authors describe “The Touring

Machine,” an AR system for exploring urban environments [17]. The system overlays

3D graphics over buildings and locations, presented using a Heads Up Display. The

system is location- and orientation-aware (using a differential GPS, magnetometer

and inclinometer). The Ubicorder is similar to the Touring Machine in several ways.

30

It too is location and orientation aware, although it is targeted for indoor applications

and ergo uses radio signal-strength-based localization rather than GPS. Additionally,

the idea of presenting information co-located with the site it describes is an impor-

tant motivation for the Ubicorder. AR demonstrates the importance of co-located

information and display of that information. In the realm of looking at sensor net-

work data, this co-location of object and information is often ignored. The Ubicorder

experiments with this idea.

A more direct inspiration for the Ubicorder came from Jim Youll’s work on

“Periscope” and “Wherehoo” [64], at the MIT Media Lab. The periscope was a

tangible browser for Internet media, built into an old, large format film camera with

a LCD display replacing the film back. By panning this camera on a 1D tripod

(instrumented with a shaft-encoder), the user could find digital content by physi-

cally pointing it towards physical objects and geographical places. The associated

“Wherehoo” server binds digital information/media to a real world location and time

interval.

There has recently been more interest in the ideas of pointing and browsing of

information. Quack et al. recently presented a system that allows users to request

information about an object by taking a picture of it [57]. The user can therefore

use a camera enabled cell phone to “browse” information linked to physical spaces.

The system uses an object recognition method that identifies the object from a query

image. The recognition algorithms are assisted by location information (acquired

through a GPS). Similarly, Takacs et al. [60] demonstrate an AR system that works

by matching an image taken by a GPS-equipped cell phone against a set of location

tagged locations.

Finally, we would like to mention that there are several application scenarios for

a Ubicorder-like orientation- and location-aware device, outside of the scope of the

original Star Trek tricorder. For example, researchers at the University of Wash-

ington describe an indoor navigation system [44, 25] (for individuals with cognitive

31

Figure 2-5: The Exemplar System [23]

impairments) which uses a tricorder-like location- and orientation-aware PDA. Their

system uses computer vision based markers for localization and orientation detection.

The Ubicorder could also be used like this device.

2.4 Programming by Demonstration

Programming by demonstration/example systems [15, 38] aim to empower typical

users to instruct the system to perform useful tasks. Often the systems involve record-

ing what the user does, and inferring user intent.

The Ubicorder encompasses ideas of programming by demonstration. A typical

scenario involves the user performing or observing an action/phenomena, correlating

it visually with the sensor data thus observed corresponding to this action/phenom-

ena, and thereby designing a simple rule so that a similar action is detected in the

future.

32

The Exemplar [23] (Figure: 2.4)project comes closest to the programming by

demonstration/sensor scripting ideas presented in our system. Exemplar is a pro-

gramming by demonstration system for scripting sensor interactions. Aimed at de-

signers, the project is intended to lower the threshold for incorporating sensors into

design prototypes. A typical interaction is programmed in three steps. First, designers

connect sensors to a computer (a set of sensors and interface boards are supported).

Next, the user performs the action that they want the system to detect in the future.

The interface provides a sensor space visualization of the corresponding sensor signal.

Next, the interface enables the user to perform simple conditioning of sensor data

streams, such as de-bouncing the signal and introducing hysteresis. The user then

defines the rule. The rule could be either in the form of thresholds, or a form of time

invariant correlation (Dynamic Time Warping) with a signal template that the user

can record. The user can then test the interaction, viewing the results in real-time.

The team’s CHI paper [23] discusses user study that involves users designing a smart

helmet that is augmented with an accelerometer, similar to the Media Lab’s smart

helmet [58]. The participants author an interaction where tilting the helmet to the

side triggers turning on the corresponding blinkers. The Exemplar visual interface

is similar to ours in several ways, and is discussed in depth in Chapter 3. This au-

thor contributed to the design and implementation of the Exemplar system. The

experience has provided valuable design insights for the Ubicorder.

Merrill et al.’s Flexigesture system [49, 50] (Figure: 2.4 is an electronic musical

instrument that allows flexible assignment of input gesture to output(sound). Devel-

oped in the Responsive Environments Group at the MIT Media Lab, the system is

programmed and trained by the user performing the action. The sensor signature

thus generated is recorded as a template that is later matched using a form of time

agnostic correlation (Dynamic Time Warping.)

Dey et al.’s “a CAPella” [16] is a system to enable end-users to prototype context-

aware applications to be by demonstration. This work is related to the Ubicorder

33

Figure 2-6: Flexigesture [49, 50]

in many ways. First, it makes a strong case for the idea of empowering end-users

to create context aware applications, the chief arguments being the user’s implicit

understanding of the environment. Second, it incorporates the idea of programming

by demonstration for context aware applications. The user “marks” the time sections

that are relevant, and performs the actions that should be triggered in that scenario.

The system creates a corresponding recognizer. Finally, it underscores the importance

of an in-situ system for creating and editing such rules. The a CAPella system relies

on machine learning to extract rules from time series data.

2.5 Query Languages, Stream Processing, and Data

Acquisition from Sensor Networks

There have been significant research in the systems community in building new query

languages and stream processing engines for sensor network applications. Their work

centers around the themes such as reducing latency, increasing computational and

power efficiency, and addressing scalability and robustness concerns. The emphasis

34

of their work is not the user interface of the system. The Ubicorder complements this

work perfectly: it can serve as the front-end for accessing and using such systems.

Madden et al.’s TinyDB([45, 46]) is a query processing architecture for collecting

and organizing data from nodes running the TinyOS [36] operating system. The

TinyDB system allows user to write modified form of SQL Queries, and then optimizes

the execution of such a query for conserving power.

The Ubicorder also enables the user to graphically define a set of rules to be applied

on sensor data. When true, these rules indicate the occurrence of an event. The

database community has done significant work in optimizing the detection of events

in sensor data streams. For example, Abadi et al.’s Aurora [3] and Borealis [2] present

a stream oriented set of operators and optimizations designed for sensor network

queries. For example, the Filter operator selects the data satisfying a particular

condition, and “routes” it based on the conditions it satisfies. Such a system is well

suited to be the Ubicorder’s rule checking back-end.

Gyllstrom et al.’s SASE [21] presents a system designed for specifying and de-

tecting complex data patterns. While their system is designed specifically for data

collected from RFID devices (time, location), their intent is to provide an optimized

language correlating and identifying higher order events. The Ubicorder’s intent is

similar, although it is more generic. A system like SASE could be incorporated as a

specific “sensor-module” for the Ubicorder.

The Ubicorder needs to acquire sensor data from the network. Acquisition of

sensor data from the network is a complex task, with multiple opportunities for

optimization for power and latency. Mueller et al. present SwissQM [53], a virtual

machine that presents the sensor network via a single gateway. The system also allows

“event rules” to be pushed further down, and optimizes the gateway for a given set

of event rules.

35

2.6 Sensor Scripting

The idea of scripting simple sensor rules based on a combination of sensor values is

an old one.

In the gesture recognition community, there have been several projects that incor-

porate a scripting system. These scripting systems typically allow the user to write

a text script. This script defines the sensor conditions, and combinations thereof.

For example, Ari Benbasat, in his masters thesis work done at the Responsive

Environments Group (MIT Media Lab), describes a gesture recognition system that

incorporates scripting [10] while running on a handheld computer (palm pilot). In-

dividual movements can be defined, and such movements combined through boolean

operators. A typical script looks like (from [10]):

Define comparison function

def CompNoDir (myAlpha, myDuration

, myDirection, theirAlpha

, theirDuration, theirDirection):

return (abs (myAlpha - theirAlpha)< dAlpha) and \

10 (abs(myDuration - theirDuration)< dDuration

Define Atomic Gestures

(axis, number of peaks

, alpha, timestamp, width

, direction, matching function)

TwistY = Subgesture (1, 1, 80, 0, 100 , 1, CompNoDir)

LineX = Subgesture (3, 2, 70, 0, 100 , 1, CompNoDir)

dAnyLine = SubgestureDetector ([TwistY, LineX], 1, gOR)

g0 = Gesture ([dAnyLine])

36

Output Functions

def f0 ():

print " Found a straight line "

Constructing the matching system (fullgesture , output function)

grs = GestureRecognitionSystem ()

grs. addGesture (g0 , f0)

Individual actions are defined by their signal parameters (such as number of peaks,

duration of action), and comparators matching such templates with incoming data

streams can be defined. However, the textual interface does not focus on ease of

experimentation.

In the sensor network community, some work has been done to allow scripting of

sensor signals. In [22], the authors describe a sensor network scripting system used

for home automation applications. The users write scripts such as:

IF movement_detected(sensor-5) == true

AND lightness(sensor-5) < 800

THEN switch_power(multi-plug-5, on)

Once again, while such systems provide the basic functionality of being able to

define detection-actuation rules, they are built on the assumption that the user al-

ready understands the sensor data streams. The Ubicorder’s portability allows the

user to actually go to the location, see the physical event and correlate it with sensor

reading being displayed in real time, and then graphically define and experiment with

the rules.

The Hive system [51], developed at the MIT Media Lab, tried to provide a unified

framework for building building applications by networking local system resources.

The system allowed for easy “plumbing” of data and actuation across multiple devices.

37

The Ubicorder can also serve as an excellent intermediary to such a system, allowing

users to configure such connections on-the-fly, and in-situ.

38

Chapter 3

Task Model And Interface Design

This chapter discusses the design of the Ubicorder interface, and ties it to a task

model. We also present a walkthrough that demonstrates the Ubicorder’s browsing

and Event Detection and IDentification sYstem (EDITY). We begin by elucidating

the task model and illustrate its relationship to the components of the system. Next,

we discuss each component in detail. On occasions, if implementation details influ-

enced our design, we describe them herein.

The task model, Figure: 3-1 presents a high level overview of the facilities and

applications of the Ubicorder system, and the interaction patterns followed by the

user. The crux of the Ubicorder’s functionality can be divided into two parts: the

browser, and EDITY (Event Definition and Identification System). The browser

enables the discovery of sensor network nodes, and viewing, in near-real-time, the data

gleaned from the sensor network. EDITY enables the definition and manipulation

of higher-level sensor events. These sensor events correspond to a set of constraints

satisfied by a given set of sensor readings, which roughly correspond to a physical/real

world action of user interest. These events can then be visualized in the browser,

thereby displaying to the user the inferred implication of the sensor data, rather than

merely the data itself.

39

Figure 3-1: Task Model : Ubicorder

40

3.1 Browsing

The Ubicorder’s task model begins with the user being interested in some real-world

occurrence or happening. Such phenomena may either be observed in person (by

being at the location of such an event), or via the Ubicorder’s browser. The Ubi-

corder’s browsing mode allows the user to browse near-real-time sensor data through

a location- and orientation-aware, map-like interface.

The Ubicorder talks to the two available sensor networks deployed in the Media

Lab. The first was a 150 node MERL sensor network that consisted of ceiling-mounted

nodes with motion sensors. The second is the “Spinner” sensor network. The “Spin-

ner” nodes sense temperature, light, sound, movement and vibration. The sensor

networks, and the facilities they provide are discussed in Section: 5.4.

The user is presented with a floor plan, overlaid with icons depicting sensor nodes.

Such an interface is presented on a Tablet PC touchscreen. The tablet is ideally held

in the landscape orientation. Figure: 3.1 shows a user holding the Ubicorder. Different

icon shapes denote varied classes of sensor nodes. For example, in Figure: 3.1, the

interface displays the third floor of the MIT Media Lab. Square icons represent

movement sensors mounted on the ceiling. Circular icons represent the “Spinner”

[35] nodes.

Figure 3-2: Holding the Ubicorder

41

Figure 3-3: Browsing Interface of the Ubicorder. The square icons represent move-
ment sensors, the black circular icons correspond to “Spinner” [35] nodes. The cir-
cular icons jitter to convey vibration, change color to indicate temperature, change
the size of their halo to represent sound level, change the length of the emanated
lines to indicate light levels. The square icons “pop” to indicate motion underneath.
The pointed circular icon represents the users location, and increases in size as the
localization resolution gets coarser.

Double tapping on an icon (that corresponds to a sensor node) brings up an

information panel that displays current sensor data from that node.

Coarse-grained sensor data is conveyed through variations in a node’s icon. The

node icons change form or color based on real-time sensor data. For example, in-

creased activity underneath a ceiling-mounted movement sensor is visualized by the

node’s icon popping out temporarily, i.e., increasing in size and changing color. The

circular icons (“Spinner” node) also ‘pop out’ when they register motion. Addition-

ally, a variable diameter external halo surrounding the icon indicates real-time light

42

level readings. Icon changes such as these allow the user a quick overview of sensed

the area, and display to the user general trends. For example, a glance would indicate

the location of a quiet, well lit place, which might be suitable for studying. Tapping

on an icon displays a strip chart of the current sensor data (including recent data).

User-defined event rules can also trigger changes in the icon’s color or form. We defer

this discussion until later (Section 3.2).

The color scheme (gray/black) of the map is so chosen that it “looks dull” when

there is no activity or special variations in sensor data. Color indicates the oc-

currence of something “interesting,” e.g., a motion sensor registering movement, or

user-defined events (discussed later). Figure: 3.1 shows the movement sensor data

pattern corresponding to a person walking through a corridor.

3.1.1 Navigation and Context

The user’s approximate physical location and orientation is displayed on the map.

This serves as a cognitive bridge between the real world and the user interface (UI) by

providing to the user context of their location with respect to the map on the screen.

Situating the user simplifies navigation, both on the screen and in the physical space.

As discussed in Section: 5.3.2, the location and orientation information is acquired

through the Ubicorder’s wireless radio(Zigbee), IR receiver and digital compass.

An icon (the “me” icon) indicating the user’s location and orientation is overlaid

on the floor plan. A directional arrow is placed at the center of this icon indicates the

user’s orientation. The location and orientation of the icon is responsive to the user’s

turning and walking around the building. The localization accuracy is variable and

depends upon the network’s support for Zigbee [7] or IR localization. We convey the

locational uncertainty by increasing the diameter of the “me” icon. (see Figure: 3.1.2).

Based on suggestions from a pilot user study, additional labels were placed identi-

fying popular landmarks inside the building. For example, the location of the elevators

and the kitchen were marked.

43

Figure 3-4: “Seeing” a contiguous set of motion sensors detect motion. The six
images represent successive time slices with the earliest at the top left and the latest
at bottom right. The black icons indicate movement sensors. The icons pop out and
change color as they detect motion. Here, it is easy to infer that at least one person
is walking underneath (color image).

3.1.2 Point and Select

Physically pointing the Ubicorder toward a sensor node selects it on the User Interface

(UI). Selecting the node can also be accomplished by double tapping on its icon. The

selected node can then be used for either creating an event rule, or for browsing

current sensor data. The intent is to allow users to discover sensor network resources

that they are physically close to, and which might prove useful in observing local

phenomena.

Once again, the pointing affordance is provided as a cognitive bridge between the

real world and the UI. As discussed in Section: 5.3.2, the pointing modality is realized

by having the Ubicorder read the IR signature emitted by the Spinner node that the

44

Figure 3-5: Variations in sound level conveyed as variable diameter of the node halo.
(a) low-sound level (b) high-sound level

Figure 3-6: Variations in light level conveyed as variable length of lines emanating
out of the node (a) low-light level (b) bright-light level

user is pointing towards. The IR is vital here as the RSSI location and orientation

estimates are too coarse to be used in proximity. Note that the MERL nodes lack an

IR transceiver, and hence can not be electronically pointed at.

Figure 3-7: The green and red circular icon represents user’s location. The icon’s
arrow indicates orientation, and the size of the icon changes with the localization
accuracy.

45

3.2 EDITY(Event Definition and IdenTification sYstem)

The browsing interface provides, at a glance, a overview of the current state of the

area. It is difficult, in this UI, to display quantitatively data from multiple nodes

in parallel. However, in order to draw meaningful inferences about the state of the

observed area, it is vital to view quantitative sensor data from multiple nodes.

To address these issues, we designed and developed EDITY. EDITY allows users

to define, manipulate and test simple inference rules to map sensor data to meaningful

higher-level primitives.

3.2.1 Motivation

The Ubicorder is typically used by an end-user for assistance in performing everyday

tasks. Since sensor network nodes report raw sensor data, it is left to the user to

interpret the received data.

When sensor nodes are used for specialized tasks, considerable effort is spent on

data interpretation. Specialized algorithms and data analysis techniques are often

used. For example, machine learning algorithms such as Support Vector Machines,

Bayesian Inference and Regression Analysis are popular choices.

At the moment, home-office and other ubiquitous computing deployments are

unlikely to have the ability or luxury to analyze sensor data deeply enough for making

highly reliable inferences. Further, while it may be possible to develop machine

learning classifiers for specific scenarios, the diversity of sensor deployments (i.e.,

their location, calibration and utility) make it difficult to devise a generic- all purpose-

inference schema.

The lack of a common classification schema is a well-known constraint in the

field of home automation where sensor signals must be manually (and at a high

installation cost) mapped to desired actions. For example, in the paper [22], the

authors motivate their work, a scripting system for sensor network data, by citing

46

difficulty in programming the system as the main issue.

3.2.2 Overview

EDITY allows users to easily define events, experiment with them, and iterate over

their development. The premise is that commonly occurring sensor data patterns that

correspond with physical phenomena of interest can be abstracted away as (higher-

level) events. Users can design, experiment and iterate over such rules for identi-

fication of these events. The system can then, in the future, apply the rules and

detect events. Event can be defined in a piecewise and recursive fashion, modeling

the human cognitive process and enforcing modularity. Such modularity has several

benefits, as discussed later.

3.2.3 Relation with Browsing

Browsing and EDITY are intricately linked. It is hard to display large amounts of

raw sensor data, or raw sensor data from a large number of sensor nodes meaningfully,

in parallel. Also, it is difficult to be able to show historical sensor data in a map-like

interface. Further, the user is seldom interested in raw data, but instead in what that

data implies. By allowing the user to create implication rules, and detecting them

later, such higher-level inferences can be displayed, queried, and stored inexpensively.

3.2.4 Role of Mobility

Being mobile allows the user, at the time of defining the rule, to be physically present

at the location of the phenomena, thereby allowing them to correlate the raw sensor

data with real events. In other words, the user can literally see the ground truth and

the corresponding sensor data.

The interface allows the rules to be crafted in an iterative, hit-and-tried method-

ology. Using this situated (on-the-spot) hit-and-trial approach has three advantages.

47

First, it makes understanding the sensor behavior easy. The user can clearly see the

correlation between the sensed signal and the real event. There is no prerequisite

prior knowledge required about the nature or behavior of the sensor signal. Second,

being at the place and tweaking the rule in-situ allows for easy testing of such rules.

Our interface supports quick modifications of sensor rules, this encouraging the user

to experiment and “get it right”. Finally, allowing the user to see the correlation

between sensor signals, real phenomena, and the rule thus designed, exposes to the

user the limitations of the sensing infrastructure, and could prompt the installation

of new sensors or relocation of old ones.

3.3 EDITY: Grammar

Rules can roughly be classified as “simple rules,” conditional upon a single sensor

stream, and “compound rules,” conditional upon multiple simple/compound rules.

Compound rules are a combination of several simple and/or compound rules combined

together via time sensitive boolean operators.

Compound rules can be recursively combined to form other, higher order com-

pound rules. One way to represent this internal rule structure is to think of EDITY

rules as forming a directed acyclic graph (DAG), with simple rules forming the leaves

of the graph. Figure: 3.3 shows one such DAG.

3.3.1 Definitions

Words in parenthesis indicate usage for the next section (Section: 3.3.2)

• Event: Refers to the occurrence of a physical phenomena/action in the real

world that a user is designing the rule for.

• Rule: Defines the set of sensor-value constraints, which, when true, signal the

occurrence of an event. EDITY allows the definition and manipulation of these

48

Figure 3-8: A sample Directed Acyclic Graph(DAG) illustrating the structure of
simple and compound rules. The circles represent simple rules, while the squares
represent compound rules.

event rules.

• Sensor Stream (Ss): Refers to a time series of sensor data values.

• Conditions (Cd): Conditions applied on sensor data stream. Conditions cur-

rently supported are maximum and minimum amplitude thresholds.

• Simple Rules (Simple): Check upper and lower bound of filtered sensor ampli-

tude values. Domain is sensor-values, range is boolean (true/false).

• Compound Rules(Compound): Check the state of multiple constituent rules,

and combine the states to form one single output. Domain: boolean and time

slack, range: boolean(true/false).

• Component Rules (Component): We occasionally refer to rules that participate

in a compound rule as its component rule. A component rule may be a simple

or a previously existing compound rule. Note that component rule is a term

invented to describe the system. The Ubicorder’s UI does not expose this term.

49

• Filter (Filter): Filters refer to signal processing operators that act on sensor

data streams, and on the output of component rules. The available filters are

discussed in more detail in Section: 3.4.2.

• Time Slack (Ts): Introduces time dependency for creating compound rules. If

any (filtered) component rule is true within the time slack, the output of the

component rule is considered true. Discussed in more detail in Section: 3.5.3.

• Operators (Oper): Operators to combine output of component rules (after fil-

tering and application of time slack). The Ubicorder currently supports the

boolean operators AND, OR, and XOR. NOT is supported as a filter, making

the operations boolean complete, i.e., any boolean expression may be expressed

using AND, OR and NOT operators.

3.3.2 Formal Grammar

This section uses productions to describe the language.

Ss
Fs→ Ss

Ss
Cd→ Simple

Compound→ (TsSimple)Oper(TsSimple)

Compound→ (TsCompound)Oper(TsSimple)

Compound→ (TsCompound)Oper(TsCompound)

50

Figure 3-9: Screen-shot of the Simple Rule Interface (1) Map indicating location/-
type of sensor nodes (2) Selected Sensor Node (3) Sensors on Selected Node (4)
Data Stream on Selected Sensor, shaded region indicates sensor samples satisfying
thresholds, (5) Node, Sensor name, (6) Action: Name of the Rule (IN OFFICE)and
actuation(Sound - Ding)

51

3.4 EDITY: Simple Rules: Definition, Visualiza-

tion and Actuation

The process of defining rules can be categorized into three steps:

• Selecting a sensor

• Defining and manipulating decision-rules

• Linking actions and recording simple-rules

In the standard engineering metaphor of data flow, the input port, operation,

and output port is placed left-to-right. Our interface follows the same metaphor.

The sensor/node selector is in left pane(input), rule definition, manipulation and

detection subsystem forms the middle pane (operation) of the UI, and the output,

i.e., storing events and or linking actions (output) is place in the right pane.

3.4.1 Selecting a Sensor

The first step is to pick the correct sensor for which to define a rule/event. From the

browsing pane, the user clicks the EDITY button to go to the “Create Rule” view.

The simple-rule interface (Figure: 3.3.2) comes up.

The left pane of the interface allows the user to choose the sensor stream of

interest. A browsing window, such as that discussed in Section: 3.1 is the “Node

Select” pane which forms the top portion of the left pane. The user selects a node by

either physically pointing the Ubicorder toward it, or by tapping on the node’s icon.

The selected node is highlighted on the map (node’s icon is now magenta colored,

Figure: 3.3.2(2)). To facilitate the process of screen navigation and selection, the

cursor changes to a hand shape when over a selectable node.

Upon selection of a node, a list of sensors exposed by the node is displayed in the

lower half of the left pane (Figure: 3.3.2(3)). Clicking on a sensor selects the signal,

52

i.e., expands the sensor name box to display the filters that may be applied to it.

Further, the selected signal is plotted on a strip chart in the middle panel (Figure:

3.3.2(4)). The plotted signal is identified by a (user changeable) color indicated in

the left panel. The middle panel also displays the textual name of the selected node

and sensor (Figure: 3.3.2(5)).

In the simple-rule panel, only one sensor can be selected at any given time. Al-

though, displaying more than one sensor data stream might be useful in certain

circumstances, pilot studies showed that it caused ambiguity, especially when rules

were being defined. Users were confused with regards to different sensor-values with

different units and scales being overlaid on the same strip chart. Selecting a sensor

de-selects a previously selected sensor.

3.4.2 Filters

A set of filters may be applied to the sensor data stream. The list of available filters

is displayed below the box corresponding to the selected sensor, as in Figure: 3.3.2

and Figure: 3.5.2. Most filters expose a control parameter, k as a slider. Users can

drag the slider, and immediately observe the resulting signal (with a changed k).

The list of available filters, and an explanation of the k factor is given in Ta-

ble: 3.4.2.

Ideally, for a completely expressive interface, these filters should be stackable.

However, for the purpose of simplicity, and because the above filters are generally not

stacked in arbitrary order, the filters are applied in a predefined stacking order: Not,

Derivative/De-Glitch, Smooth, Positive Hysteresis, and Negative Hysteresis.

Figure 3-10: Inference Rule, Input and Output

53

Table 3.1: Filters
Filters

No. Filter Name Description: Parameter k

1 Not Inverts a boolean signal. Checkbox, True/false
2 Smoothing Smoothens / low-pass filters the signal

by taking a moving average. Useful for
removing noise,

k = window size for
moving average com-
putation

3 Derivative Detects rate of change of the signal Newer k/2 samples are
subtracted from the
older k/2 sample, and
averaged over k/2

4 Positive Hys-
teresis

Holds the signal at a high value, pre-
vents the signal from dropping fast.
Useful as a pulse stretcher. Often used
for binary signals

A high value is re-
tained for the next k
samples

5 Negative Hys-
teresis

Holds the signal at the last seen low
value. De-bounces the signal. Used
for constructs like “Signal should be
for at-least 2 seconds. Often used for
binary signals

a low value is retained
for k samples.

6 De-Glitch If a signal abruptly goes high or low
beyond a threshold and returns to the
baseline on the next sample, use the
previous sample

k is the maximum dif-
ference of a new sam-
ple from the baseline
that the signal will not
be considered a glitch

3.4.3 Defining and Manipulating Decision Rules

The resulting data stream (sensor signal after application of filters) is plotted on a

strip chart. The data is displayed in near-real-time, i.e., if the user performs an action

to modify the sensor-value, the modified sensor data is visible immediately. The strip

chart scrolls through as newer data comes in. The user can also pause the strip chart,

or scroll back to recent data. The time length the user can scroll back to see the data

is dependent on the size of the data buffer, currently set at equivalent to about ten

seconds of data.

The rule creation system works by allowing users to set thresholds on the value

of the (filtered) signal. There were a number of constraints on how the rules should

be designed.

54

Below, we describe these constraints and explain why this simple thresholding

approach was chosen.

• Ease of Definition: It should be relatively easy and quick for the user to define

the rule. Our approach relies on “dragging” a pair of horizontal threshold lines

on the strip chart. The lower and upper threshold lines correspond to the upper

and lower threshold respectively.

• Quick Evaluation: Again, in order to permit iterative “sculpting” of sensor

rules, the user must be able to quickly see the result of the rule they have created.

Further, the user will typically be on-site of the event/phenomena that they are

making the rule for, and may or may not be able to spend extended time at

the given location. Therefore, machine learning approaches that involve long

latency between training and classification are unsuitable.

• Ease of Manipulation/Modification: In order to support iterative experi-

mentation of inference rules, it should be fairly easy to modify and experiment

with the rule. Most machine learning approaches, for example, neural networks,

are opaque in terms of the classification methodology and are not amenable to

“tweaking”. Some techniques, such as decision trees, do allow for flexibility in

the classification methodology but are still non-trivial to manipulate. By using

multiple rules, EDITY can generate a classification schema similar to a decision

tree.

• Limited Training Data: Any user system is constrained in terms of limited

quantity of labeled training data. Users can not be expected to label large

quantities of training data. For example, consider an inference rule to detect

whenever someone walks through a path based on sensor data from movement

sensors placed on the ceiling. Labeling the training data would involve explicitly

specifying when someone walks through. Relating the sensor data to ground

truth, especially when the user also has to perform the action, is cumbersome

55

process. In our simple rule based system, the user labels real data. Further, by

exposing these innards of the system, the magnitude of so called training data

drops exponentially.

• Difficulty with time series feature: The first step in any traditional machine

learning approach is feature extraction. Feature extraction is directly related

to the nuances of sensor data stream, and therefore, it is difficult to design a

generic algorithm for this purpose.

• Versatility and Extensibility: The approach must work for different types

of sensor data, i.e., binary, discrete and continuous. The thresholding approach

works for all all data. Further, the filter model allows specifying of more elabo-

rate pattern matching systems. Ultimately, every quantitative pattern matching

algorithm has a numerical quantity to define “matching” level. The threshold

could be set for these values instead of raw signal values. For example, con-

sider when high “correlation” with a template is required to specify a match. A

correlation filter (tied to a specific template signal) can be added in the list of

available filters. Upon application of this filter to the sensor stream, the range

of acceptable correlation coefficients can be specified as thresholds. Similarly,

a Fourier filter could be used, and appropriate cut-off thresholds(frequencies)

could be specified. In general, the threshold approach is both versatile and

extensible.

Setting the rule using strip chart lines

The middle pane features a strip chart pane where the user-selected data stream is

plotted(Figure: 3.3.2(4)). This pane has a pair of user draggable horizontal lines

signifying the upper and lower thresholds being set. As the user moves the horizontal

lines, the section of the data stream satisfying the constraints are highlighted. Further,

the user can “look-back” into the data stream to examine time segments where these

56

constrains would have been satisfied.

3.4.4 Linking Actions, Recording Simple Rules

The final step is to associate the rule to action. The action could be some form

of actuation to evoke the user’s attention. We currently support actions such as:

selecting, or coloring the node’s icon (in the map drawn in the browsing view, and

in the left panel of the EDITY view), playing an audio file, or sending a key stroke

(through the Operating System, using the Java Robots API [29]). The last option

allows the user to control external programs. In the interface, a drop down “action”

menu lets the user choose among pre-defined actions.

In the present state, the action is either edge triggered or level triggered, depending

upon the action. For example, the “ding” sound is forward edge triggered whereas

the “Color Node Icon” is level triggered. In order to preserve ease of use for the user,

the edge or level triggering is directly associated with the action, i.e. some actions are

inherently edge triggered, while others are inherently level triggered. A wide variety

of actions which are, by default, either edge or level triggered, are provided.

Alternatively, or in addition to actuation, the user can “save” the rule. Saving

implies that the rule (as defined by the node, the sensor of the node, the filters

applied and the thresholds) will be evaluated for whenever new data is received from

the included sensor. A binary output stream is exposed by such a saved rule. These

simple rules form the building blocks for compound rules, discussed in the next section.

To record a rule, the user gives the rule a descriptive name and clicks on the “save”

button. The system ensures that a rule with a same name does not already exist,

and if so, saves the rule.

It is worth mentioning that “writing a text name” is the first instance in our pen

based interface where a keyboard would a be better option than a pen/touchscreen

interface. One alternative to having the user enter a descriptive name was to put in

a default text name, such as nodename-sensorname-action. The major disadvantage

57

with that approach was the assumption that the system name for the node is same as

the explicit representation of the node. For example, most users are likely to identify

nodes by names such as “Kevin’s office,” while the internal system representation is

likely to be a combination of hexadecimal numbers. Further, giving the user control

over the naming process enables the user to inject context and information about

the rule in the name. An on-screen touch keyboard is provided for the purpose of

entering the name via the touchscreen. Overall, a pen based interface is significantly

better for our application than a keyboard/touch-pad/mouse system. Tasks such as

choosing sensor streams and dragging the threshold rules are easily accomplished,

without needing to use both hands.

3.5 EDITY: Compound Rules: Combining Rules

Compound Rules refers to event definitions that are formed by combining multiple

simple/existing compound rules. One way to think about these rules is to consider

them forming a Directed Acyclic Graph (DAG), with each Rule forming an node in

the graph. Compound rules, may be derived from simple and other compound rules

(that were defined before).

3.5.1 Design Logic

While the simple rules we discussed in Section: 3.4 provide a simple and effective

mechanism to set threshold events for a sensor stream, real events of interest can be

better inferred by observing multiple sensor streams, simultaneously.

As a example, consider our lab’s sensor network deployment. The deployment,

(see Section: 5.4), consists of 150 ceiling-mounted motion sensors spread out on the

third floor of the lab in addition to around 50 “Spinner” [35] nodes which incorporate

Sound, Light, Temperature and Humidity sensors. Lets assume that the user wants to

track whenever someone buys food from the vending machine. While such a scenario

58

might, at first, look atypical, it illustrates several ideas. Also, such a scenario typifies

the kind of complex actions we can track with simple, user-defined rules. Note that

Lifton et al. [39] used a “Plug” [39, 42] sensor node to sense a similar phenomena.

The “Plug” is a modified power strip with additional sensors and a radio that forms

a sensor network. The Plug reports the (electric) current draw of appliances plugged

in. Additionally, it gathers sound and vibration readings. The vending machine was

plugged in a plug, and it was possible to infer when a purchase was made.

We term rules that involve multiple sensors as “Compound Rules”. The consti-

tuting sensor signals can be distributed over space and, their corresponding event

detection spread out over time. EDITY allows compound rules to be defined as a

boolean combination of previously defined simple and compound rules. Time depen-

dency between the rules can be described by using the concept of time slack, discussed

below.

3.5.2 Boolean Combination of Simple Rules

A compound rule is composed of multiple simple rules combined together through a

boolean operator. A compound rule then has a boolean domain (the range of simple

rules and compound rules) and a boolean range.

In the UI (Figure: 3.5.2), clicking on the Compound Event Tab changes the view

to the compound panel. The left pane pane now shows a list of existing simple and

compound rules.

The term component rules refers to existing simple and compound rules that

participate in formation of a new compound rule. The sum total of existing simple/-

compound rules form the superset of component rules.

59

Figure 3-11: Screenshot of the Compound Rule Interface. The left panel (1) has a
list of existing rules, 3 of which are selected and have their filters set. The middle
panel displays strip charts for the rules (in order of selection). The time dependency
is defined by the black double line(2,4), and by the highlighted time slack in the strip
charts(3,5). The bottom middle panel (6) shows the result of the rule the rule the
user is currently designing(color image)

60

Clicking on a rule name (in the left pane, Figure: 3.5.2 (1)) toggles the inclusion of

the rule as a component rule. Selecting a rule for inclusion also brings up a filter panel.

A set of five standard filters (Not/Invert, Smooth, Derivative, De-glitch, Positive and

Negative Hysteresis, see Section: 3.4.2) can be applied to the component rules prior

to using it in the new rule. Note that for a compound rule, more than one component

rules can be selected at a time.

In the middle pane, a new strip chart is created for new rule that shows near-real-

time output of the component rule. The strip charts are color coded (lines drawn with

the color of component rule, the color specified in the left pane). A pair of draggable

vertical lines on the strip chart indicate the permissible time slack (discussed later).

A drop down menu at the bottom of the middle pane allows selection of the

boolean operator combining the component rules. The current options are “And,”

“Or” and “XOR”. The output of the rule is displayed in a strip chart at the bottom

of the middle pane (Figure: 3.5.2 (6)). Note that the signal filter pane (left pane)

also contains the “Not” modifier.

Ease of use of boolean operators

End-users are known to face problems when designing database queries that involve

boolean operators, the so called “Boolean bottleneck”[24, 65].

Some of the reasons behind this difficulty are (1) difficulty in the use of paren-

thesis and order of evaluation when specifying queries, and (2) confusing the boolean

operators AND, and OR with their counterparts in common English language.

The Ubicorder’s EDITY system parenthesis every component rule, i.e., it evaluates

a component rule completely before plugging in its boolean value into its compound

rule. It this manner, the user does not add explicit parenthesis, but instead, the

parenthesis are inserted implicitly at the cost of adding additional layers of compound

rules.

The EDITY system addresses the second problem, i.e., confusion between logical

61

AND/OR with normal English usage of “and”, and “or”. First, we argue that our

model of AND/OR operators closely parallels their equivalent English usage. In our

context, such terms define linkages among the truth stage of component rules. Each

component rule itself might map to some observable event. For example, a compound

rule to detect if someone is in the office might consist of a component rule for increased

light level, and another one for increased sound level. In this case, the condition will

be defined in usual English as “”A person is in the office if the light is switched on

and the sound level is high”. Secondly, by displaying to the user the graphical output

of the rule while she devises it, we encourage the user to experiment rather than

analyze; the interface lets the user quickly see the result of the rule she has so far

created. Therefore, the user mixes-and-matches the output of the rule to the desired

output.

Finally, we would like to state that the target audience of the Ubicorder is people

with some experience in the sciences and engineering. Boolean operators are suffi-

ciently common that most people with such a background understand it. In our user

study, only one subject reported having no familiarity with boolean operators.

3.5.3 Time Dependency

One of the challenges of defining compound rules is to describe the temporal connec-

tion between the different component rule events that define a compound rule.

EDITY supports specification of time dependency in the form of Event Y happens

between (p,q) seconds after Event X. That is, event Y happened at least p seconds

after X AND that event Y happened at most q seconds after X. Note that p and q

can be negative numbers.

A concept of time slack is introduced. A time slack means that a component rule,

if it is ever true within a specified time window, will be construed as being true. The

beginning and end of the time slack window is specified with respect to the first rule.

The first rule, by definition then, has no time slack (instead, it sets the zero point).

62

Graphically, the time slack is set by dragging two vertical lines on the strip chart.

The zero line is specified in the first rule, i.e., the rule first selected and therefore

displayed at the top of the strip chart pane (Figure: 3.5.2 (2) shows the line). The

zero line is then synchronized across all the other strip charts (for example, Figure

3.5.2 (4) shows one such line). Two additional time slack lines are also drawn in all

but the first strip chart, corresponding to time slack for each component rule.

At this point, three lines are visible on a strip chart (except on the strip chart

corresponding to the first selected sensor, in which, only the “zero point” line is

visible) . The first line (Figure: 3.5.2 (4)) indicates the “zero” point, as set in the

first component rule, and is drawn as a thin black double line. The second line,

(Figure: 3.5.2 (3)) drawn in the color of the current strip chart, indicates the lower

bound of the time slack, i.e., the event must happen at least p seconds after the

first component is found to be true. The third line (Figure: 3.5.2 (5)) specifies the

maximum time slack, that is, the event must happen by the end of this time period.

Graphically, drawing the time slack highlights the region on the graph.

Also, upon entering the strip chart, the user’s cursor changes to a “ + ” sign to

indicate to the user that the region can be marked.

3.5.4 Linking Actions, Recording Compound Rules

A compound rule can be saved and recursively used as a component rule for future

compound rules. Action, such as issuing keystrokes and audio playback may also be

programmed.

Graphically, the right panel of the interface (Figure: 3.5.2 (7)) allows for such rule

setting. This panel is same as that discussed in the simple rule interface.

63

3.5.5 Advantages of Rule Setting

Parallels the human cognitive model

A compound rule roughly corresponds to the cognitive model of the way humans infer.

If we hear the clanging of pots and the cooking range is on - someone is probably

cooking. If we hear the clanging of pots and the water running, someone is probably

scrubbing the dishes.

Modularity

The modular approach ensures that simpler rules can be defined and debugged com-

pletely before more complex rules are defined. Additionally, this modularity lends

itself well to sharing of rules. A repository of rules describing standard states of a

given space can be incorporated.

The idea of building compound rules from simple rules is similar to the idea of

subsumption architecture [11] in the field of Artificial Intelligence. In subsumption

architecture, complicated intelligent behavior is decomposed into many “simple” be-

havioral modules. Each module implements a particular goal of the agent. Each

goal forms a layer, and subsumes the underlying layers, and each layer is tested and

debugged individually. Once a layer works well, higher order layers can be built.

For example, a robot’s lowest layer could be – Avoid colliding into a wall. On top

of this, a layer incorporating the robot’s objective to walk around can subsume the

lower layer, i.e., wander around but ensure no collision happens.

Finally, this approach also allows a subset of basic rules to be designed by domain

experts (a scenario similar to today’s appliance repair man, but here the technician

is familiar with the location and physiology of the sensor data streams). The non-

expert end-users can then construct more complex compound rules, building upon

these expert designed simple rules.

64

3.6 Sample Walkthrough

This section describes, by example, how a set of simple and compound rules are

created.

The task is to design a rule to have the Ubicorder count the number of people

who purchase food from the a vending machine. The vending machine is located

in the kitchen area, on the third floor of the MIT Media Lab. We have at our

disposal, ceiling-mounted movement sensors, and a “Spinner” [35] sensor node (with

a microphone) mounted on the vending machine. The Spinner node also has a IR

LED that continually transmits a signature.

One of the many possible rule set that can be used is :

• Single movement sensor triggered (simple-rule A). Multiple instances of this

type of rule, one for each movement sensor involved. Total of five motion

sensors used. (Simple Rule A,B,C,D,E)

• Multiple movement sensors triggered (Time skewed combination of simple rule

A,B,C,D,E), indicative of someone walking by (compound-rule (i))

• Sound Level on the Spinner Node registering a “high” value (simple-rule F)

• Compound-rule combining compound-rule (i) and simple-rule F (compound-rule

(ii)).

The first step is to locate the vending machine. The Ubicorder’s map has an

area labeled as “kitchen,” a likely place for the vending machine. As the user walks

toward the vending machine, the user’s approximate location is displayed on the

Ubicorder. The user also sees the motion sensor icons “pop out,” indicating that

someone is walking underneath them. This leads to the first step, i.e., of defining

a rule corresponding to someone walking underneath a motion sensor. Pressing the

“Create Event” button in the browser brings up the rule definition and evaluation

system (EDITY).

65

3.6.1 Simple-Rule A,B,C,D,E

Moving underneath the sensor (performing the action) and looking at the sensor

signal at the same time, the pulse corresponding to the motion is clearly visible. Set

the lower threshold greater than zero, and the upper threshold at any position above

binary one. Save this rule as “Movement Rule A”. Set the action to “None,” and

save the rule.

Create similar rules for the next four movement sensors.

3.6.2 Compound Rule (i)

Clicking on the compound rule tab brings up the compound rule definition and eval-

uation panel. In the left pane are a list of simple rules that have been created until

now, i.e., Movement Rule A, B,C,D,E. Clicking on the rule in the left pane shows the

(real-time) output of the rule in the middle pane. Each rule is displayed in a separate

graph, stacked one after the other.

The rules should be selected (in the left panel) in the order that the person walks

though. That is, rule A, B, C, D, E. Corresponding strip charts appear in the same

order on the right side.

Now as the user walks across, multiple (simple) events (A,B,C,D,E) are seen in

the pane. The user “Pauses” the data streams (By clicking on the pause button),

Selects the “And” boolean operator. The other choices available are “Or” and “Xor”.

3.6.3 Time Slack

Notice the black vertical line across the strip charts. The line is synchronized across

the strip charts and indicates where in the strip charts the event occurred. The line

in the strip chart placed first (corresponding to the sensor rule first selected in the

left pane) corresponds to the “Zero Point”. The user then highlights areas in other

graphs, indicative of the time slack range. For example, for the second graph, the

66

vertical bar is dragged to the right by a time scale that corresponds to two seconds.

In that case, if the second rule fires within time [0,2] second of the first one, then it

is considered true. For the third strip chart, there are 2 vertical lines - color coded

according to the rule they denote. For this strip chart, the user can denote a time

relative to the others.

3.6.4 Result

The result of this compound rule is displayed, in real-time, in the display pane at the

bottom of the screen. The result is also a boolean (true/false) data stream. Save this

rule as “Walking to Vending Machine”.

3.6.5 Simple-Rule F

We next design a simple-rule corresponding to the sound level for a typical vending

machine operation. Given the location of the spinner node, the sound emitted when

a purchased product falls into the vending bin (“thud”) causes a brief spike in the

sound level.

The user is physically standing in front of the vending machine and observes a

product fall and the corresponding sound level.

3.6.6 Compound Rule (ii)

Finally, we want to combine the knowledge that when a person is purchasing some-

thing from a vending machine, it means that someone is walking up to it, following

which, something drops in the vending bin.

In the Compound Rule (left pane), a list of available rules (both simple and

previously created compound rules) is displayed.

The Compound Rule (ii) is triggered as soon as all of its conditions are met. As

soon as the rule triggers, a pulse is displayed. Following that, the rule corresponding

67

to the sound level (Simple-Rule F) is triggered.

After setting the rules and the corresponding time slacks, the “action” here is to

emit an operating system “+” keystroke. The action pane contains a Java Robots [29]

hook, which allows any particular action to be saved. A separate program increments

a counter every time the “+” keystroke is received.

3.6.7 Overall Discussion

Notice that this rule could not have been accomplished simply by using simple rule

F and compound rule (i). Consider the case when a person makes two purchases. A

sound-only trigger will be unable to differentiate among two people making a single

purchase each from one person making two purchases. Similarly, the walking-only

rule will not be able to differentiate a purchase or a person walking by. Being able to

combine multiple sensors lowers the false positives.

Overall, combining multiple sensors (Sensor Fusion) provides a more expressive

language and improves recognition accuracy. Recursively building rules brings the

advantages of modularity to the rule making process. The use of general purpose,

“high-level” sensors goes well with the idea of using them as components for other

rules; “high-level” sensor outputs can be re-used as components for several compound

rules. Finally, the process of building these rules enables end users to define and

extract meaningful information from sensor data.

68

Chapter 4

Middleware for Inference and

Visualization

4.1 Overview

Middleware make it easy to plug into services provided by existing infrastructure.

The Ubicorder/EDITY system can be used as a middleware for the development of

end-user facing front-ends that visualize and infer sensor data gleaned.

Significant effort has gone into middleware that caters to the designers and pro-

grammers of sensor networks. For example, Tiny DB [45] is a example of a of a query

processing middleware for sensor networks, Levis et al.’s Mate [37] is a virtual ma-

chine for sensor networks to abstract away the complexity of the underlying sensor

network hardware and software. Molla et al. [52] provide a survey of popular sensor

network middleware platforms.

The Ubicorder/EDITY system addresses the need for easy-to-build interface to ex-

pose sensor data. Typically, application programmers (as opposed to sensor-network

programmers) with limited knowledge of the sensor network will be able to design

front-ends to expose the facilities of the sensor network to the user. Interfaces that

do one task well can be designed, hiding all the complexity of the underlying sensor

69

network, perhaps even the presence of such a network.

Such a front-end is relatively easy to code up by using the Ubicorder/EDITY sys-

tem as a middleware. The front-end can be developed in a graphical language such as

Adobe Flash [6] /ActionScript [5], with the mathematical heavy lifting accomplished

by the Ubicorder/EDITY back-end.

4.2 Example Interface

Figure 4-1: Step 0 : A floor plan with the location of relevant sensor nodes. Note
that only the MERL nodes are used for this task, and so other type of nodes are not
displayed.

We have built one such interface. As a precursor to the EDITY system, we built

an interface to detect people walk. Later, upon completion of EDITY, we discarded

the rule matching and sensor parsing components of the old interface and used it only

as a front-end, with EDITY doing the remaining tasks.

This particular interface was designed to let end users define events corresponding

to people walking from place A to place B, indoors, and observed by the ceiling-

mounted movement sensors. In our interface, the user marks the path of interest by

’drawing’ on a floor plan, indicative of the path of interest. The said system then

’designs’ the rules, and feeds it into the Ubicorder/EDITY subsystem. Further, a

70

simple, “tweaking” interface is also provided to allow the user to adjust for extended

delays between two movement nodes being triggered (when, for example, the move-

ment sensors are positioned at unequally spaced intervals).

Figure 4-2: Marking the path (green line, circled for clarity in the figure above) that
the user wants to detect people walking on. The left pane contains manipulable time
data.

Figure: 4-1 shows the “rest state” prior to the definition of any rule. The right

panel shows a map of the area, overlaid with icons denoting motion sensors. The left

panel shows a time chart graph for tweaking rules.

A rule can be drawn by merely dragging the pen to indicate the path of interest.

This is shown in Figure: 4-2. Once the path is drawn, the corresponding nodes light

up (change color to magenta), one after the other (to indicate the direction of the

path), see Figure: 4-3. The left panel shows a time chart graph for tweaking rules.

The X-axis of this graph is labeled for each node ID, the Y-axis indicates time. The

boxes on the left half of the display, denote the time slack, the time relationship

between firing of the movement sensors.

The time slack can be tweaked by dragging the lines to sculpt the rule and to

change the time slack. This is shown in Figure: 4-4, with the second time slack being

modified to overlap with the third.

This ties back to the scenario of the “repair man” defining the basic rules. Instead

71

Figure 4-3: Nodes changing color in the order of the drawn path, indicates the di-
rection of walking that will be detected, and the time between which adjacent nodes
must detect motion.

Figure 4-4: Manipulating the time data in the left pane to adjust time slack.

of a “repair-man” designing basic rules to be built upon, they can provide the user

with a easy-to-use front-end interface, designed specifically for a single task. In the

above example, the task is to detect people walking from point A to point B. Other

scenarios could be, for example, a “presence” detector.

72

Chapter 5

Software And Hardware

Implementation

This chapter describes the hardware and software components of the Ubicorder, and

provides the design rationale for those choices.

5.1 Summary and Goals

The goal of this work are to enable users to browse information derived from het-

erogeneous sensor networks and to infer actions from received sensor data. In order

to accomplish this higher level objective, a number of more specific goals emerged.

These specific objectives included:

• Acquisition of sensor data from sensor nodes, and presenting a homogeneous

interface of such sensor data to the rest of the system.

• A portable platform for display and interaction with sensor data that incor-

porates a compass, wireless radio and an IR receiver to support situated user

navigation and exploration of their physical surroundings.

• A graphical interface for in-situ browsing and visualization of sensor data.

73

• An interactive graphical scripting environment for defining and manipulating

higher-level events.

The following chapter explains the development of software and hardware subsys-

tems, and justifies the design decisions made to achieve these objectives.

5.2 High Level Description of the System

The current Ubicorder comprises of a touchscreen (pen sensitive) Tablet PC with

Wi-Fi, and a Universal Serial Bus (USB) port. It is augmented with a custom built

hardware board that incorporates a three-axis tilt-compensated compass, an infrared

receiver/transmitter, and a wireless radio. The custom hardware talks to the Tablet

PC over a USB connection. Firmware was written for the extra hardware, and a

driver stub was written the for Tablet PC to be able to talk to the given device

over USB. The following section describes in detail the hardware components of the

system.

5.3 Hardware Overview

This section describes the hardware used and built for this project.

5.3.1 Mobile Computer System

A mobile computer system provides the base functionality for the platform. The

system was selected based on its portability, processing and networking capabilities,

ease of augmenting/attaching additional hardware, and ease of software development.

It was essential that the system be portable, and that it allow the user to simul-

taneously interact with the real world and with the sensor stream describing the real

74

world in real-time. As discussed later, this enabled the user to iteratively create and

experiment with defining higher-level events occurring at various places.

The system also features a touchscreen. Pen based interactions are well suited in

scenarios where the user needs to select icons and drag lines. Touchscreen enabled

Tablet PC’s are often used for such tasks; for example, in [62], the authors describe

LeafView, a tablet-based user interface for an electronic botanical field guide.

Based on these parameters, the Lenovo ThinkPad X61 ’ultralight’ tablet PC (X61)

emerged as the best choice for our initial implementation. The X61 has a comfortable

form factor (3.5 lbs, 12.1” multi touch Display), incorporates a fast 1.8 G Hz dual

core processor, comes with Wi-Fi and an USB port. It runs Microsoft Windows XP

Tablet Version, which supports the same system calls as a standard Windows XP

machine. The processor is fast enough for our visualization tasks.

An important trade-off to consider was size and portability. Smaller form-factor

devices such as a personal digital assistant (PDA) is more convenient for carrying

around. However, for our application, a large screen size is useful in order to display

the complete scenario being authored, i.e., show the selected sensor, the rule being

designed for it, and the corresponding action. Further, small form factor devices have

limited processing power. Processing capabilities are required because the application

of rules to sensor data currently happens on the handheld. In future implementations,

such a task could be off-loaded to a database running on a server. Future versions of

the Ubicorder will be designed to run on such devices.

5.3.2 Extra Hardware

Displaying the user’s location and orientation relative to other sensor nodes on the

screen enables easy navigation and provides additional context information to situate

the user with respect to their environment.

To realize this functionality, we augmented our base computer with a Zigbee [7]

radio, an infrared (IR) transmitter-receiver and a digital compass. In particular,

75

circuits and devices designed by fellow Responsive Environments Group Research

Assistant Mathew Laibowitz, for his “Spinner” sensor network [35], were appropriated

and adapted for these purposes.

Digital Compass

The digital compass required for this purpose must be tilt compensated, so as to allow

the user to hold the device at a convenient angle. Further, the compass must com-

pensate for extraneous magnetic fields and nearby ferrous material, not uncommon

inside the building. For this purpose, the Honeywell HMC6343S, a 3-axis, tilt and

hard-iron compensated compass embedded on the “Spinner” [35] node, works well.

The compass talks to the microcontroller over the I2C protocol [56], and provides the

Ubicorder’s heading, yaw and roll values.

Infrared Receiver

The infrared port is used to realize a ’point and select’ affordance, i.e., the user

can point toward a sensor node and select it on screen. A subset of sensor nodes

(i.e., Laibowitz’s “Spinner” sensor nodes) periodically emit an IR signature. By

receiving this signature, the corresponding node can be selected. Further, using this

information, compass data and a static look-up-table, the user’s rough location can

be determined.

Microcontroller

The processor used on the wearable “Spinner” node, Atmel UC3B256 [8], is a 32 bit

microcontroller. Accordingly, it was used as a bridge between the sensors and the

X61 tablet. The microcontroller supports USB, has multiple Analog to Digital(ADC)

ports, and supports I2C [56] protocol for communicating with the compass. A simple

instruction set was defined for communication between the microcontroller and the

PC.

76

Figure 5-1: Additional Hardware

Zigbee Radio

The device uses a CC2431 Zigbee radio [27]. This Zigbee Radio is also used on the

“Shirt-Lapel Pin” sensor nodes in the Spinner network [35], can communicate with

other nodes, and determine the radio signal strength (RSSI). The latter information

is used to coarsely estimate the user’s location with respect to the static nodes of the

sensor network.

Also note that this radio is set to a “peer” profile, i.e., it joins an already existing

Zigbee [7] network. Although these Zigbee radios could be used for directly acquiring

data from the sensor nodes, we did not use it for this purpose, since all nodes of

our sensor network push data to a network socket, which we connect to over the

Wi-Fi network. The current Ubicorder only uses the Zigbee network for RSSI-based

localization relative to an array of fixed reference nodes.

USB

A USB connection is used to communicate between the X61 Tablet and the micro-

controller. The USB connection also provides a 5V DC power output, which is used

to power the additional hardware.

The microcontroller was programmed so that it appears as a Connected Device

Configuration (CDC) slave, with the X61 tablet becoming the master. Although

77

Windows has native support for CDC devices, it was essential to write a .inf file

to provide information about the device and files which were to be installed by the

system. The USB connection then appears as a virtual com port, via which serial

commands and data can be exchanged.

5.4 Sensor Networks

There are two available sensor networks for this implementation of the Ubicorder.

These were the “Spinner” [35] and the MERL [31] networks. The ideas behind Ubi-

corder are not directly tied to the sensor network it communicates with.

5.4.1 MERL Sensor Network

The MERL sensor network consists of 150 ceiling-mounted sensor nodes deployed on

the third floor of the MIT Media Lab. The nodes (Figure: 5.4.1) and the network-

ing infrastructure was designed at the Mitsubishi Electric Research Labs (MERL),

Cambridge, MA. These devices were originally installed at the MIT Media Lab by

Ishwinder Kaur for collecting and analyzing data related to space usage patterns

(discussed in Section: 2.2 and [31]).

Figure 5-2: A “MERL” [31] movement node mounted on the ceiling

The MERL network reports boolean pings when the nodes detect motion under-

neath. Each node wirelessly communicates data to one of the seven Zigbee-Ethernet

78

gateway devices spread around the deployment area. These gateways, in turn, make

the MERL data available over the Ethernet/Wi-Fi network. The Ubicorder pulls the

data over the Wi-Fi network by directly connecting to each of the seven gateways.

5.4.2 Spinner Sensor Network

The “Spinner” network [35] has been designed by Mathew Laibowitz of the MIT

Media Lab’s Responsive Environments research group (Resenv) as a part of the PhD

research. The network is originally designed to identify, detect and record human

behavior with an intent to put together a cohesive narrative that conveys a larger

overall meaning.

Figure 5-3: A “Spinner” sensor node, designed by Mathew Laibowitz

In particular, the sensor nodes incorporate multiple sensors: temperature, light,

stereo microphones, movement and vibration. Additionally, some (future) nodes will

also incorporate a video camera. There is also a wearable component of the node

planned. A 50 node network is currently being rolled out in the Media Lab. The final

network topology follows a publisher-subscriber model, with all the nodes pushing

data to a central data repository over a wired data connection. However, in the

current deployment, the nodes are connected to the Media Lab’s (ML) Ethernet

network, and the Ubicorder directly connects to these nodes (by making a Wi-Fi

connection to the ML’s network).

79

5.5 Software

The bulk of the code was written in Java 6.0 programming language. In its present

form, the code spans a total of around 6K lines.

In addition to the Java code, the author also wrote a subset of the microcontroller

firmware (in the C programming language). In particular, the code dealt with acquir-

ing compass and infrared signature data and pushing it to USB. Appendix A and B

lists the Java 6 and microcontroller firmware respectively.

5.5.1 Software Environment

The initial look and feel prototype was implemented to run on Adobe Flash CS3

professional [6] and used ActionScript 3 (AS3) [5] scripting language. Flash/AS3

is focused on allowing interaction designers to iterate quickly over multiple UI ap-

proaches; it has a wide selection of built-in primitives for User Interface (UI) design.

As an analogy, many consider Flash AS3 as the Matlab (i.e., quick and easy but

computationally expensive) of the UI design world. We found, however, that the

Flash/AS3 setup was unable to handle large sensor data streams. Further, the plat-

form did not support simultaneous multiple thread execution. After making an initial

prototype in Flash/AS3, we abandoned it for a Java implementation.

Java provides a high performance, threading-friendly, and robust setup for com-

plete implementation. Multiple thread support was essential for us; our require-

ments included parsing and incorporating data from multiple sensor network gate-

ways, while, at the same time, providing a responsive UI. Unlike Flash/AS3, Java

supported multiple-thread execution.

The Software Widgets Toolkit (SWT) was chosen as the UI library for our im-

plementation. The choice was between SWT and the Swing framework. The SWT

framework uses native (operating system) window components, and gives better per-

formance. Additionally, the initial design goals of the project included porting this

80

Figure 5-4: Early Flash Prototypes. Double Clicking on a “Node” brings up raw data
and a video feed, where available

framework onto the Nokia N810 Internet Tablet [55], a 128mm x 72 mm sized hand-

held. At the time of writing, the N810’s Java port only supported SWT and not

Swing.

Sensor Network Data Acquisition

Basic calibration information, such as location/type of static sensor nodes, format

of sensor network data, and network addresses of the gateways are currently hard-

coded into the main program.

Sensor data is pulled directly from the sensor node gateways, which, in our case,

are connected to a wired Ethernet network. These gateways also listen (bind) for

incoming socket connections, and can push data to these connections. The X61

tablet finally pulls this data over Wi-Fi.

Since we used heterogeneous sensor networks, with each exposing data in its own

format, a list of parsers were written that would present a uniform view of the sensor

81

data to the rest of Ubicorder’s software.

Further, there were several quirks in managing different types of sensor gateways.

For example, our motion sensor network only reported movement pings, i.e., only

reports data when the motion sensor node observed motion. In contrast, other sensors,

such as light/sound sensors (part of the “Spinner” network) exposed complete analog

time-series data. For the rule-setting layer of the system (EDITY: see Section: 3.2),

a uniform sensor interface is useful. Motion sensor data can be converted into time-

series data. However, to do that for every motion sensor node, and at all times, would

be wasteful (Over 150 such nodes are presently deployed). We worked around this by

generating motion sensor data as a time-series when and if such a node is monitored

as per a user-defined rule. In particular, a startStreaming() function is called when a

rule starts monitoring a sensor, and a stopStreaming() function is called when the rule

is disposed. Every sensor exposes these functions (defined in the “SensorInterface”

interface).

The Ubicorder makes direct (Wi-Fi, 802.11 g/b) socket connections to each of

these gateways and retrieves near-real-time sensor data. While this approach does

not scale well, it was acceptable for our usage scenarios. Ideally, the sensor data

from the gateway should be pushed to a replicated, query-able database to which the

Ubicorder can talk.

In particular, a static list of IP addresses and gateways is maintained, along with

the type of sensor data this gateway collects. A software thread corresponding to

each gateway is tied to a custom parser corresponding to the type of data pushed by

the gateway.

5.5.2 Discussion

Latency was one of the key constraints to be managed. For the creation of rules

(EDITY system, discussed in Section: 3.2), we rely on the user being able to easily

correlate physically observed phenomena with the sensor data. In order to minimize

82

latency, a notify/observe protocol was used to communicate among multiple threads.

It is worth mentioning that we began by strictly adhering to the Model View

Controller [19] design pattern. However, during the course of our implementation,

we found following a rigid pattern to be cumbersome and unnecessary. One reason

for this was because only one programmer (present author) designed, implemented,

tested and debugged the entire code base. Also, given that this was a research project,

new ideas emerged while others were being implemented. Hence, there was never a

freeze on the features and the design.

It is difficult to describe the code itself. In the following tables, we list and

explain the various threads that execute in the program. Next we list all the classes

and interfaces used.

The software itself is organized into several classes. Note that in the Extends/Im-

plements Interface panel, classes written by the author are italicized. Other classes

are provided by the Java.util and Java.eclipse.swt.* classes.

83

Table 5.1: Threads: Functionality, and Lifetime
Threads, Functionality and Lifetime

No. Thread
Name:

Description: Lifetime:

1 MerlListener Connects to Each MERL Sensor Network Gateway,
Parses the Merl Data and pushes it to corresponding
nodes. Also notifies registered listeners of new data
for a particular node.

Lifetime of the
Main Program

2 SpinWerk-
Listener

Connects to Each Spinner Sensor Network Gateway,
Parses the Spinner Data and pushes it to correspond-
ing nodes

Lifetime of the
Main Program

3 ComPortFuncs Talks over the USB to additional Hardware(Compass,
Radio, IR), Gets the Compass Data and the nearest
Static Spinner Node ID.

Lifetime of the
Main Program

4 BigMapView Main Browsing UI, Displays the floor plan, overlays
the user’s present location and orientation, draws the
sensor network node.

life-time of the
Main Program

5 MultiRuleView Event Definition / Rule Creation User Interface. Active when
User Clicks
the “Create
Rule” Button,
until user
closes the Rule
Creation/Mod-
ification Win-
dow

6 Simple Rule
Threads

Check if a Simple Rule satisfied Created when
corresponding
sensor object
notifies() of
new data,
destroyed af-
ter check is
complete

7 Compound
Rule Threads

Check if a Compound Rule is satisfied Created when
correspond-
ing Simple
Rules(s) notify
of new Data.

84

Table 5.2: Class Structure of Ubicorder’s Software
Class Structure of Ubicorder’s Software

No. Class Name: Description: Extends: Implements
Interface:

1 Sensor One instance for each Sensor. Observable SensorInterface
2 Node One instance for each Node. A node

may have multiple sensors
Observable Listener

3 SimpleRule One instance for each simple rule cre-
ated

Observable SensorInterface,
Observer

4 CompoundRule One instance for each compound rule SimpleRule,
Observable

SensorInterface,
Observer

5 Filter One instance for each “Type” of filter
6 SmoothFilter Smoothening Filter, One instance for

every sensor stream displayed at the
time

Filter FilterInterface

7 Differentiate
Filter

Differentiating Filter, One instance for
every sensor stream displayed at the
time

Filter FilterInterface

8 MerlListener One instance for each gateway of the
Merl Sensors.

Runnable

9 SpinWerk-
Listener

An instance for each Spinner
Node(The node is also the gate-
way)

MerlListener Runnable

10 ComPortFuncs One instance for each Serial Port Con-
nection Opened.

Runnable

11 BigMapView Main Browsing UI. Runnable,
PaintListener,
Listener, Se-
lectionListener

12 MultiRuleView Event Definition / Rule Creation UI. Selection-
Listener,
Listener,
PaintListener,
Observer

13 Map Instance of floor plan, overlaid with
icons denoting nodes

PaintListener,
Listener

14 MarkedMap A map that lets nodes to be selected
by clicking on them

Map PaintListener,
Listener

15 SuperExpand-
Bar

Left Panel Bar of the Rule Editor Observable,
ExpandBar

ExpandListener,
PaintListener,
Listener

85

Table 5.3: Class Structure of Ubicorder’s Software(continued)
Class Structure of Ubicorder’s Software

No. Class Name: Description: Extends: Implements
Interface:

16 StripChart One instance for each strip chart
drawn

Canvas Listener,
PaintListener,
Observer

17 FilterSlider One instance for each Filter Available Composite
18 MerlSensor-

ListParser
One instance for each text file which
contains a list of Merl Sensor ids, and
their locations

86

Chapter 6

Experiment

6.1 Introduction

We conducted a first-use user study to evaluate the usability and the usefulness of

the Ubicorder. The study aimed to test:

• If the Ubicorder successfully enabled participants to discover, explore and browse

the deployed sensor network.

• If the Ubicorder aided the participants in interpreting and therefore using sensor

data.

• If designing events and rules was useful in aiding the participant to interpret

data.

• The ease of use of the Ubicorder, including the browsing and the EDITY inter-

faces.

Further, the study aimed to understand some constraints and shortcomings of the

system, thereby suggesting directions for future work.

87

6.2 Study Setup

6.2.1 Infrastructure

The study was conducted at the MIT Media Lab’s third floor. Although the Ubicorder

itself is sensor network agnostic, two sensor networks were used for the purpose of

this study. Section: 5.4 provides a detailed description of the sensor networks used.

The first was a 150 node MERL sensor network that consisted of ceiling-mounted

nodes with motion sensors. The second network is the “Spinner” sensor network.

The final network, when completely deployed, will span around 50 nodes around

the Media Lab. However, for our setup, we only deployed a total of four “Spinner”

nodes on the Media Lab’s third floor. Figure: 6.2.1 shows the placement of the

Spinner nodes. One “Spinner” node was in the area next to the elevator, another in

the kitchen. One node was deployed “Resenv” area (Responsive Environments area)

near the microscope/soldering station. Another node close the Resenv Area is located

within the author’s office and was used while demonstrating the Ubicorder during the

user study. Note how the nodes in the public areas, i.e., the elevator and the kitchen

nodes, have large halo’s (indicative of high sound levels). The nodes deployed in the

Resenv area report low sound levels.

6.2.2 Participant Profile

A total of ten participants took part in our user study. Of these, three were female

and seven were male. An additional two participants served as “pilot testers” for

the study, and their answers were not included in the analysis. Participants were

recruited by posting fliers around the Media Lab, and in the authors dormitory.

The participant profile spanned the course of education and age levels. Of the

ten participants, three were non-engineering (science) undergraduate (rising Junior)

students at MIT. Five participants were graduate students in the Media Arts and

Science program at our institution, and had engineering backgrounds. Finally, the

88

Figure 6-1: Test Setup: Location of nodes. One “Spinner” node was deployed next to
the elevator, another in the kitchen. One node was deployed “Resenv” area (Respon-
sive Environments area) near the microscope/soldering station. Another node close
the Resenv Area is located within the author’s office. The nodes in the public areas
(elevator, kitchen), have large halo’s (indicative of high sound levels). The nodes
deployed in the Resenv area report low sound levels.

study also included two postdoctoral scholars, one working in the field of computer

vision, and another working on holographic displays. One pilot participant was a

member of our research group. Five others were students at the Media Lab.

While all participants had at least some prior programming experience, 40% of

the participants had no prior knowledge of sensor networks. Half the participants

were novices or had no experience in building systems that used sensors. Half the

participants also had little or no prior experience in interpreting sensor data based on

visual inspection (eyeballing). Most of the participants (90%) were aware of boolean

operators (And, Or), and had used them before. Figures: 6-2 and 6-3 show the

knowledge level of the participants.

Participants were compensated with a ten dollar gift certificate for a local coffee

shop.

89

Figure 6-2: Participant Profile : Domain Knowledge

90

Figure 6-3: Participant Profile: Related Knowledge

6.3 Study Design

Each trial lasted for one hour and fifteen minutes. The test began with a pre-survey

questionnaire (5 mins.), followed by a brief introduction to the system (10 mins.).

The participant then performed the assigned tasks (40 mins.). This was followed by

an exit survey (15 mins.), and a post study session (5 mins.) in which the interviewer

answered any questions that they participant might have. The investigator (in this

91

case, the author) logged the names of the rules created by the participants, and

observed as they performed the task.

6.3.1 Profile Survey

The participants were asked to fill in a profile survey before being introduced to the

system.

6.3.2 Introduction

The study started with a demonstration of the Ubicorder. We also introduced the

sensor nodes available (The MERL and the Spinner Networks), and the sensing modal-

ities each node incorporates. The participants were also instructed about using signal

filters (Smoothing, Hold High, Hold Low, Not).

The participant was then asked to walk around and observe the changes on the

screen. He/She could visually correlate the icons corresponding to the motion sensors

triggering as he/she walked around.

6.3.3 Task

The task itself was divided into two smaller tasks.

1. Warm Up Task : In the initial task, the participant was handed the Ubicorder,

and was asked to locate the Spinner node in a dark room (least light). He/She then

physically walked to the location of the given “Spinner ” node. The participant was

to then program a rule such that the node’s icon’s color changes to red (from black)

when the light is switched on. The participant was also shown the location of the

light switch, and was allowed to toggle the switch. This was an example of a simple

rule being designed.

Figures: 6.3.3 and 6.3.3 show one such node used for our test.

92

Figure 6-4: The microscope/soldering station workbench with ambient light

2. Main Task : The participant was taken to the location of the microscope/soldering-

station workbench (Figures: 6.3.3 and 6.3.3). The participant was to design a rule to

detect if the said microscope/soldering station was in use. Since several participants

had never used a microscope/soldering station before, an “actor” acted out the usage

scenario, i.e., the participant switches on a microscope LED spotlight, and turns on

the fume exhaust (a device kept on the workbench table, containing a fan, which ab-

sorbs harmful solder fumes). The actor occasionally cleaned the soldering iron using

a (moist) cleaning foam, resulting in visible water vapor emanating from the cleaning

foam.

The participant was shown the LED spotlight switch, the soldering iron switch,

93

Figure 6-5: Zoomed in view of the Spinner Node deployed on the microscope/soldering
workbench. (1) Spinner Node, (2) fume exhaust, a device incorporating a fan and a
filter to absorb noxious solder fumes, (3) microscope, (4) Area under the microscope,
illuminated by a LED spotlight, (5) LED spotlight switch, (6) Soldering Iron

and the fume exhaust switch. The participant was also shown the switch for the tube

light mounted above the workbench for ambient light. Finally, the participant was

informed that users may or may not switch on the ambient light when soldering, but

always need to switch on the LED spotlight when soldering.

This task was chosen because it provides an opportunity for the participant to

design a straightforward (but non-trivial) compound rule involving sound and light

sensors. This setup also allowed participants to create more intricate rules involving

additional sensors. Around half of our participants were familiar with the soldering

station, and so it therefore introduced invariance with regards to prior knowledge of

the task.

Finally, the participant was to program the alert or actuation to be triggered when

the microscope was in use. Participants could set alerts such as audio alerts (“ding”

sound) or visual alerts (box drawn around a node, changing the color of the node).

94

6.3.4 Exit Survey

Following the completion of the task. The participant was then asked a list of ques-

tions that evaluated the usefulness and usability of the Ubicorder. The survey also

contained questions about the participants attitude toward sensor networks.

6.4 Observations and Implications

6.4.1 Completion

All participants were able to accomplish the task. Participants took a variety of

approaches in defining rules, some of which had not been originally envisioned by the

study-designer at the time of the design of the user study.

6.4.2 Defined Rules

For the warm up task, participants designed a rule that used light levels as the sensed

modality. The participants did not face any problems.

For the main task, the participants created rules that used the light levels, and

then experimented with sound, motion, temperature, and humidity. All participants

used at least two modalities to detect when the microscope/soldering station was in

use.

Most participants ended up devising the following set of rules:

1. Simple Rule A: Corresponding to increased light level. The light level increases

when the tube light at the top of the workbench is switched on, and increases further

when the LED spotlight mounted on the microscope is turned on. The participants

designed a rule so that it is invariant to the user switching on the tube light. At the

end, the lower threshold was set to the value corresponding to the tube light switched

off and the LED spotlight switched on, while the upper threshold corresponded to

both the tube light and the LED spotlight switched on.

95

2. Simple Rule B: Corresponding to increased sound level. When the fume ex-

haust fan was switched on, the increased sound level was used as a signature. Most

participants also used a smoothing filter when devising a rule for the sound data.

3. Compound Rule C: Participants “Anded” the Simple Rule A and Simple Rule

B, and saved the rule.

Participants also experimented with other sensor modalities. Two participants

designed a simple rule that used data from the Spinner node’s motion sensor. One

participant used this rule in addition to the Light and Sound rule, while the other

used it in place of the Simple Rule B (sound).

One participant did not design a single rule for the light, instead choosing to

design two simple rules:

1. Simple Rule A1: True when light level = light level with both the tube-light

and LED spotlight switched on.

2. Simple Rule A2: True when light level = light level with LED spotlight on,

but tube light off.

3. Compound Rule A: When either Simple Rule A1 OR Simple Rule A2 is true.

The participants then designed a simple rule (Simple Rule B) corresponding to

the sound level, and tied the compound rule A and the simple rule B via an AND

operator.

6.4.3 Post-Completion Questionnaire (Likert Scale Evalua-

tion)

A post-completion questionnaire was given to the participants. Questions were asked

about the usefulness of the Ubicorder (Table: 6-7), the device’s usability (Table: 6-6)

and the participants attitude toward the device and sensor networks (Table: 6-8).

96

Figure 6-6: Usefulness of the Ubicorder

97

Figure 6-7: Usefulness of the Ubicorder

6.4.4 Post-Completion Questionnaire (Subjective Evaluation)

In this part of the questionnaire, participants were asked open-ended essay type ques-

tions about the Ubicorder. Their answers are in Figures: 6-9, 6-10, 6-11, 6-12, 6-13.

98

Figure 6-8: General questions about the Ubicorder, and sensor networks

6.5 Successes

6.5.1 Browsing

The Ubicorder successfully enabled participants with no prior sensor network expe-

rience to discover and explore the deployed sensor networks. Further, participants

were able to browse and interpret the data gleaned by the networks.

99

Figure 6-9: Essay type answers to “What do you like most about the Ubicorder”

6.5.2 Defining, Manipulating and Using Rules

All participants were able to complete the tasks. The rules designed spanned a range

of solutions. Further, once the participants were familiar with the basic interface

of Ubicorder, the majority of their remaining time was spent exploring the sensor

modalities, defining rules and experimenting with combinations of them. This rapid

iteration of event rules enabled the participants to define robust rules.

Participants also liked the idea of using higher-level rules, and of giving them ex-

plicit control over the design of such rules. A majority of participants (70%) preferred

that they (and not someone else) design the rules for themselves. Further, partic-

100

Figure 6-10: Essay type answers to “What do you not like about the Ubicorder”

ipants, on average, were more forgiving when a rule based classification reported

erroneous results, if they were given the ability to modify the rule.

6.5.3 Learning about Sensors and Sensor Networks

As reported in the questionnaire, the Ubicorder was useful in learning about both the

sensor networks, and the sensors themselves. Participants liked being able to visually

correlate actions in real life with sensor data observed on the Ubicorder. This activity

can be classified as “learning by doing”.

101

Figure 6-11: Essay type answers to “Did using the Ubicorder give you new ideas for
inference rules that you could design ? If so, please mention some below”

6.5.4 Interface

Participants found the interface simple to use and intuitive. Furthermore participants

liked that the Ubicorder was portable, and that they could design rules in-situ.

Participants also noted the importance of being able to be physically present at

the location of the action/phenomena for which they were designing a rule. Mobility

allowed participants to correlate the sensor signature with the real event, and was

often cited as the feature they like the most.

102

Figure 6-12: Essay type answers to “What do you think about the idea of being able
to see, in real-time, the sensor data collected. Would you want such a system, to say,
control your home lighting?”

6.6 Shortcomings

6.6.1 Limitations and Critical Analysis of the User Study

There were some limitations of the user study in the present form:

103

Figure 6-13: Essay type answers to “Any additional comments, and last thoughts”.

• Time dependent combination rules were not tested: Several users felt the need

for defining compound rules that temporally linked other rules. The Ubicorder

does indeed incorporate time based rules, but such functionality was not ex-

plained or expected of the user in the given user study.

• Nature of the Task: The task was very clearly defined for the user, i.e., make

a rule for detecting when the microscope/soldering station is in use. Ideally,

the participant should independently discover new application spaces based on

the sensors available. However, such an open ended task is not well suited for

a short-term user study.

• Browsing interface: The Ubicorder can be better tested for its functionality as

a sensor network browsing device. In particular, it would be interesting to use

the browser on a large scale, multi-sensor deployment.

6.6.2 Shortcomings of the System

Participants identified some key areas for improvement.

104

• Use of “hard” boolean operators to tie together component rules (to form com-

pound ones). Limiting rules to boolean operators seemed to be restrict the

expressivity of the system.

• The system currently requires the user to create the rule, the user creates and

tweaks the rule. Participants suggested that a “first guess” from the system

will be useful.

• Participants pointed out the need for categorization of the (previously made)

component rules in the list of rules displayed when the user designs a compound

rule. Currently, all previously designed rules are displayed as a vertical list. The

rules appear in the order of their creation, i.e., the oldest rule is on the top, the

newest rule is at the bottom. Participants suggested the need to aid navigation

of these existing rules based on participating nodes or sensors.

• Participants pointed to the need for more expressive, customizable alerts / ac-

tuation (i.e., steps to be taken when the rule is true). One participant suggested

that users be allowed to put a specific image/photograph on the floor plan, when

a rule is true. For example, if a rule corresponding to Joe’s presence in office is

true, the system should be able to display Joe’s photograph on the floor plan

(that is displayed in the browse mode). Another participant mentioned that

they would like the events to actuate something physical, for example, unlock a

door. This functionality can currently be achieved by sending operating system

keystrokes (which the Ubicorder allows) and writing a stub to talk to external

devices.

• Participants found using the touchscreen cumbersome, especially when entering

the rule name. In the future, we propose that the system “suggest” to the users

a name, perhaps based on the sensing modality and the sensor node.

• One participant (Figure: 6-9, Q. 5) commented upon the latency of the system,

105

finding it a “little bothersome”. In the present setup, the majority of the latency

was because of the smoothing filter used while rule creation. The smoothing

filter works by taking a moving average. There is no mechanism to eliminate

this latency. One alternative would be to display to the user both the unfiltered,

real-time data stream and the filtered output, simultaneously.

• One participant (an adept programmer) commented on the (perceived) lack

of implementation of functions like if, while. The EDITY system does indeed

incorporate these mechanisms; it present them as edge-triggered (if) and level-

triggered actions (while). It illustrates the challenge when users translate terms

from programming domain to signal processing space.

Several of these shortcomings are further discussed in Section: 7.1.

106

Chapter 7

Conclusions and Future Work

Through the work presented in this thesis, a new research field has emerged. This

field sits at the crossroads of Human Computer Interaction, Sensor Networks and

Ubiquitous Computing.

We have illustrated that it is possible to devise systems that quickly and easily

makes sensor networks accessible to end users. Our results indicate that such a system

promotes the exploration and use of available sensor networks.

Our results indicate that developing better interfaces to support end user inference

and understanding of the sensor network encourages an increased use of sensor net-

works. Users preferred defining their own rules, in contrast to relying on predefined

rules.

By increasing exposure to the sensor networks, the Ubicorder encourages users to

experiment with the facilities of the networks and to find new, compelling application

scenarios.

7.1 Future Work

The Ubicorder may be improved in several ways. These improvements were identified

based on feedback from the users tests, and insights gleaned by having designed the

107

system. Some of these have also been discussed briefly in Section: 6.6.2.

7.1.1 Smaller, Lighter, and Faster

The Ubicorder’s current implementation uses a 12.1” tablet as the base computer.

Moving the Ubicorder to a smaller form factor computer, for example a PDA sized

device would make it more convenient for the user. The primary challenge of porting

to a small form-factor device is the limited screen real-estate. While the Ubicorder’s

browsing functionality can be easily ported, the EDITY interface will require more

changes. One idea is to make each pane of the EDITY UI as a separate screen, and

the user can scroll through the three panes one at a time.

Some users currently complained of the latency between a physical phenomena and

its observation on the Ubicorder. While a part of the latency is due to the network

and application of signal processing filters (which delay change by smoothing them

out), displaying and plotting the results also takes considerable computation. Moving

from a Java based implementation to a C++ based implementation will speed up the

graphing and visualization process.

7.1.2 Suggesting Rules

The Ubicorder would be easier to use if it suggested an “initial guess” or the rule.

The user can then tweak such a guess. In contrast, the current interface relies entirely

upon the end user for the creation of rules. One way to incorporate such a first guess

would be to display the maximum/minimum threshold of the sensor data currently

being displayed.

Another idea is to have a system that automatically detects the changes in state.

The user merely marks “Now” and “Not Now” regions in the time series graph. The

system computes the features that will serve as the best discriminants to differentiate

this rule from all other existing rules. As an example, consider the follow use-case.

108

• User is trying to create a rule. He uses the rule creation interface and selects -

“create by example”.

• User Switches on the light. User clicks the button “Record State On”.

• User Switches off the light. User clicks the button “Record State Off”

• The system tries to determine by this example what could serve as discriminant

between the state. The system determines that the light level in a particular

sensor varied, and uses this as a rule.

• The system then displays a list of sensors that varied, and the rules it can derive

from them. This information may be displayed to the user, and the user may

be allowed to manipulate it.

Another important addition can be a mechanism to suggest to the user how some

rules can be combined. Again, the approach to “record sample” could be used, with

multiple samples leading to either relaxing/modifying the thresholds for a rule, or

creating a compound rule by internally “OR”ing the scenarios. Having a system help

users generalize their rule would be an extremely useful feature.

Additional ideas for aiding the user to design compound rules are discussed below

(Section: 7.1.5).

7.1.3 Expressivity of Rules

The use of “hard” boolean operators to tie together component rules (to form com-

pound ones) limits expressivity of the system. Future versions of the Ubicorder will

incorporate a probabilistic model for combining rules. A fuzzy logic based approach

may be suitable for the given application.

More expressive “output” or event metaphors can be incorporated in the next

version of the Ubicorder. We currently support a limited set of actuators, i.e., screen

actions to indicate that the rule is true. However, given that the designer can not

109

envision all possible application scenarios the system might be used for, we propose a

plug-in based extensible work. For example, the “image” plug-in might support the

display of a person’s photograph every time a rule testing for the occupancy of an

office is detected as true.

7.1.4 Generalizing the Interface

The model presented in this thesis is general, although the current instantiation (this

implementation) is not. Additional filters and operators can extend the functionality

of the system. For example, operators such as “Highly Correlated with” instead of

the boolean operators would be needed.

7.1.5 Interface

We had hoped that the user would experiment with boolean operators for the design

of compound rules, finding the right one after a few tries. Instead, we found that

users did not experiment with the boolean operators, but instead choose one based

on their mental model of the system. Such an approach could lead to the user missing

a simpler set of rules. In the next version of the Ubicorder, we intend to display the

output of all the boolean operators simultaneously, i.e., we display the AND, the OR

and the XOR outputs in parallel, on three different result strip charts. The user

would then select the correct result strip chart based on the desired output. This

would encourage matching the right boolean operator by experimentation.

When designing a compound rule, choosing the right component rules for combi-

nation proved to be a difficult task. It would be useful to see the output of all possible

candidate rules simultaneously, and then choose the right ones. Currently, the only

way to see the output of a (candidate) rule is to select it. However, selecting the rule

means that it forms a component rule of the compound rule being designed. Instead,

we hope to convey the output of the displayed rule by color coding the rule in the left

pane (list of candidate rules). For example, the button corresponding to the rule can

110

be of the color red or green, indicating the rule’s present output. Such an interface

will enable the user to see the state of the entire set of previously created rules at a

glance.

Another area of improvement is the descriptiveness of the rules. Currently, the

rule created is only described by its name. However, it would be useful to record a

description of why the user created or modified the rule, while they are modifying

it. This information could be especially useful when another user is assembling a

compound rule that uses an older rule. Perhaps a text box should be incorporated in

the interface to store the comments associated with the rule, and this information is

displayed when the user tweaks the rule/browses it as a candidate for a component

rule.

Currently, the Ubicorder’s EDITY system does not allow for selection of multiple

sensor nodes, and then operate on all the nodes together. Some sample operations

would be:

• Any of the selected sensors: Rules such as “true if any of the sensors in the

building report temperature ≥ 80 degrees”.

• Aggregate of selected sensor nodes: Rules such as “true if the aggregate of

temperature readings from all sensors ≥ 80 degrees”.

Such rules can be easily incorporated in the Ubicorder’s interface.

Lastly, Participants found using the touchscreen cumbersome, especially when

entering the rule name. In the future, we propose that the system “suggest” to the

users a name, perhaps based on the location of the user.

7.1.6 Building a Community

Future versions of the Ubicorder can facilitate and encourage sharing of rules across

multiple users and devices. One can consider instituting a Wikipedia [1] like reposi-

tory of user created sensor rules. These rules may be generic, or location-specific. For

111

example, there could be multiple rules in the repository intended detect if a person is

in front of a white board if a motion sensor is mounted at an 45 degree angle at the

top. A new user with a similar (not necessarily identical) sensor arrangement could

download one of the many rules and use the one which works best. Additionally, the

rules could be more location specific, for example, the rule to detect if the there is a

meeting going on in a conference room B in building E15. Many users, with their own

Ubicorder, might have attempted to create the rule, but the best one will “bubble”

up. The repository can also let users rank the rules for their effectiveness, allowing

the best rules to emerge.

The user could also leave “breadcrumbs,” i.e., inference rules that are displayed

to the user when they are at a particular location. For example, a Ubicorder will

automatically display the seat availability in a sensor equipped bus as it approaches

a bus stop, if the Ubicorder user is waiting at the bus stop.

7.1.7 New Applications

The Ubicorder can also serve as a powerful tool for exploring human attitudes and

preferences towards sensor networks, and for addressing privacy concerns that straddle

sensor networks deployed in home and office environments. For example, with the

Ubicorder, a user could limit the granularity and the latency of sensor data exposed

by a sensor node. Such limitations will translate to either coarser inferences and/or

delayed inferences.

7.2 Concluding Remarks

If the vision of Ubiquitous Computing is to be realized, it is essential to enable end-

users to use sensors and sensor networks. The Ubicorder aims to lower the threshold

for users to discover, use and take advantage of the facilities offered by sensor net-

works, and thus, we believe, represents an important step in this direction.

112

Appendix A

User Study Material

113

UBICORDER USER STUDY CONSENT FORM

The purpose of this user study is to evaluate the usefulness and usability of the Ubicorder device. As a volunteer in this study, your
participation will be anonymized. You will be asked to fill out questionnaires, both before and after the study. The entire study should
take no more than an hour. If for any reason you are uncomfortable with the study, you may end it at any time.

I, ________________________, have read and fully understood the extent of the study and any risks involved. I sign here acknowledging
the above information.

Participant Signature:

Name:

Date:

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ For Internal Use Only: Do Not Write Below This Line ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Start Time:

End Time:

Experiment ID

Figure A-1: Consent Form

114

UBICORDER: USER STUDY

The Ubicorder is a device for browsing sensor networks, and for creating rules corresponding to sensor network data. Read all the
instructions carefully. Read the instructions for each task carefully before beginning it. You may ask the experimenter questions before
the beginning of a Task.

Subject Instructions:

1. Observe the map of the third floor of the Media Lab. The square icons are the motion sensors, and the circular icons are the
Spinner nodes that were demonstrated in the introduction. The Spinner icons jitter (vibration), change their halo size (sound)
and change the size of the emanating lines (light level). Their color changes from black to green when motion is detected.

TASK 1

2. Task 1: Of the multiple Spinner nodes displayed, locate one in a dark room.
3. In the EDITY mode, create a rule so that the node’s color on the screen changes to red (from black) when the light is switched

on. You may switch on the light in the room that the spinner node is. The experimenter will show the switch.
4. Save the previous rule, and test it. If need be, go back and change it. You can change a rule by saving a rule with the same name.

Task 2

5. Task 2: The experimenter will take you to a microscope/soldering station setup. There, an actor will act out the process of
someone soldering. You should also be able to see a Spinner node in the vicinity of the microscope/soldering station.

6. Notice the devices and the actions that the actor performs. You will be shown the light and soldering iron switches. Note that
there are two lights, the Microscope’s spot light and the ambient light. The spot light must be switched on when the Microscope
is used. The ambient light may or may not be switched on.

7. Design a rule to indicate that the Microscope and Soldering station is in use. Some of the modalities that you might use are light,
sound, motion etc. You might use only one modality, or a combination of multiple modalities. After creating the rule, set it so
that when it is true, a Ding sound is emanated. Also, choose a name for the rule and save it.

Figure A-2: Instructions to participants

115

116

Appendix B

Firmware: USB Code (C)

117

0 /∗ This header f i l e i s part of the ATMEL AVR32−SoftwareFramework−1.3.0−AT32UC3B Release ∗/

/∗This f i l e i s prepared for Doxygen automatic documentation generation .∗/
/∗ ! \ f i l e ∗∗
∗
∗ \br ie f Management of the USB device mouse CDC task .
∗
∗ This f i l e manages the USB device mouse CDC task .
∗
∗ − Compiler : IAR EWAVR32 and GNU GCC for AVR32

10 ∗ − Supported devices : All AVR32 devices with a USB module can be used .
∗ − AppNote:
∗
∗ \author Atmel Corporation : http ://www. atmel .com \n
∗ Support and FAQ: http :// support . atmel .no/
∗
∗∗∗/

/∗ Copyright (C) 2006−2008, Atmel Corporation All r ights reserved .
∗

20 ∗ Redistribution and use in source and binary forms , with or without
∗ modification , are permitted provided that the fol lowing conditions are met :
∗
∗ 1. Redistributions of source code must retain the above copyright notice ,
∗ th i s l i s t of conditions and the fol lowing disclaimer .
∗
∗ 2. Redistributions in binary form must reproduce the above copyright notice ,
∗ th i s l i s t of conditions and the fol lowing disclaimer in the documentation
∗ and/or other materials provided with the dis tr ibut ion .
∗

30 ∗ 3. The name of ATMEL may not be used to endorse or promote products derived
∗ from this software without spec i f i c prior written permission .
∗
∗ THIS SOFTWARE IS PROVIDED BY ATMEL ‘ ‘AS IS ’ ’ AND ANY EXPRESS OR IMPLIED
∗ WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
∗ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY AND
∗ SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
∗ INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
∗ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
∗ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

40 ∗ ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
∗ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
∗ THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
∗/

#ifndef _DEVICE_CDC_TASK_H_

#define _DEVICE_CDC_TASK_H_

50 // I N C L U D E S

#include "conf_usb.h"

#if USB_DEVICE_FEATURE == DISABLED

#error device_cdc_task.h is #included although USB_DEVICE_FEATURE is disabled

#endif

// D E F I N I T I O N S
60

#define NB_MS_BEFORE_FLUSH 50

#define POLL_COMPASS ’c’

// M A C R O S

// D E C L A R A T I O N S

extern void device_cdc_task_init(void);

70 #ifdef FREERTOS_USED

extern void device_cdc_task(void *pvParameters);

#else

extern void device_cdc_task(void);

#endif

extern void usb_sof_action(void);

#endif // DEVICE CDC TASK H

118

0 /∗ This source f i l e i s part of the ATMEL AVR32−SoftwareFramework−1.3.0−AT32UC3B Release ∗/

/∗This f i l e i s prepared for Doxygen automatic documentation generation .∗/
/∗ ! \ f i l e ∗∗
∗
∗ \br ie f Management of the USB device CDC task .
∗
∗ This f i l e manages the USB device CDC task .
∗
∗ − Compiler : IAR EWAVR32 and GNU GCC for AVR32

10 ∗ − Supported devices : All AVR32 devices with a USB module can be used .
∗ − AppNote:
∗
∗ \author Atmel Corporation : http ://www. atmel .com \n
∗ Support and FAQ: http :// support . atmel .no/
∗
∗∗∗/

/∗ Copyright (C) 2006−2008, Atmel Corporation All r ights reserved .
∗

20 ∗ Redistribution and use in source and binary forms , with or without
∗ modification , are permitted provided that the fol lowing conditions are met :
∗
∗ 1. Redistributions of source code must retain the above copyright notice ,
∗ th i s l i s t of conditions and the fol lowing disclaimer .
∗
∗ 2. Redistributions in binary form must reproduce the above copyright notice ,
∗ th i s l i s t of conditions and the fol lowing disclaimer in the documentation
∗ and/or other materials provided with the dis tr ibut ion .
∗

30 ∗ 3. The name of ATMEL may not be used to endorse or promote products derived
∗ from this software without spec i f i c prior written permission .
∗
∗ THIS SOFTWARE IS PROVIDED BY ATMEL ‘ ‘AS IS ’ ’ AND ANY EXPRESS OR IMPLIED
∗ WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
∗ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY AND
∗ SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
∗ INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
∗ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
∗ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

40 ∗ ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
∗ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
∗ THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
∗/

// I N C L U D E S

#include <stdio.h>

#include "usart.h" // Shal l be included before FreeRTOS header f i l e s , since ’ in l ine ’ i s defined to ’ ’ ; leading to
50 // l ink errors

#include "conf_usb.h"

#define BUFSIZE 200

#if USB_DEVICE_FEATURE == ENABLED

#include "board.h"

#ifdef FREERTOS_USED

#include "FreeRTOS.h"

60 #include "task.h"

#endif

#include "usb_drv.h"

#include "gpio.h"

// #include ” joyst ick .h”
#include "usb_descriptors.h"

#include "usb_standard_request.h"

#include "device_cdc_task.h"

#include "uart_usb_lib.h"

#include "shirt_compass.h"

70

// M A C R O S

// D E F I N I T I O N S

// D E C L A R A T I O N S

static volatile U16 sof_cnt;

80

// !
// ! @brief This function in i t i a l i z e s the hardware/software resources
// ! required for device CDC task .
// !
void device_cdc_task_init(void)

{

sof_cnt =0 ;

90 uart_usb_init ();

#ifndef FREERTOS_USED

#if USB_HOST_FEATURE == ENABLED

// I f both device and host features are enabled , check i f device mode is engaged
// (accessing the USB regis ters of a non−engaged mode, even with load operations ,
// may corrupt USB FIFO data) .
if (Is_usb_device ())

#endif // USBHOSTFEATURE == ENABLED
Usb_enable_sof_interrupt ();

100 #endif // FREERTOSUSED

#ifdef FREERTOS_USED

xTaskCreate(device_cdc_task ,

configTSK_USB_DCDC_NAME ,

configTSK_USB_DCDC_STACK_SIZE ,

NULL ,

configTSK_USB_DCDC_PRIORITY ,

NULL);

110 #endif // FREERTOSUSED
}

short ir_sensor_packet [17];

// !
// ! @brief Entry point of the device CDC task management
// !
#ifdef FREERTOS_USED

void device_cdc_task(void *pvParameters)

#else

120 void device_cdc_task(void)

#endif

119

{

int c;

int i;

char buffer[BUFSIZE];

static Bool startup=TRUE;

#ifdef FREERTOS_USED

130 portTickType xLastWakeTime;

xLastWakeTime = xTaskGetTickCount ();

while (TRUE)

{

vTaskDelayUntil (& xLastWakeTime , configTSK_USB_DCDC_PERIOD);

// First , check the device enumeration state
if (! Is_device_enumerated ()) continue;

#else

140 // First , check the device enumeration state
if (! Is_device_enumerated ())

return;

#endif // FREERTOSUSED

if(startup)

{

// print f (”\r\nUSB DEVICE Communications Device Class demo.\ r\n”);
startup=FALSE;

}

150
if(sof_cnt >= NB_MS_BEFORE_FLUSH) //Flush buffer in Timeout
{

sof_cnt =0;

uart_usb_flush ();

}

// i f (i s j oy s t i c k r i gh t ())
// print f (”Joystick Right key pressed .\ r\n”);
//

160 // i f (i s j o y s t i c k l e f t ())
// print f (”Joystick Left key pressed .\ r\n”);
//
// i f (is joystick down ())
// print f (”Joystick Down key pressed .\ r\n”);
//
// i f (i s joys t ick up ())
// print f (”Joystick Up key pressed .\ r\n”);
//
// i f (i s joyst ick pressed ())

170 // print f (”Joystick Select key pressed .\ r\n”);

// i f (! gpio get pin value (GPIO PUSH BUTTON 0))
// print f (”Button 0 key pressed .\ r\n”);
//
// i f (! gpio get pin value (GPIO PUSH BUTTON 1))
// print f (”Button 1 key pressed .\ r\n”);

// i f (usar t t e s t h i t (DBGUSART)) // Something on USART ?
// {

180 // i f (uart usb tx ready ()) // ”USART”−USB free ?
// {
// i f (USART SUCCESS==usart read char (DBGUSART, &c))

// {
// i f (c==’\r ’)
// uart usb putchar (’\n ’) ;
//
// uart usb putchar (c) ; // Loop back , USART to USB
// // LED Toggle(LED0);
// }

190 // e lse {
// usart reset s tatus (DBGUSART);
// }
// }
// }

if (uart_usb_test_hit ()) // Simple Loopback code − Echo ’ s back whatever was sent over USB
{

if (uart_usb_tx_ready ()) // USART free ?
{

200 c= uart_usb_getchar ();

switch(c) {

default :

if(c==’\r’)

uart_usb_putchar(’\n’);

uart_usb_putchar(c); // Loop Back to USB
break;

210 case POLL_COMPASS :

get_compass_data(POST_HEADING , buffer);

uart_usb_putchar(’\r’);

uart_usb_putchar(’\n’);

for(i = 0; i < 6; i++) {

uart_usb_putchar(buffer[i]);

}

uart_usb_putchar(’\r’);

uart_usb_putchar(’\n’);

break;

220
case ’i’:

uart_usb_putchar(’\r’);

uart_usb_putchar(’\n’);

// short∗ packet = get ir packet () ;
for(i = 0; i < 17; i++) {

uart_usb_putchar(ir_sensor_packet[i]);

}

uart_usb_putchar(’\r’);

230 uart_usb_putchar(’\n’);

break;

}

}

}

// i f (uar t usb tes t h i t ()) // Something received from the USB ?
// {
// i f (usart tx ready (DBGUSART)) // USART free ?
// {

240 // c= uart usb getchar () ;
// i f (c==’\r ’)
// usart putchar (DBGUSART, ’\n ’) ;
//

120

// usart putchar (DBGUSART, c) ; // loop back USB to USART
// // LED Toggle(LED1);
// }
// }

250 #ifdef FREERTOS_USED

}

#endif

}

// !

// ! @brief usb sof action
// !
// ! This function increments the sof cnt counter each time

260 // ! the USB Start−of−Frame interrupt subroutine is executed (1 ms) .
// ! Useful to manage time delays
// !
void usb_sof_action(void)

{

sof_cnt ++;

}

#endif // USBDEVICEFEATURE == ENABLED

121

122

Appendix C

EDITY Logic Code (Java)

123

0 /∗∗
∗
∗/

package edu.media.resenv.clairvoyant;

import java.util.ArrayList;

import java.util.LinkedHashMap;

import java.util.List;

import org.eclipse.swt.widgets.Display;

10 /∗∗
∗
∗ Main class
∗ Sets up state variables .
∗
∗ Clairvoyant
∗ Copyright (c) 2008 − 2010, MIT Media Laboratory
∗ All Rights Reserved
∗
∗

20 ∗ @author Manas Mittal , MIT Media Laboratory
∗
∗/

final public class Clairvoyant {

int i;

static volatile LinkedHashMap <String , Node > nodes; // does th is need to be vo l a t i l e
// s ta t i c Display display ;

public static void main(String [] args) {

30 Clairvoyant.nodes = new LinkedHashMap <String , Node >();

// Build a l i s t of nodes
new MerlSensorListParser ((LinkedHashMap <String , Node >) nodes);

// Open and start the compass (i f connected)
(new Thread (new ComPortFuncs ())). start (); // change for N810

//// start v isua l izat ion
try {

(new Thread(new BigMapView(nodes))). start ();

40 }

catch (Exception e) {

e.printStackTrace ();

}

// Start Threads for each Merl Node Sensor Parent
(new Thread(new MerlListener(nodes , "beetle.media.mit.edu", 8484))). start ();

(new Thread(new MerlListener(nodes , "ant.media.mit.edu", 8484))). start ();

(new Thread(new MerlListener(nodes , "gnat.media.mit.edu", 8484))). start ();

(new Thread(new MerlListener(nodes , "slug.media.mit.edu", 8484))). start ();

50 (new Thread(new MerlListener(nodes , "firefly.media.mit.edu", 8484))). start ();

(new Thread(new MerlListener(nodes , "mantis.media.mit.edu", 8484))). start ();

// (new Thread(new SpinwerkListener (nodes , ”18.85.45.202” , 2001, new Point (120 ,90)))). s tart () ; // DUMMYNODE
(new Thread(new SpinwerkListener(nodes , "18.85.45.161", 1000, new Point (125 ,5)))). start (); // RESENV OFFICE NODE
(new Thread(new SpinwerkListener(nodes , "18.85.45.162", 1000, new Point (120 ,30)))). start (); // MICROSCOPE NODE

// Non Functioning Base Stations Nodes
//(new Thread(new MerlListener (nodes , ”ladybug .media .mit . edu” , 8484))). s tart () ;
//(new Thread(new MerlListener (nodes , ”termite .media .mit . edu” , 8484))). s tart () ;

60 // kitchenNode . drawStripChart(da ta l i s t) ;

}

}

124

0 /∗∗
∗ @author Manas Mittal
∗ Main Display Class
∗ Only 1 thread runs here
∗
∗/

package edu.media.resenv.clairvoyant;

import java.io.BufferedReader;

import java.io.FileReader;

10 import java.util.ArrayList;

import java.util.Iterator;

import java.util.LinkedHashMap;

import java.util.Map;

import java.util.StringTokenizer;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.PaintEvent;

import org.eclipse.swt.events.PaintListener;

import org.eclipse.swt.events.SelectionEvent;

20 import org.eclipse.swt.events.SelectionListener;

import org.eclipse.swt.graphics.Color;

import org.eclipse.swt.graphics.Cursor;

import org.eclipse.swt.graphics.Font;

import org.eclipse.swt.graphics.GC;

import org.eclipse.swt.graphics.Image;

import org.eclipse.swt.graphics.Rectangle;

import org.eclipse.swt.graphics.Transform;

import org.eclipse.swt.layout.FillLayout;

import org.eclipse.swt.widgets.Canvas;

30 import org.eclipse.swt.widgets.Composite;

import org.eclipse.swt.widgets.Display;

import org.eclipse.swt.widgets.Event;

import org.eclipse.swt.widgets.Label;

import org.eclipse.swt.widgets.Listener;

import org.eclipse.swt.widgets.Scale;

import org.eclipse.swt.widgets.Shell;

import org.eclipse.swt.widgets.ToolBar;

import org.eclipse.swt.widgets.ToolItem;

40 /∗∗
∗ @author Manas Mittal
∗ BigMapView. java
∗ View Class , Displays a l l the nodes , and allows for node manipulation .
∗ Parent should ca l l MerlSensorListParser and make nodes
∗∗/

public class BigMapView implements

Runnable , PaintListener , Listener , SelectionListener {

LinkedHashMap nodes;

50 Image image;

static Display display;

Shell shell;

Canvas canvas;

GC gc;

int [][] Rooms;// rooms
int nRooms = 0; // dc
static volatile boolean mouseDn = false;

static volatile Point origin = new Point (0,0);

static volatile Point endpt = new Point (0 ,0);

60 double scale = (CONSTANT.SCALE);

static boolean toDraw = true;

static volatile double avgActivity = 0;

// Label Activity ;
// Scale minActScale ;
// Scale maxActScale ;
// Label minActivity ;
// Label maxActivity ;
ToolItem createRule;

ToolItem createMultiRule;

70 ToolItem zoomIn;

ToolItem zoomOut;

ToolItem getDetails;

ToolItem pan;

Cursor handCursor;

Font font;

ArrayList <Rule > rules;

static int cursorDia = 40;

static int cursorDiaInner = 24;

static double thetaOffset = 0;

80 static double theta = thetaOffset;

public BigMapView(Map <String , Node > nodes) {

// the l i s t passed is already populated with a l l the nodes
this.nodes = (LinkedHashMap) nodes; // All the Nodes
this.rules = new ArrayList <Rule >(); // All the Rules
//that have to be detected
this.setLocalizationResolution(CONSTANT.LOCALIZATION_RESOLUTION);

}

90 /∗∗
∗ Function : parseRooms
∗ @category : Parses text f i l e corresponding to the location of the roots
∗∗/

private void parseRooms () {

// take the filename and parse i t
this.nRooms = 0;

this.Rooms = new int[CONSTANT.MAXROOM][];

int []temp = new int[CONSTANT.MAXPOINTS];

int yMax = 162;

100
try {

FileReader fr = new FileReader

("C:/ eclipse/Clairvoyant/src/edu/media/resenv/clairvoyant/mlplan.txt");

BufferedReader br = new BufferedReader(fr);

String line;

while ((line = br.readLine ()) != null) {

StringTokenizer linet = new StringTokenizer(line , "\n");

while (linet.hasMoreTokens ()) {

int nPoints = 0;

110 StringTokenizer st = new StringTokenizer(linet.nextToken(), " ");

while(st.hasMoreTokens ()) {

// populate the room
int v1 = (int) Math.round(Double.valueOf(st.nextToken ()));

int v2 = (int) Math.round(Double.valueOf(st.nextToken ()));

//System. out . print ln (”nPoints i s” + nPoints) ;
temp[nPoints ++] = v1; // x−Coordinate
temp[nPoints ++] = yMax - v2; // y−coordinate

}

120 temp[nPoints ++] = temp [0]; // pad to complete
temp[nPoints] = temp [1];

125

Rooms[nRooms] = new int[nPoints];

// copy the array
System.arraycopy(temp , 0, Rooms[nRooms], 0, nPoints);

nRooms ++;

if(CONSTANT.DEBUG)

System.out.println("Room "

+ nRooms + " has " + nPoints);

130 }

}

// Add one more l ine
Rooms[nRooms ++] = new int []{0 ,162 ,162 ,162}; // For the Edge

}

catch (Exception e) {

e.printStackTrace ();

}

if(CONSTANT.DEBUG)

System.out.println("no of rooms is " + nRooms);

140 }

static double avg = 0;

static int size = 5;

static double thetaLowPass [] = new double[size];

static int lastEntryIndex = 0;

static Point location = new Point (540 ,120);

/∗∗
150 ∗ Function controls the s ize of the cursor

∗ @param i : 1 −−> Maximum Accuracy
∗ Default i s 2
∗/

public void setLocalizationResolution(int accuracy) {

BigMapView.cursorDia = accuracy * 20;

BigMapView.cursorDiaInner = accuracy * 12;

}

private double smoothenTheta(double newTheta) {

160 avg -= thetaLowPass[lastEntryIndex]/size;

thetaLowPass[lastEntryIndex] = newTheta;

lastEntryIndex = (lastEntryIndex +1)% size;

avg += newTheta/size;

return avg;

}

private void drawCursor(Shell shell , Display display , GC gc,

Canvas canvas) {

170 // Draw a Circle
// Call the function Localize to get loca l i zat ion value
// Start the Serial Port as a separate thread .
// Call the s ta t i c function for values for the ser ia l data ’

this.theta = ((ComPortFuncs.CompassValue [0])/15.0 +

((0.1 * ComPortFuncs.CompassValue [1])/256.0)) * Math.PI * 2;

this.theta = this.smoothenTheta(this.theta); // smoothen theta out

180 // System. out . print ln (”Theta is ” + this . theta) ;
gc.setAntialias(SWT.ON); // Change for N810
gc.setBackground(Display.getCurrent (). getSystemColor(SWT.COLOR_GREEN));

gc.setAlpha (70);

gc.fillOval ((int)location.getX() - this.cursorDia/2,

(int) location.getY() - this.cursorDia /2

, this.cursorDia , this.cursorDia); // cursor radius
gc.setBackground(Display.getCurrent (). getSystemColor(SWT.COLOR_RED));

gc.setAlpha (600);

gc.fillOval ((int)location.getX() - this.cursorDiaInner /2,

190 (int) location.getY() - this.cursorDiaInner /2

, this.cursorDiaInner , this.cursorDiaInner);

// cursor radius : should i t be in cosntants instead ?
/∗ Make Arrow and Line ∗/
Point edge1 = new Point ((int) (this.cursorDia /2) * Math.cos(theta),

(int) ((this.cursorDia /2) * Math.sin(theta)));

edge1.moveOrigin(location); // edge1 is the center point

Point offset = new Point ((int) (this.cursorDia /3.4) * Math.cos(theta),

(int) this.cursorDia /3.4 * Math.sin(theta));

200 offset.moveOrigin(location);

Point edge2 = new

Point((-1) * this.cursorDia /6 * Math.sin(theta),

this.cursorDia /6 * Math.cos(theta));

edge2.moveOrigin(offset);

Point edge3 = new Point (this.cursorDia /6 * Math.sin(theta)

, -1 * this.cursorDia /6 * Math.cos(theta));

edge3.moveOrigin(offset);

210
int[] points = new int[] { (int)edge2.getX(), (int) edge2.getY(),

(int)edge1.getX(), (int) edge1.getY(),

(int)edge3.getX(), (int) edge3.getY() };

gc.setAlpha (700);

gc.setLineWidth (1);

gc.setForeground(Display.getCurrent (). getSystemColor(SWT.COLOR_RED));

gc.setBackground(Display.getCurrent (). getSystemColor(SWT.COLOR_RED));

gc.setLineStyle(SWT.LINE_SOLID);

220 gc.drawLine ((int) location.getX(), (int) location.getY(),

(int) (location.getX() + (this.cursorDia /2.1) * Math.cos(theta)),

(int) (location.getY() + (this.cursorDia /2.1) * Math.sin(theta)));

// gc . setAlpha (800);
gc.fillPolygon(points);

}

public void paintControl(PaintEvent e) {

this.draw2dMap(shell , display , e.gc, canvas);

this.drawNodes(display , e.gc, canvas);

230 this.drawSelectionBox(shell , display , e.gc , canvas);

this.drawCursor(shell , display , e.gc, canvas);

}

public void drawSelectionBox(Shell shell , Display display ,

GC gc , Canvas canvas) {

// System. out . print ln (”drawSelectionBox cal led ”);
if(toDraw == true) {

// gc . setAdvanced(true) ;
240 int p = gc.getAlpha ();

gc.setAlpha (30);

gc.setBackground(display.getSystemColor(SWT.COLOR_MAGENTA));

gc.fillRectangle(

126

(int)origin.getX(), (int)origin.getY(),

(int)(endpt.getX() - origin.getX ()) ,

(int)(endpt.getY() - origin.getY ()));

gc.setAlpha(p);

}

}

250
public void draw2dMap(Shell shell , Display display , GC gc, Canvas canvas) {

// draw on the gc
gc.setForeground(display.getSystemColor(SWT.COLOR_RED));

gc.setLineStyle(SWT.LINE_SOLID);

Color clr = new Color(this.display , 164 ,164 ,164);

gc.setLineWidth (3);

// parse and bui ld an array for th is type
for(int j=0; j<nRooms; j++) {

int[] room = this.Rooms[j];

260 double scale = this.scale;

int prevx = (int)room [0];

int prevy = (int) room [1];

int currx;

int curry;

// step 2 each time
int len = room.length;

// complete the room;
int count = 0;

for (int i = 2; i + 1< len; i = i+2) {

270 gc.setForeground(clr);

currx = (int)room[i];

curry = (int)room[i+1];

gc.drawLine((int) scale * prevx , (int) scale * prevy ,

(int) scale * currx , (int) scale * curry);

prevx = currx; prevy = curry;

count ++;

}

}

280 Transform t = new Transform(gc.getDevice ());

t.translate ((int) (this.scale/2 * 37f),(int) (this.scale/2 *181f));

t.rotate (-90f);

gc.setTransform(t);

gc.drawText("ELEVATOR", 0, 0);

t.rotate (90f);

t.translate ((int)(-37f*this.scale /2),(int) (-181f*this.scale /2));

gc.setTransform(t);

gc.drawText("ATRIUM", (int) (86 * this.scale /2),

290 (int) (200 * this.scale /2));

gc.drawText("PLW", (int) (10* scale /2) , (int) (212* scale /2));

gc.drawText("POND", (int) (175 *scale /2), (int) (200* scale /2));

gc.drawText("TTT", (int) (251 *scale /2), (int) (290* scale /2));

gc.drawText("RESENV", (int)(246 *scale /2), (int)(47* scale /2));

gc.drawText("TMG", (int)(246* scale /2), (int)(83* scale /2));

gc.drawText("KITCHEN", (int)(263* scale/2), (int)(163* scale /2));

gc.drawText("OBM", (int)(150* scale /2),(int) (40* scale /2));

}

300

ToolBar bar;

public void drawImage () {

// the i f i s just as a sanity check
// th is . display = new Display () ;
this.display = new Display ();

this.handCursor = new Cursor(this.display , SWT.CURSOR_HAND);

// might have to show this image
310 shell = new Shell(display);

shell.setText("Ubicorder");

shell.setImage(new Image

(this.display ,

"/src/edu/media/resenv/clairvoyant/icons/Scan.ico"));

shell.setBackground(Display.getDefault (). getSystemColor(SWT.COLOR_WHITE));

/∗ Canvas Ini t ∗/
canvas = new Canvas(shell , SWT.DOUBLE_BUFFERED);

canvas.setBackground(display.getSystemColor(SWT.COLOR_LIST_BACKGROUND));

320 canvas.addListener(SWT.MouseDown , this);

/∗ MouseMove, MouseUp, MouseDown ∗/
canvas.addListener(SWT.MouseUp , this);

canvas.addListener(SWT.MouseMove , this);

canvas.setSize (670 ,670);

canvas.setLocation (20 ,10);

canvas.addPaintListener(this);

// th is i s what w i l l be continuously redrawn

330 this.bar = new ToolBar(shell , SWT.VERTICAL|SWT.BORDER);

// bar . setBackground(new Color(display , 200 ,20 ,105));
//bar . setForeground(new Color(display , 200 ,50 ,200));
bar.setLocation (700 ,20);

bar.setSize (120 ,500);

bar.setBackground(new Color(display , 250 ,250 ,205));

createRule = new ToolItem(bar , SWT.PUSH);

createRule.setText("Rule");

createRule.addListener(SWT.Selection , this);

340 createRule.setToolTipText("Create Rule");

this.createMultiRule = new ToolItem(bar , SWT.PUSH);

createMultiRule.setText("EDITY");

createMultiRule.setToolTipText(

"Define Event Corresponding to Sensor Conditions");

createMultiRule.addListener(SWT.Selection , this);

// Zoom and Pan Section
this.zoomIn = new ToolItem(bar , SWT.PUSH);

350 zoomIn.setText("Zoom In");

zoomIn.setToolTipText("Zoom Into a Region");

zoomIn.addListener(SWT.Selection , this);

this.zoomOut= new ToolItem(bar , SWT.PUSH);

zoomOut.setText("Zoom Out");

zoomOut.setToolTipText("Zoom out of a Region");

zoomOut.addListener(SWT.Selection , this);

// change the corresponding cursor

360 this.pan = new ToolItem(bar , SWT.PUSH);

pan.setText("Pan");

pan.setToolTipText("Move around the Map");

pan.addListener(SWT.Selection , this);

// change the corresponding cursor

127

this.getDetails = new ToolItem(bar , SWT.PUSH);

getDetails.setText("Details");

getDetails.setToolTipText("Get Details");

getDetails.addListener(SWT.Selection , this);

370 // change the corresponding cursor
bar.pack ();

// createMultiRule . setSize (70 , 30);
// createMultiRule . setLocation (750 , 350);
this.font = new Font(display , "Arial", 16, SWT.BOLD);

new Runnable () {

public void run() {

canvas.redraw (); // paintControl w i l l redraw As needed
380 display.timerExec (100, this);

}

}.run();

shell.setMaximized(true);

shell.open ();

// she l l . pack () ;
shell.setMaximized(true);

try {

while(!shell.isDisposed ()) {

390 if(! display.readAndDispatch ())

display.sleep ();

}

}

catch (Exception e) {

System.out.println("Exception : BigMapView");

}

gc.dispose ();

canvas.redraw ();

image.dispose ();

400 display.dispose ();

}

/∗
∗ Function to Check i f the nodes l i e in the given box
∗/

private boolean checkHit(Point p, Point corner1 , Point corner2) {

long minx = Math.min(corner1.getX(), corner2.getX ());

long miny = Math.min(corner1.getY(), corner2.getY ());

410 long maxx = Math.max(corner1.getX(), corner2.getX ());

long maxy = Math.max(corner1.getY(), corner2.getY ());

long x = (int) (p.getX() * CONSTANT.SCALE);

long y = (int) (p.getY() * CONSTANT.SCALE);

if (x > minx && x < maxx && y > miny && y < maxy)

return true;

else return false;

}

420
/∗∗
∗ @todo This checkNode should only be cal led when a new Box is drawn
∗ @param code
∗/

private void checkNodes(int code) { /∗LinkedHashMap ∗/

// System. out . print ln (”Check Node Called with code ” + code) ;
int nodeCount = 0;

double totalActivity = 0;

430 if (2 == code) {

// return a l l the nodes within the bounds of the rectangle
Iterator iter = nodes.keySet (). iterator ();

double avgActivity;

try {

while(iter.hasNext ()) {

String key = (String) iter.next ();

Node node = (Node) nodes.get(key);

avgActivity = node.getAverageMerlActivity ();

if(checkHit(node.location , this.origin , this.endpt)) {

440 node.selectNode ();

// get the average ac t iv i ty of th is node
// you can also automatically color the complete region
totalActivity += node.getAverageMerlActivity ();

nodeCount ++;

}

else {

node.unselectNode ();

}

}

450 } catch(java.util.ConcurrentModificationException C) {

System.out.println("Concurrent Exception " +

": BigMapView :: CheckNode : " + C.toString ());

System.out.println("exiting checknode " +

"without checking");

return;

}

catch (Exception e) {

// the nodel ist had been modified while i terat ing
System.out.println("Exception Issued");

460 e.printStackTrace ();

return;

}

// Average Node Activity of the selected Region
if (nodeCount != 0)

this.avgActivity = totalActivity / nodeCount;

else

this.avgActivity = 0.0;

470 } // code == 1
} // end function

public void drawNodes(Display display , GC gc, Canvas canvas) {

// TODO: should th is l i s t be syncronized ?
Iterator iter = nodes.keySet (). iterator ();

// draw each of the nodes
int count = 0;

while(iter.hasNext ()) {

String key = (String) iter.next ();

480 Node node = (Node) nodes.get(key);

// System. out . print ln (”Name is ” + node .name);
node.drawNode(gc , display , canvas);

count ++;

}

}

/∗ VizKeepAlive − Visualize the keepalive signal from a node ∗/

128

public Boolean VizKeepalive (String nodename) {

Node p;

490 if((p = (Node) this.nodes.get("nodename")) != null) {

return(this.vizKeepAlive(p));

}

else return false;

}

public Boolean vizKeepAlive(Node node) {

return true;

}

500 public void vizMotion(Node node) {

// Hello
// World

}

public void run() {

this.parseRooms (); // doesn ’ t loop continuously
this.drawImage ();

}

510
public void setNodes(LinkedHashMap nodes) {

this.nodes = nodes;

}

public void handleEvent(Event e) {

if(e.widget == zoomIn) {

Node n = (Node) this.nodes.get("01001034"); // sample MERL Node
BrowseInfoShell browseInfoShell = new BrowseInfoShell(this.shell);

520 browseInfoShell.setNode(n);

}

if(e.widget == zoomOut) {

}

if(e.widget == pan) {

this.canvas.setCursor(this.handCursor);

530 }

if(e.widget == this.getDetails) {

}

if(e.widget == createRule) {

System.out.println("Button Pressed");

try {

Rule rule = new Rule(this.shell);

540 rules.add(rule); // th is i s a l i s t of current rules
// delet ing rules w i l l equal removing i t from this l i s t

// rule has a constructor
} catch (Exception e1) {

e1.printStackTrace ();

}

return;

}

550
if(e.widget == createMultiRule) {

System.out.println("MultiRule Button Pressed");

try {

Node n = (Node) this.nodes.get("01001034"); // sample MERL Node
if (n == null) {

System.out.println(" Error - Node Does Not Exist");

}

MultiRuleView multiRuleView = new MultiRuleView(n, this.shell);

560 } catch (Exception e1) {

System.out.println("Check if Node is inited");

e1.printStackTrace ();

}

return;

}

if(e.type == SWT.MouseUp) {

if(CONSTANT.DEBUG)

System.out.println("MouseUp " +

570 "with " + e.x + "," + e.y + " as the points");

BigMapView.endpt.setXY(e.x, e.y);

this.mouseDn = false;

checkNodes (1);

}

else if(e.type == SWT.MouseDown) {

if(CONSTANT.DEBUG)

System.out.println("MouseDown with "

+ e.x + "," + e.y + " as the points");

580 BigMapView.mouseDn = true;

BigMapView.origin.setXY(e.x, e.y);

}

else if(BigMapView.mouseDn == true && e.type == SWT.MouseMove) {

BigMapView.endpt.setXY(e.x, e.y);

checkNodes (1);

}

}

590 public void widgetDefaultSelected(SelectionEvent arg0) {

// TODO Auto−generated method stub
/// th is . checkNodes (1);

}

public void widgetSelected(SelectionEvent arg0) {

/// th is . checkNodes (1);
}

}

129

0 package edu.media.resenv.clairvoyant;

import java.util.HashMap;

import java.util.LinkedHashMap;

import java.util.List;

import java.util.Observable;

import java.util.Random;

import org.eclipse.swt.SWT;

import org.eclipse.swt.graphics.Color;

import org.eclipse.swt.graphics.Cursor;

10 import org.eclipse.swt.graphics.GC;

import org.eclipse.swt.graphics.Rectangle;

import org.eclipse.swt.widgets.Canvas;

import org.eclipse.swt.widgets.Display;

import org.eclipse.swt.widgets.Event;

import org.eclipse.swt.widgets.Listener;

/∗∗ @perfcomment
∗
∗ @author Manas Mittal

20 ∗
∗/

public class Node extends Observable implements Listener {

public String name;

HashMap <String , Sensor > sensors = new HashMap <String , Sensor >();

HashMap <String , Tag > tags = new HashMap <String ,Tag >();

Point location; // is not scaled
int count;

Color boxclr;

30 public volatile Long lastTime = new Long (0);

Rectangle scaledIcon;

volatile char type;

volatile int selectColorCode = -1;

static String merl = CONSTANT.merl;

double features [] = new double [1]; // Compute a l l the features
// Then when you have to se lec t nodes with the given feature ,
// Just walk down the node l i s t and se lec t them.

// do feature computation
40 public Box box; // may or may not be used

Display display;

Canvas canvas;

GC gc;

volatile int side = 1;

volatile Color nodeColor = null;

// vo la t i l e boolean empty = true ;
// private boolean l i s teners = fa l se ;
double scale;

private boolean mouseDown = false;

50 Color selectColor = null;

public Node(String name , Point location , char type) {

this.type = type;

this.name = name;

this.location = location;

if (this.type == CONSTANT.TYPE_SPINNERWALL) {

sensors.put("Light", new Sensor(name + "- Light", 150, 1600)); //
sensors.get("Light"). setAvgWindow (5);

60 sensors.put("Sound", new Sensor(name + "- Sound", 200, 30000)); // additional sensors

sensors.get("Sound"). setAvgWindow (20);

sensors.put("Humidity", new Sensor(name + "- Humidity" ,0 ,100));

sensors.get("Humidity"). setHumidity(true);

sensors.put("Temperature", new Sensor(name + "- Temperature" ,0 ,8000));

sensors.put("Movement", new Sensor(name + "- Movement" ,0,1));

this.scale = CONSTANT.SCALE;

this.scaledIcon = new Rectangle ((int) (scale* location.getX() - side),

(int) ((scale* location.getY ()) - side) ,

(int) 4 * this.side , (int) 4 * this.side);

70 }

if (this.type == CONSTANT.TYPE_MERL) {

this.scale = CONSTANT.SCALE;

sensors.put(merl , new Sensor(CONSTANT.TYPE_MERL , name + "-Movement"));

this.scale = CONSTANT.SCALE;

this.scaledIcon = new Rectangle ((int) (scale* location.getX() - 4*side),

(int) ((scale* location.getY ()) - 4*side) ,

(int) 8 * this.side , (int) 8 * this.side);

80 }

}

public boolean drawNode(GC gc, Display display , Canvas canvas , double scale) { // Called by Map
if (this.selectColor == null) {

this.selectColor = display.getSystemColor(SWT.COLOR_MAGENTA);

}

if (this.selectColorCode != -1) {

this.selectColor = display.getSystemColor(SWT.COLOR_MAGENTA);

90 }

this.gc = gc;

if(this.canvas != canvas) {

this.canvas = canvas;

// expensive , adding l i s teners
this.canvas.addListener(SWT.MouseDown , this);

this.canvas.addListener(SWT.MouseMove , this);

}

100
if (this.scale != scale) {

this.scaledIcon.x = (int) (scale * this.location.getX() - side);

this.scaledIcon.y = (int) (scale * this.location.getY()- side);

}

this.display = display; // ysed in simple drawNode
this.drawNode(gc , display.getSystemColor(SWT.COLOR_GREEN), scale);

return true;

}

110

public boolean drawNode(GC gc, Display display , Canvas canvas) {

return this.drawNode(gc, display , canvas , CONSTANT.SCALE);

}

volatile boolean selected = false;

public void selectNode () {

// System. out . print ln (” Node. java : Select Node Called ”);
this.selected = true;

120 this.update ();

// inform Node Called

130

// how to get signal to the display thread to redraw the canvas ?
}

public void selectNode(int colorCode) {

System.out.println(" Node.java : Select Node Called with ColorCode " + colorCode);

this.selectColorCode = colorCode;

this.selected = true;

this.update ();

130 // how to signal to the display thread to redraw the canvas
}

public void unselectNode () {

if (this.selected) {

}

this.selected = false;

this.update ();

}

140 public boolean isSelected () {

return this.selected;

}

private synchronized void update () {

// also decrease the s ize i f > 2 seconds since la s t increase
/∗ Ornate mechanism
∗ to ensure that the s ize only gets decremented
∗ after 1000 seconds ∗/

long t = System.currentTimeMillis ();

150 if (this.side > 1) {

Sensor sensor = sensors.get(merl);

this.side --;

if((t - sensor.getLastActiveTime ()) > CONSTANT.SHRINKTIMEMILISECOND) {

// th is . countPings−−;
this.lastTime = t;

}

}

if (this.countPings == 0) {

if(display != null) {

160 this.nodeColor = new Color(Display.getCurrent (), 56 ,56 ,56);

// th is . canvas . redraw () ;
}

}

// th is . canvas . redraw () ; −− There is a stream that constantly redraws the nodes
}

double maxValue = 0;

Color gray = null;

Color red = null;

170 Color mustard = null;

Color bigBoxColor = null;

volatile boolean isBoxed = false;

public void setBoxed(boolean b) {

this.isBoxed = b;

this.bigBoxColor = this.red;

}

public void setBoxed(boolean b, Color clr) {

180 this.isBoxed = b;

this.bigBoxColor = clr;

}

Color alphaBoxColor = null;

boolean alphaBox = false;

public void setAlphaBox(boolean b) {

this.alphaBox = b;

this.alphaBoxColor = this.selectColor;

}

190
// double theta = Math.PI/4;
// double thetaInc = Math.PI/32;

public synchronized boolean drawNode(GC gc, Color clr , double scale) {

// actual drawing happens here
// th is . update () ;

if (this.selectColor == null) {

this.selectColor = (Display.getCurrent (). getSystemColor(SWT.COLOR_MAGENTA));

}

200
if (this.gray == null || this.red == null || this.mustard == null) {

this.gray = new Color(this.display , 164 ,164 ,164);

this.red = Display.getCurrent (). getSystemColor(SWT.COLOR_RED);

this.mustard = new Color(this.display , 255 ,153 ,51);

}

if (this.selectColorCode != -1) {

this.selectColor = Display.getCurrent (). getSystemColor(this.selectColorCode);

}

210
if (this.nodeColor == null) {

nodeColor = new Color(Display.getCurrent (), 56 ,56 ,56);

}

this.scale = scale;

// ignoring scale as scaledRectangle has already been calculated .
int l = this.side;

int x = (int) (location.getX ()* scale);

int y = (int) ((int) (location.getY() * scale));

220
// Sound
// Temperature
Sensor sound = this.sensors.get("Sound");

if(sound !=null && gc.getAdvanced ()) { // This sensor actual ly ex i s t s
gc.setAlpha (70);

gc.setForeground(gray);

double rSmall = 1;

230 double r = (this.sensors.get("Sound"). getLastValue ()/4000);

if (CONSTANT.DEMO_MODE && r == 0) { // create synthetic v i sua l i za t i
Random random = new Random ();

r = 1 + random.nextDouble ();

}

r += rSmall;

gc.fillOval((int) (x - 2*l*scale*r) , (int) (y - 2*l*scale*r),

240 (int) (4*l * scale * (r)) , (int) (4*l * scale * (r)));

gc.drawOval((int) (x - 2*l*scale*r) , (int) (y - 2*l*scale*r),

(int) (4*l * scale * (r)) , (int) (4*l * scale * (r)));

gc.setAlpha (1000);

131

}

if(gc.getAdvanced ()) {

Sensor light = this.sensors.get("Light");

if (light != null) {

gc.setAlpha (1000); // wi l l only work i f gc . setAlpha is turned on
250 gc.setForeground(mustard);

gc.setLineWidth (3);

long r = Math.round((this.sensors.get("Light"). getLastValue ()/150));

if (CONSTANT.DEMO_MODE && r == 0) { // create synthetic v i sua l i za t i
Random rdm = new Random ();

r = Math.round(1 + 3 * rdm.nextDouble ());

}

long rSmall = Math.round(scale * 4);

r = r + (int) rSmall + Math.round(scale);

260
double cosTheta = 0.707;

double sinTheta = 0.707;

double rSmallDelX = rSmall * cosTheta;

double rSmallDelY = rSmall * sinTheta;

double rBigDelX = r * cosTheta;

double rBigDelY = r * sinTheta;

gc.setLineWidth (2);

270 gc.setLineStyle(SWT.LINE_DOT);

gc.drawLine((int) (x + rSmallDelX),(int)(y + (int)rSmallDelY)

, (int) (x + rBigDelX),(int) (y + rBigDelY));

gc.drawLine((int) (x + rSmallDelX), (int) (y - (int)rSmallDelY)

, (int) (x + rBigDelX),(int) (y - rBigDelY));

gc.drawLine((int) (x - rSmallDelX),(int) (y + (int)rSmallDelY),

(int) (x - rBigDelX),(int) (y + rBigDelY));

gc.drawLine((int) (x - rSmallDelX),(int) (y - (int)rSmallDelY),

(int) (x - rBigDelX),(int) (y - rBigDelY));

280 gc.drawLine((int) (x),(int) (y + rSmall), (int) (x),(int) (y + r));

gc.drawLine((int) (x - rSmall),(int) (y), (int) (x - r),(int) (y));

gc.drawLine((int) (x + rSmall),(int) (y), (int) (x + r),(int) (y));

gc.drawLine((int) (x),(int) (y - rSmall), (int) (x),(int) (y - r));

}

}

if (this.isBoxed) {

gc.setAlpha (1000);

gc.setLineStyle(SWT.LINE_SOLID);

290 gc.setForeground(this.bigBoxColor);

gc.drawRectangle ((int) (x - scale*5), (int) (y - scale * 5),

(int) (10* scale), (int) (10* scale));

}

if (this.alphaBox) {

gc.setAlpha (300);

gc.setBackground(this.alphaBoxColor);

gc.fillRectangle ((int) (x - scale*5), (int) (y - scale * 5),

(int) (10* scale), (int) (10* scale));

300 }

// Draw the node i t s e l f
gc.setForeground(clr);

gc.setAntialias(SWT.ON);

if (this.type == CONSTANT.TYPE_SPINNERWALL) {

if (! this.selected) {

gc.setBackground(nodeColor);

}

else {

310 gc.setBackground(selectColor);

gc.setForeground(display.getSystemColor(SWT.COLOR_CYAN));

}

gc.setAlpha (1000);

gc.fillOval((int) (x - 2*l*scale) , (int) (y - 2*l*scale),

(int) (4*l * scale) , (int) (4*l * scale));

this.scaledIcon = new Rectangle ((int) (x - 2*l*scale) ,

(int) (y - 2*l*scale), (int) (4*l * scale) ,

(int) (4*l * scale));

}

320
if (this.type == CONSTANT.TYPE_MERL) {

if (!this.selected) {

gc.setBackground(nodeColor);

gc.setForeground(nodeColor);

}

if (this.selected) {

gc.setBackground(selectColor);

gc.setForeground(display.getSystemColor(SWT.COLOR_CYAN));

}

330 this.scaledIcon = new Rectangle ((int) (x - l*scale) ,

(int) (y - l*scale), (int) (2*l * scale) ,

(int) (2*l * scale));

gc.fillRectangle ((int) (x - l*scale) , (int) (y - l*scale),

(int) (2*l * scale) , (int) (2*l * scale));

}

return true;

}

public HashMap <String , Sensor > getSensors () {

340 return this.sensors;

}

public synchronized void addSpinnerData(double [] data , long seqno) {

// seqno may be useful in the future
if(this.type == CONSTANT.TYPE_SPINNERWALL) {

Sensor s = sensors.get("Light");

s.addData(data [0]);

s = sensors.get("Sound");

350 s.addData(data [1]);

s = sensors.get("Humidity");

s.addData(data [2]);

s = sensors.get("Temperature");

s.addData(data [3]);

s = sensors.get("Movement");

s.addData(data [4]);

360 }

}

volatile int countPings = 0;

public synchronized void addMerlPing(String [] data) {

this.lastTime = System.currentTimeMillis ();

132

this.setChanged (); // not i f icat ion wi l l work now
this.notifyObservers ();

// Tell the Observers that th is event happened . ! ! !

370 countPings ++;

if (this.countPings > 0) {

try {

this.nodeColor = new Color(Display.getCurrent (), 112 ,156 ,156);

// Mark as greener
} catch(Exception e) {

e.printStackTrace ();

}

}

380 if (this.side <= 1) {

this.side ++; // th is w i l l increase the s ize of an edge .
this.scaledIcon.x = (int) (scale * this.location.getX() - side);

this.scaledIcon.y = (int) (scale * this.location.getY()- side);

}

// Start a new thread that w i l l ”decrease the s ize of the merl node”
// Make i t shrink back !
Thread shrinkNode = new Thread () {

public void run() {

390 try {

Thread.sleep(CONSTANT.SHRINKTIMEMILISECOND);

update ();

} catch (InterruptedException e) {

// TODO Auto−generated catch block
e.printStackTrace ();

}

}

};

shrinkNode.start ();

400

if(CONSTANT.DEBUG) {

System.out.println("SIZE OF DISPLAY NODE updated");

System.out.println("CHANGED SIZE of node " + this.getCount ());

}

Sensor sensor = sensors.get(merl);

/∗ Add Ping logs that sensor received a entry ∗/
sensor.addPing ();

410 /∗ data [4] i s the time stamp ∗/
if(data [4] != null) {

List <String > p = sensor.strList;

p.add(data [4]);

/∗ Change color for 2 seconds / tr igger an animation ∗/
}

}

public synchronized void pushMerlData(LinkedHashMap <String , String > data) {

420 }

public int getCount () {

return count;

}

public double getAverageMerlActivity () {

return 2.0* (this.side - 1.0); // HACK

// Sensor sensor = sensors . get (”merl ”);
// return sensor . getAverageActivity () ;
}

430
public void setCount(int count) {

this.count = count;

// System. out . print ln (”Count i s set as” + this . count) ;
}

boolean marked = false; // loca l se lected indicator
boolean reallySelected = false;

// Marked is only used in th is function to ” l i gh t up” the node
// Choose a better method , perhaps enclose in a composite

440 public void handleEvent(Event e) {

if(e.type == SWT.MouseMove) {

if (this.scaledIcon.contains(e.x, e.y)) {

if (this.marked == false) {

this.canvas.setCursor(new Cursor(Display.getCurrent (),

SWT.CURSOR_HAND));

this.selectNode ();

this.marked = true;

}

450 } else if(this.marked){

this.canvas.setCursor(null);

this.marked = false;

if(! this.reallySelected) {

this.unselectNode ();

this.canvas.redraw ();

}

}

}

460 else if (e.type == SWT.MouseDown) {

// System. out . print ln (”Double Click at ” + e . x + ”,” + e . y) ;
if (this.scaledIcon.contains(e.x, e.y)) {

this.reallySelected = true;

this.selectNode ();

this.setChanged ();

this.notifyObservers(this); // Expl ic i t Instruction
this.canvas.redraw ();

} else {

// cl icked somewhere else ,
470 // mark as not se lected

this.reallySelected = false;

this.unselectNode ();

// Notify a l l Listeners about the Unselection
}

}

}

}

133

0 package edu.media.resenv.clairvoyant;

import java.util.ArrayList;

import java.util.List;

import java.util.Observable;

import java.util.Observer;

import java.util.concurrent.ArrayBlockingQueue;

/∗
∗ Stores Data for each Sensor
∗ Registers Listeners , so that v isual izat ion and rules can be triggered .

10 ∗/

public class Sensor extends Observable implements SensorInterface {

// public enum OutputType {Analog , Binary};
// public enum Type {Light , Temp, PIR, Vibration , Mic, MERL};
// What does i t sense
// List<Data> data = new ArrayList () ;

final int size = 100;

ArrayList <Double > bufferList = new ArrayList <Double >();

ArrayList <Sample > sampleList = new ArrayList <Sample >();

20
volatile double buffer [] = new double[size];

// vo la t i l e leads to a big perf hit , I would assume. Check !
volatile long seqnos [] = new long[size];

// vo la t i l e leads to a big perf hit , I would assume
volatile List <Long > time = new ArrayList <Long >();

// 0 to TIMELENGTHMAX− 1 values
volatile int lastTime = -1;

private volatile long lastActiveTime = -1 ;

private volatile boolean changedRecently = false;

30 List <String > strList = new ArrayList <String >();

int type = -1;

int bufferIndex = 0;

boolean bufferFilled = false;

// remembers i f the buffer of 50 elements i s f i l l e d up or not
volatile int streamListeners = 0;

final static int pulseWidth_ms = 2000;

final static int updateRate_ms = 500;

private Thread merlUpdateThread = null;

int maxValue = 1;

40 int minValue = 0;

String name = "(Default) Sensor Name";

private boolean humidity = false;

int avgWindowSize = 1;

ArrayBlockingQueue <Double > smoothBufferList =

new ArrayBlockingQueue <Double >(avgWindowSize);

double runningAvg = 0;

public void setHumidity(boolean yesno) {

50 this.humidity = yesno;

}

public void setAvgWindow(int w) {

this.avgWindowSize = w;

this.sum = 0;

this.count = 0;

this.smoothBufferList = new

ArrayBlockingQueue <Double >(this.avgWindowSize);

}

60

public Sensor(int type , String name) {

this.name = name;

this.type = type;

// th is . buf ferList . add(0.0);
// th is . sampleList . add(new Sample(0 ,System. currentTimeMillis ())) ;

// do things to i n i t i a l i z e th is type
switch(type) {

case CONSTANT.TYPE_MERL :

// System. out . print ln (”A Merl Type of Sensor Registered ”);
70 // th is means that AddPing wi l l be cal led

this.merlInit ();

// merlUpdateThread converts the
// Binary , occasionally occuring YES/NO values to
// a data stream , after the startMerlStreaming function is cal led .
// This i s used for displaying the sensor Stream

break;

default:

this.merlInit ();

80 break;

// how to ca l l the default method .
}

}

public int getType () {

return this.type;

}

90 public Sensor () {

this.merlInit (); // Bad Naming, should rea l ly be some form of in i t
}

public Sensor(String name , int min , int max) {

this.name = name;

this.minValue = min;

this.maxValue = max;

this.merlInit ();

}

100
public Double [] getBuffer () {

return (Double []) bufferList.toArray ();

}

private volatile double lastValue = 0;

public synchronized double getLastValue () {

return this.lastValue;

}

110 volatile double sum = 0;

volatile int count = 0;

public void addData(double newData) {

// Called by Add Spinner Data , and also by the MerlUpdateThread
if (this.avgWindowSize != 1) {

if (this.smoothBufferList.remainingCapacity () != 0) {

this.smoothBufferList.add(newData);

sum += newData;

count ++;

return; // f i l l i t up
120 }

else {

134

sum -= this.smoothBufferList.remove ();

this.smoothBufferList.add(newData);

sum += newData;

newData = sum/count;

}

}

if(this.humidity) {

130 // Do the humidity computation
newData = (int) Math.round (-4.0 +

(double) (0.0405 * newData) -

(2.8e-6 * (double)newData

* (double)newData));

}

bufferList.add(newData);

// Extra Overhead , for now, a l l data is pushed into th is .
this.lastValue = newData;

Sample newSample = new Sample(newData , System.currentTimeMillis ());

140 sampleList.add(newSample); // f ina l : add the timeStamp + Data
if (this.sampleBufferList.remainingCapacity () == 0) {

this.sampleBufferList.remove ();

}

this.sampleBufferList.add(newSample);

// inform a l l the SimpleRules of th is new data
this.setChanged ();

this.notifyObservers(newSample);

// Tell the SimpleRules that the event happened
}

150

public ArrayList getCompleteSensorData () {

return this.bufferList;

}

private void merlInit () {

for (int i = 0; i < CONSTANT.TIMELENGTHMAX; i++) {

time.add(new Long(CONSTANT.LNGNOTVALID)); // i n i t i a l i z e to values
160 }

}

public synchronized void startStreaming () {

System.out.println("Start Merl Streaming Called");

if (this.type == CONSTANT.TYPE_MERL) {

// Should be singleton
// New thread , updates once every second
// thread checks i f th i s . cha
if(this.streamListeners == 0) {

170 // Only start i f streamListeners i s currently = 0
// System. out . print ln (”Started Streaming”);

if((this.streamListeners ++ == 0)) {

merlUpdateThread = new Thread () {

public void run() {

System.out.println(

"MerlUpdateThread IS RUNNING ***"

+ this.toString ());

while(streamListeners > 0) {

if(changedRecently == true) {

180 // set true by AddPing
// Get the current time ,
//and the la s t ping time

// i f d i f ferece <
if (

(System.currentTimeMillis ()

- lastActiveTime) < pulseWidth_ms){

addData (1D);

// add 1 to the Array or whatever (RingBuffer perhaps)
}

190 else {

changedRecently = false;

addData (0D);

}

}

else {

addData (0D);

}

try {

Thread.sleep(updateRate_ms);

200 } catch (InterruptedException e) {

System.out.println(

"Error in merlUpdateThread");

e.printStackTrace ();

}

} // end while
} // end run

};

merlUpdateThread.start ();

}

210 } // end i f condition
}

}

public synchronized void stopStreaming () {

System.out.println("Stopped Merl Streaming for");

if (this.type == CONSTANT.TYPE_MERL) {

--this.streamListeners;

if(this.streamListeners == 0) {

220 System.out.println("STOP THE THREAD !!!");

}

if(streamListeners < 0) { // when
//streamListeners become equal to 0 , the thread wi l l stop , automatically

System.out.println("" +

"ERROR stopMerlStreaming" +

" called for more times " +

"than start merlStreaming");

this.streamListeners = 0;

}

230 }

}

public void addPing () {

// add the time stamp
// System. out . print ln (”addPing Called ”);

Long t = new Long(System.currentTimeMillis ());

lastActiveTime = t;

lastTime = (lastTime + 1) % CONSTANT.TIMELENGTHMAX ;

time.set(lastTime , t);

240 this.changedRecently = true;

// th is . setChanged () ; // Why ?
// th is . notifyObservers (t) ; // Notify the time of the la s t ping
}

135

/∗∗
∗
∗ @return : Returns the number of Average activations
∗ per second , based on the la s t CONSTANT.TIMELENGTHMAX Moving Window
∗

250 ∗/

public double getAverageActivity () {

// Average time between beam breaks
int oldest = 0;

int entries = 0;

long timeold =time.indexOf(CONSTANT.LNGNOTVALID);

// timeold w i l l be −1 i f a l l entries are f i l l e d up
// 0 i f the no entry is there

260 if(timeold == 0 || timeold == 1) {

// no entry exists ,
//or only 1 entry ex i s t s .
// So Determining the average is d i f f i c u l t (MeaningLess)
return 0.0;

}

if (timeold == -1) { // a l l entries are f i l l e d up
oldest = (lastTime + 1) % CONSTANT.TIMELENGTHMAX;

entries = CONSTANT.TIMELENGTHMAX;

270 }

else if (timeold > 1) {

oldest = 0;

entries = lastTime;

}

return entries;

//return (entries / ((time . get (lastTime) − time . get (oldest))/1000));
}

/∗∗ Add Special Observer does the fol lowing :
280 ∗ Ensures that the a r t i f i c a l sensor data

∗ stream keeps running i f th i s sensor i s a MERL Sensors
∗ and i f some Rule i s watching
∗ Must be cal led deleted by ca l l ing deleteSpecialObserver
∗ @param O: The Observer , in th is case , simpleRule
∗/

public void addSpecialObserver(Observer O) { // Called by SimpleRule
if (this.type == CONSTANT.TYPE_MERL) {

// Make sure that the MerlUpdateThread keeps running
this.startStreaming ();

290 }

this.addObserver(O);

}

public void deleteSpecialObserver(Observer O) {

this.deleteObserver(O);

if(this.type == CONSTANT.TYPE_MERL) {

this.stopStreaming ();

}

}

300
public long getLastActiveTime () {

if(lastActiveTime > 0) {

return lastActiveTime;

} else {

return CONSTANT.LNGNOTVALID;// th is has never been active
}

}

public int getMaxValue () {

310 return maxValue;

}

public int getMinValue () {

return minValue;

}

public void setMinValue(int minValue) {

this.minValue = minValue;

}

320
public void setMaxValue(int maxValue) {

this.maxValue = maxValue;

}

public void setMaxMin(Double max , Double min) {

this.minValue = (int) Math.floor(min);

this.maxValue = (int) Math.ceil(max);

}

330 public double getMax () {

return this.getMaxValue ();

}

public double getMin () {

return this.getMinValue ();

}

ArrayBlockingQueue <Sample > sampleBufferList =

new ArrayBlockingQueue <Sample >(CONSTANT.WINDOW_SIZE);

340
public Sample [] getSampleBuffer () {

Sample [] s = new Sample[CONSTANT.WINDOW_SIZE];

return (Sample []) this.sampleBufferList.toArray(new Sample [0]);

// MM
// TODO Auto−generated method stub

// return nul l ;
}

350 public String getName () {

return name;

}

public void setName(String name) {

this.name = name;

}

}

136

0 package edu.media.resenv.clairvoyant;

public interface SensorInterface {

// void addData(double newData) ;
void startStreaming ();

void stopStreaming ();

Double [] getBuffer ();

Sample [] getSampleBuffer ();

void setMaxMin(Double max , Double min);

double getMin ();

10 double getMax ();

void setName(String name);

String getName ();

}

137

0 package edu.media.resenv.clairvoyant;

import java.net.MalformedURLException;

import java.util.ArrayList;

import java.util.Observable;

import java.util.Observer;

import java.util.Vector;

import java.util.concurrent.ArrayBlockingQueue;

import org.eclipse.swt.SWT;

10
/∗∗
∗ @author Manas Mittal
∗ This i s rea l ly l i k e a sensor .
∗/

public class SimpleRule extends Observable implements Observer ,SensorInterface{

// Observes simple sensor data
// Observable for complexRule
// complexRule w i l l inheri t th i s SimpleRule
private Thread updateThread = null;

20 protected double threshUpper;

protected double threshLower;

Sensor sensor = null;

Node node = null;

int filterCount = 0;

private ArrayList <Filter > filters; // Fi l ter i s an abstract c lass
private int actionCode = 0; // 0 means none
java.applet.AudioClip audioClip = null;

protected volatile long lastTrueTime = System.currentTimeMillis ()

- pulseWidth_ms;

30 private static final long pulseWidth_ms = 200;

private static final long updateRate_ms = CONSTANT.UPDATE_RATE;

int minValue = 0;

int maxValue = 1;

private int slack = 0;

private int zeroDelta = 4;

protected String name = "Rule Being Created";

public void setName(String name) {

this.name = name;

40 }

public String getName () {

return this.name;

}

public void setSlack(int slack) {

this.slack = slack;

}

50 public void setZeroDelta(int zeroDelta) {

this.zeroDelta = zeroDelta;

}

public void setMaxMin(Double max , Double min) {

this.minValue = (int) Math.floor(min);

this.maxValue = (int) Math.ceil(max);

}

public double getMax () {

60 return (double) this.maxValue;

}

public double getMin () {

return (double) this.minValue;

}

public SimpleRule(ArrayList <ComponentRuleDesc > rules) {

// used only for compound rules .
}

70

public SimpleRule(Node N,

Sensor sensor ,

double threshLower , double threshUpper) {

System.out.println("Simple Rule Created with LowerThresh "

+ threshLower + " UpperThresh " + threshUpper);

// Thresholds Must be scaled to sensor signal space
this.threshUpper = threshUpper;

this.threshLower = threshLower;

80 this.sensor = sensor;

this.node = N;

// Note : The ThreshUpper and the
// ThreshLower are in Sensor Space (not in co−ordinate space)
// I probably don ’ t even need the node
// Register Listeners
// Remember to Deregister Listeners
this.filters = new ArrayList <Filter >(); // Fi l ters
sensor.addSpecialObserver(this);

// Add Observer to sensor , th is
90 // starts streaming i f node is notcontinuous

System.out.println("SimpleRule.java : Listener Added to Given Sensor");

}

ArrayBlockingQueue <Double > bufferList =

new ArrayBlockingQueue <Double >(CONSTANT.WINDOW_SIZE);

ArrayBlockingQueue <Sample > sampleBufferList =

new ArrayBlockingQueue <Sample >(CONSTANT.WINDOW_SIZE);

// NOTE THAT THIS IS PRIVATE
100 private volatile Sample lastSample = null;

private void addSample(Sample sample) {

if (sampleBufferList.size() == CONSTANT.WINDOW_SIZE) {

sampleBufferList.remove ();

}

sampleBufferList.add(sample); // Push the time generation to la ter
this.lastSample = new Sample(sample.data , sample.timeStamp);

}

private synchronized void addData(double data) { // Called by streaming
110 if(bufferList.size() == CONSTANT.WINDOW_SIZE) {

bufferList.remove ();

// remove the oldest element −− removes the oldest element by default
}

bufferList.add(data);

// Add to the Data Buffer
}

public Double [] getBuffer () {

// Called by the StripChart , and should also be
120 // cal led by the complex rule that makes up these simple rules

// th is i s a very expensive operation

138

// Should be cal led only once , i n i t i a l l y , that i s .
Double [] v = new Double[CONSTANT.WINDOW_SIZE];

// create an array of the guys
v = (Double []) this.bufferList.toArray(new Double [0]);

return v;

// Perf Hit
// Might Need Speedup

}

130
public Sample [] getSampleBuffer () {

Sample [] s = new Sample[CONSTANT.WINDOW_SIZE];

s = (Sample []) this.sampleBufferList.toArray(new Sample [0]);

return s;

}

// There w i l l be a class Fi l ter
140 public int addFilter(int position , int Type , double param) {

if (Type == CONSTANT.FILTER_SMOOTHEN) {

Filter f = new smoothFilter ((int) param);

filters.add(f);

// take the average etc
}

return 0;

}

static volatile boolean playing = false;

150
public void setActionCode (int actionCode) {

System.out.println("Setting Action Code" + actionCode + " for" + this.name);

this.actionCode = actionCode;

if (actionCode == CONSTANT.ACTION_DING) {

try {

System.out.println("Setting SOUND Action Code" + actionCode);

this.audioClip = java.applet.Applet.newAudioClip

(new java.net.URL("file:/c:/ WINDOWS/Media/ding.wav"));

// change for Nokia N810
160 } catch (MalformedURLException e) {

e.printStackTrace ();

}

}

}

volatile int streamListeners = 0;

public void startStreaming () {

System.out.println("SimpleRule: StartStreaming called");

if(streamListeners ++ == 0) {

170 this.updateThread = new Thread () {

public void run() {

while (true) {

if((System.currentTimeMillis () - lastTrueTime)

< pulseWidth_ms) {

addData (1D);

}

else {

addData (0D);

}

180 try {Thread.sleep(updateRate_ms);}

catch(Exception e) {

e.printStackTrace ();

} // end catch
} // end while loop

} // end run
};

this.updateThread.start ();

// start the streaming process
}

190 }

public void stopStreaming () {

if(--streamListeners < 0) {

System.out.println("SimpleRule.java :

ERROR: stopStreaming called more times that startStreaming");

streamListeners = 0;

}

}

int time = 0;

200 synchronized protected boolean checkRule(Sample newSample

, Observable sensor) {// wi l l be changed by the other guy
double newData = newSample.data;

// This might be useful la ter
if ((Double) newData <= this.threshUpper

&& (Double) newData >= this.threshLower) {

this.lastTrueTime = System.currentTimeMillis ();

// The rule was true here
// Add this in the loca l buffer here
return true;

210 }

return false;

}

public synchronized Sample getLastSample () {

return this.lastSample;

}

Sample sample = null;

220 public void update(Observable sensor , Object newData) {

// Called by Sensor , because of addSpecialObserver
boolean result = false;

if (newData instanceof Sample) {

if ((Sample) newData == null) {

return;

}

if (this.checkRule ((Sample) newData , sensor)) {

result = true;

} else {

230 result = false;

}

if (result == true) {

sample = new Sample (1D, ((Sample)newData). timeStamp);

} else {

sample = new Sample (0D, ((Sample)newData). timeStamp);

}

this.addData(sample.data);

// So that i t can be visual ized by the StripChart ’ s Buffer
240 this.addSample(sample); // Add to the loca l buffer

}

if (result == true) { // Perform the corresponding action

139

// System. out . print ln (th is .name + ” Some rule i s true ”);
switch(this.actionCode) {

case CONSTANT.ACTION_NODEBOXED:

if (this.node != null) {

this.node.setBoxed(true);

} else {

250 System.out.println("Rule Not Linked to a Single Node");

}

break;

case CONSTANT.ACTION_NODECOLOR:

if (this.node != null) {

this.node.setAlphaBox(true);

// th is .node . selectNode () ;
} else {

System.out.println("Rule Not Linked to a Single Node");

}

260 break;

case CONSTANT.ACTION_DING :

if (this.audioClip != null && playing == false) {

playing = true;

this.audioClip.play ();

playing = false;

}

default: break; // do nothing
}

} else {

270 switch(this.actionCode) {

case CONSTANT.ACTION_NODEBOXED:

this.node.setBoxed(false); break;

case CONSTANT.ACTION_NODECOLOR:

// th is .node . unselectNode () ;
this.node.setAlphaBox(false);

break;

}

}

280
this.setChanged ();

Thread th = new Thread () {

public void run() {

notifyObservers(sample);

// Note : This i s not asynchronous .
//Will be a problem when more than one guys is l i s tening

}

};

th.start ();

290 // Asynchronously t e l l the others that ”Hey − Display th is guy”
} // update ends

private double processFilters(double newData) {

double temp = newData;

for (Filter f : filters) {

temp = f.processNewData(temp); // stacks the f i l t e r s
}

return temp;

}

300
protected void finalize () {

if (this.sensor != null) {

this.sensor.deleteSpecialObserver(this);

}

}

}

140

0 package edu.media.resenv.clairvoyant;

import java.util.ArrayList;

import java.util.Observable;

import java.util.concurrent.ConcurrentHashMap;

public class CompoundRule extends SimpleRule implements SensorInterface{

ArrayList <ComponentRuleDesc > ruleDescList;

int operator = CONSTANT.OPERATOR_NOTVALID;

ComponentRuleDesc firstComponentDesc; // First Component Rule
ConcurrentHashMap <Observable , Boolean > seenSoFar

10 = new ConcurrentHashMap <Observable , Boolean >();

ConcurrentHashMap <Observable , ComponentRuleDesc > ruleMap

= new ConcurrentHashMap <Observable , ComponentRuleDesc >();

String name;

public CompoundRule () {

super(null);

this.ruleDescList = new ArrayList <ComponentRuleDesc >();

this.name = "Compound Rule Being Created";

this.node = null; // Not linked direct ly to a node
}

20 int nonFirstRuleCount = 0;

// Called for each component .
// This should only be cal led before ca l l ing delayed check rule
public void addComponentRule(ComponentRuleDesc e, int operator) {

try {

this.operator = operator;

this.ruleDescList.add(e);

this.ruleMap.put(e.rule , e); // Maybe they ran out of space .
if (e.beginTimeOffset == 0 && e.endTimeOffset == 0) {

System.out.println("Found the Parent Rule");

30 this.firstComponentDesc = e; // This i s the f i r s t component rule
} else {

this.nonFirstRuleCount ++;

}

e.rule.addObserver(this);

} catch (RuntimeException e1) {

// TODO Auto−generated catch block
System.out.println("Exception in addComponent Rule");

e1.printStackTrace ();

}

40 }

double lastOnTimeParent = 0;

/∗∗
∗ @param newSample
∗ @param rule
∗ @return boolean
∗ Note that th is function only checks i f event with posi t ive delays
∗/

protected boolean delayedCheckRule(Sample newSample , Observable rule) {

double newData = newSample.data;

50 if (newData <1) {

// i t s fa l se .
//Nothing could have possib ly become true in the meantime
return false; // There cant be a change

}

if (newData == 1.0) {

if ((SimpleRule) rule == this.firstComponentDesc.rule) {

// same rule , i t i s indeed the f i r s t guy
this.lastOnTimeParent = newSample.timeStamp;

for (Observable d: this.seenSoFar.keySet ()) {

60 this.seenSoFar.remove(d); // Not seen

}

}

// See i f i t actual ly s a t i s f i e s the time lag
double beginTimeOffset = this.ruleMap.get(rule). beginTimeOffset;

double endTimeOffset = this.ruleMap.get(rule). endTimeOffset;

if ((this.lastOnTimeParent + beginTimeOffset < newSample.timeStamp)

&& (this.lastOnTimeParent + endTimeOffset > newSample.timeStamp)) {

this.seenSoFar.put(rule , true);

}

70 if (this.seenSoFar.size() == this.nonFirstRuleCount) {

System.out.println("Returning True");

return true;

}

}

return false;

}

protected boolean checkRule(Sample newSample , Observable rule) {

// wi l l be changed by the other guy
boolean resultOR = false;

80 boolean resultAND = true;

Sample lastSample;

double timeZero = 0;

double timeDelta = 0;

if (this.ruleDescList.size() == 0) {

System.out.println

("No rule set in complex rule , remember to call addComponentRule");

}

boolean resultXOR =

90 ((this.ruleDescList.get (0)). rule.getLastSample (). data ==1.0)

? true:false;

int count = 0;

try {

for (ComponentRuleDesc c: this.ruleDescList) {

SimpleRule srule = c.rule;

lastSample= srule.getLastSample ();

boolean lastValue = (lastSample.data ==1.0) ? true:false;

resultOR = resultOR || lastValue;

resultAND = resultAND && lastValue;

100 if (count > 0) {

resultXOR = ((! resultXOR) && lastValue)

|| (resultXOR && (! lastValue)); // Not Tested
}

count ++;

if (timeZero == 0) {

timeZero = lastSample.timeStamp;

} else {

timeDelta = lastSample.timeStamp - timeZero;

110 }

}

} catch (Exception e) {

System.out.println(e.getMessage ());

}

if (this.operator == CONSTANT.OPERATOR_OR) {

return resultOR;

}

if (this.operator == CONSTANT.OPERATOR_AND) {

return resultAND;

120 }

if (this.operator == CONSTANT.OPERATOR_XOR) {

141

return resultXOR;

}

return false;

}

};

142

0 package edu.media.resenv.clairvoyant;

/∗∗
∗ Class ComponentRuleDesc , used as a component for rules
∗ @author Manas Mittal
∗
∗/

public class ComponentRuleDesc {

10 SimpleRule rule; // you can also place a complex rule in i t
double beginTimeOffset;

double endTimeOffset;

ComponentRuleDesc(SimpleRule rule , double beginTimeOffset , double endTimeOffset) {

this.rule = rule;

this.beginTimeOffset = beginTimeOffset;

this.endTimeOffset = endTimeOffset;

}

}

143

0 package edu.media.resenv.clairvoyant;

public class smoothFilter extends Filter {

double []data;

int window;

double currentSum = 0;

int samplesSeen = 0;

int latestIndex = -1;

10 public smoothFilter(int window) {

// TODO Auto−generated constructor stub
this.window = window;

data = new double[window];

samplesSeen = 0;

}

public void changeParam(int newLength) {

double [] newData = new double[newLength - 1];

if (newLength > this.window) {

20 System.arraycopy(this.data , 0, newData , 0, this.data.length);

if (this.data.length == 0) {

newData [0] = 0.0;

}

this.samplesSeen = data.length - 1;

}

else {

System.arraycopy(

this.data , this.data.length - newLength - 1,

30 newData , 0, newLength);

}

this.data = newData;

}

@Override

public double processNewData(double newData) {

if (samplesSeen < data.length - 1) {

samplesSeen ++;

latestIndex ++;

40 data[latestIndex % data.length] = newData;

currentSum += newData;

return CONSTANT.DBLNOTVALID;

}

else {

latestIndex ++;

currentSum -= data[latestIndex%data.length];

data[latestIndex] = newData;

currentSum += newData;

return currentSum/data.length;

50 }

}

public double getCurrentAvg () {

return currentSum/data.length;

}

}

144

Bibliography

[1] Wikipedia, the free encyclopedia. http://www.wikipedia.org. Accessed on
08/17/2008. 111

[2] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch
Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S Maskey, Alexander
Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan Zdonik. The Design
of the Borealis Stream Processing Engine. In Second Biennial Conference on
Innovative Data Systems Research (CIDR 2005), Asilomar, CA, January 2005.
35

[3] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian
Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik.
Aurora: a new model and architecture for data stream management. The VLDB
Journal, 12(2):120–139, 2003. 35

[4] Tarek Abdelzaher, Yaw Anokwa, Pter Boda, Jeff Burke, Deborah Estrin,
Leonidas Guibas, Aman Kansal, Samuel Madden, and Jim Reich. Mobiscopes
for human spaces. IEEE Pervasive Computing, 6(2):20–29, 2007. 29

[5] Adobe. Actionscript technology center. http://www.adobe.com/devnet/

actionscript/. Accessed on 08/17/2008. 70, 80

[6] Adobe. Flash cs3 professional. http://www.adobe.com/products/flash/. Ac-
cessed on 08/17/2008. 70, 80

[7] The Zigbee Alliance. Zigbee. http://www.zigbee.org/en/index.asp. Accessed
on 08/14/2008. 43, 75, 77

[8] Atmel. Avr32 32-bit microcontroller at32uc3b0256 datasheet. 76

[9] B. Bell, S. Feiner, and T. Hollerer. Information at a glance [augmented reality
user interfaces]. Computer Graphics and Applications, IEEE, 22(4):6–9, Jul/Aug
2002. 30

[10] Ari Yosef Benbasat. An inertial measurement unit for user interfaces. Master’s
project, Massachusetts Institute of Technology, Department of Media Arts and
Sciences, September 2000. 36

145

http://www.wikipedia.org
http://www.adobe.com/devnet/actionscript/
http://www.adobe.com/devnet/actionscript/
http://www.adobe.com/products/flash/
http://www.zigbee.org/en/index.asp

[11] Rodney A. Brooks. Intelligence without representation. Artificial Intelligence,
47(1-3):139–159, January 1991. 64

[12] Declan Butler. Mashups mix data into global service. Nature, 439(7072):6–7,
Jan 2006. 28

[13] W. Steven Conner, Lakshman Krishnamurthy, and Roy Want. Making everyday
life easier using dense sensor networks. In UbiComp ’01: Proceedings of the 3rd
international conference on Ubiquitous Computing, pages 49–55, London, UK,
2001. Springer-Verlag. 29

[14] R. Graham Cooks, Zheng Ouyang, Zoltan Takats, and Justin M Wiseman. De-
tection technologies. ambient mass spectrometry. Science, 311(5767):1566–1570,
Mar 2006. 24

[15] Allen Cypher, editor. Watch What I Do: Programming by Demonstration. MIT
Press, 1993. 32

[16] Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. a cap-
pella: programming by demonstration of context-aware applications. In CHI ’04:
Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 33–40, New York, NY, USA, 2004. ACM. 33

[17] S. Feiner, B. MacIntyre, T. Hollerer, and A. Webster. A touring machine: proto-
typing 3d mobile augmented reality systems for exploring the urban environment.
In Wearable Computers, 1997. Digest of Papers., First International Symposium
on, pages 74–81, 13-14 Oct. 1997. 30

[18] Steven Feiner, Blair Macintyre, and Dorée Seligmann. Knowledge-based aug-
mented reality. Commun. ACM, 36(7):53–62, 1993. 30

[19] Quatre Sn E. Gamma, R. Helm, J. Vlissides, and I R Johnson. Design patterns:
Elements of reusable object-oriented software. Book, 1995. 83

[20] Google. Google maps. http://www.maps.google.com. Accessed on 08/17/2008.
27

[21] Daniel Gyllstrom, Eugene Wu, Hee-Jin Chae, Yanlei Diao, Patrick Stahlberg,
and Gordon Anderson. Sase: Complex event processing over streams, 2006. 35

[22] Thomas Haenselmann, Thomas King, Marcel Busse, Wolfgang Effelsberg, and
Markus Fuchs. Emerging Directions in Embedded and Ubiquitous Computing,
chapter Scriptable Sensor Network Based Home-Automation, pages 579–591.
Springer Berlin / Heidelberg, 2007. 37, 46

146

http://www.maps.google.com

[23] Björn Hartmann, Leith Abdulla, Manas Mittal, and Scott R. Klemmer. Author-
ing sensor-based interactions by demonstration with direct manipulation and
pattern recognition. In CHI ’07: Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, pages 145–154, New York, NY, USA, 2007.
ACM. 32, 33

[24] Charles R. Hildreth. Intelligent Interfaces and Retrieval Methods for Subject
Searching in Bibliographic Retrieval Systems. Cataloging Distribution Service,
Library of Congress, Washington, DC 20541., 1989. 61

[25] Harlan Hile and Gaetano Borriello. Information overlay for camera phones in
indoor environments. In Jeffrey Hightower, Bernt Schiele, and Thomas Strang,
editors, Location- and Context-Awareness, volume 4718 of Lecture Notes in Com-
puter Science, pages 68–84. Springer, 2007. 31

[26] The Internet Movie Database (IMDb). Startrek, television series (196601969).
http://www.imdb.com/title/tt0060028/. Accessed on 08/14/2008. 23

[27] Texas Instruments. System-on-chip for 2.4 ghz zigbee(tm) /ieee 802.15.4 with
location engine (rev. b). http://focus.ti.com/lit/ds/symlink/cc2431.pdf.
Accessed on 08/17/2008. 77

[28] Yuri Ivanov, Christopher Wren, Alexander Sorokin, and Ishwinder Kaur. Vi-
sualizing the history of living spaces. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1153–1160, 2007. 28

[29] Abstract Window Toolkit Java Programming Language. java.awt class robot.
57, 68

[30] Jeff Jetton. Tricorder (palm pilot freeware). http://www.jeffjetton.com/

tricorder/index.html. Accessed on 08/17/2008. 24

[31] Ishwinder Kaur. Openspace: Enhancing social awareness at the workplace. Mas-
ter’s project, Massachusetts Institute of Technology, Department of Media Arts
And Sciences, June 2007. 28, 78

[32] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves,
Steve Glaser, and Martin Turon. Wireless sensor networks for structural health
monitoring. In SenSys ’06: Proceedings of the 4th international conference on
Embedded networked sensor systems, pages 427–428, New York, NY, USA, 2006.
ACM. 27

[33] Kurt Kleiner. The star trek tricorder. New Scientist Blogs, 2007. Accessed on
08/17/2008. 23

147

http://www.imdb.com/title/tt0060028/
http://focus.ti.com/lit/ds/symlink/cc2431.pdf
http://www.jeffjetton.com/tricorder/index.html
http://www.jeffjetton.com/tricorder/index.html

[34] Greg Kuchmek. Real tricorders. stim.com/Stim-x/0996September/Sparky/

tricorder.html. Accessed on 08/17/2008. 24

[35] Mathew Laibowitz. Phd proposal: Distributed narrative extraction using imag-
ing sensor networks, April 2007. 41, 42, 58, 65, 76, 77, 78, 79

[36] P. Levis, S. Madden, J. Polastre, R. Szewczy, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. Tinyos: An operating system for
sensor networks. Ambient Intelligence, 2005. 35

[37] Philip Levis and David Culler. Mate : a tiny virtual machine for sensor networks.
SIGOPS Oper. Syst. Rev., 36(5):85–95, December 2002. 69

[38] Henry Lieberman, editor. Your Wish is My Command: Giving Users the Power
to Instruct their Software. Morgan Kaufmann, 2000. 32

[39] Joshua Lifton. Dual Reality: An Emerging Medium. Ph.D. Dissertation, Mas-
sachusetts Institute of Technology, Department of Media Arts and Sciences,
September 2007. 19, 21, 59

[40] Joshua Lifton. Dual Reality: An Emerging Medium. Ph.D. Dissertation, Mas-
sachusetts Institute of Technology, Department of Media Arts and Sciences,
September 2007. 24, 25

[41] Joshua Lifton, Mark Feldmeier, Yasuhiro Ono, Cameron Lewis, and Joseph A.
Paradiso. A Platform for Ubiquitous Sensor Deployment in Occupational and
Domestic Environments. In Proceedings of the Sixth International Symposium on
Information Processing in Sensor Networks (IPSN), pages 119–127, April 2007.
25

[42] Joshua Lifton, Mark Feldmeier, Yasuhiro Ono, Cameron Lewis, and Joseph A.
Paradiso. A Platform for Ubiquitous Sensor Deployment in Occupational and
Domestic Environments. In Proceedings of the Sixth International Symposium on
Information Processing in Sensor Networks (IPSN), pages 119–127, April 2007.
59

[43] Joshua Lifton, Manas Mittal, Michael Lapinksi, and Joseph A. Paradiso. Tri-
corder: A mobile sensor network browser. In proceedings of the ACM CHI 2007
Conference - Mobile Spatial Interaction Workshop, April 2007. 24, 26

[44] Alan L. Liu, Harlan Hile, Henry Kautz, Gaetano Borriello, Pat A. Brown, Mark
Harniss, and Kurt Johnson. Indoor wayfinding:: developing a functional interface
for individuals with cognitive impairments. In Assets ’06: Proceedings of the
8th international ACM SIGACCESS conference on Computers and accessibility,
pages 95–102, New York, NY, USA, 2006. ACM. 31

148

stim.com/Stim-x/0996September/Sparky/tricorder.html
stim.com/Stim-x/0996September/Sparky/tricorder.html

[45] Samuel Madden. The Design and Evaluation of a Query Processing Architecture
for Sensor Networks. PhD thesis, University of California, Berkeley, 2003. 35,
69

[46] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
Tinydb: an acquisitional query processing system for sensor networks. ACM
Trans. Database Syst., 30(1):122–173, March 2005. 35

[47] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John
Anderson. Wireless sensor networks for habitat monitoring. In WSNA ’02:
Proceedings of the 1st ACM international workshop on Wireless sensor networks
and applications, pages 88–97, New York, NY, USA, 2002. ACM. 27, 29

[48] Miklos Maroti, Gyula Simon, Akos Ledeczi, and Janos Sztipanovits. Shooter
localization in urban terrain. Computer, 37(8):60–61, 2004. 29

[49] David Merrill. Flexigesture: An sensor-rich real-time adaptive gesture and af-
fordance learning platform for electronic music control. Master’s project, Mas-
sachusetts Institute of Technology, Department of Media Arts And Sciences,
June 2004. 33, 34

[50] David Merrill and Joseph A. Paradiso. Personalization, expressivity, and learn-
ability of an implicit mapping strategy for physical interfaces. In CHI ’05: Pro-
ceedings of the SIGCHI conference on Human factors in computing systems,
pages 145–154, New York, NY, USA, 2005. ACM Press. 33, 34

[51] Nelson Minar, Matthew Gray, Oliver Roup, Raffi Krikorian, and Pattie Maes.
Hive: Distributed agents for networking things. In Proceedings of ASA/MA’99,
the First International Symposium on Agent Systems and Applications and Third
International Symposium on Mobile Agents, 1999. 37

[52] M.M. Molla and S.I. Ahamed. A survey of middleware for sensor network and
challenges. In Parallel Processing Workshops, 2006. ICPP 2006 Workshops. 2006
International Conference on, page 6pp., 14-18 Aug. 2006. 69

[53] Rene Mueller, Gustavo Alonso, and Donald Kossmann. SwissQM: Next Gen-
eration Data Processing in Sensor Networks. In Third Biennial Conference on
Innovative Data Systems Research (CIDR 2007), Asilomar, CA, January 2007.
35

[54] Suman Nath, Jie Liu, and Feng Zhao. Sensormap for wide-area sensor webs.
Computer, 40(7):90–93, 2007. 27, 28

[55] Inc. Nokia. Nokia 810: Internet tablet. http://europe.nokia.com/A4568593,
2008. Accessed on 08/10/2008. 81

149

http://europe.nokia.com/A4568593

[56] Philips Semiconductor. The I2C bus specification. http://www.nxp.com/

acrobat_download/literature/9398/39340011.pdf, July 2008. Accessed on
07/14/2008. 76

[57] Till Quack, Herbert Bay, and Luc Van Gool. Object recognition for the internet
of things. The Internet of Things, Lecture Notes in Computer Science, pages
230–246, 2008. 31

[58] Ted Selker. A bike helmet built for road hazards. http://news.cnet.

com/2300-1008_3-6111157-1.html?hhTest=1, August 2006. Accessed on
08/12/2008. 33

[59] StreetLine. Streetline, city infrastructure technologies (streetlinenetworks.com).
http://www.streetlinenetworks.com/site/index.php, July 2008. Accessed
on 07/17/2008. 27

[60] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W-C. Chen, T. Bismpi-
giannis, R. Grzeszczuk, K. Pulli, and B. Girod. Outdoors augmented reality on
mobile phone using loxel-based visual feature organization. In ACM Interna-
tional Conference on Multimedia Information Retrieval (MIR’08), 2008. 31

[61] Mark Weiser. The computer for the 21st century. Scientific American, pages
66–75, September 1991. 19

[62] Sean Michael White, Dominic Marino, and Steven Feiner. Designing a mobile
user interface for automated species identification. In CHI ’07: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages 145–154,
New York, NY, USA, 2007. ACM. 75

[63] Wikipedia. Tricorder, From Wikipedia, the free encyclopedia. http://en.

wikipedia.org/wiki/Tricorder, July 2008. Accessed on 07/14/2008. 23

[64] Jim Youll. Wherehoo and periscope: a time & place server and tangible browser
for the real world. In CHI ’01: CHI ’01 extended abstracts on Human factors in
computing systems, pages 109–110, New York, NY, USA, 2001. ACM. 31

[65] Degi Young and Ben Shneiderman. A graphical filter/flow representation of
boolean queries: A prototype implementation and evaluation. Journal of the
American Society for Information Science, 44:327–339, 1993. 61

150

http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf
http://news.cnet.com/2300-1008_3-6111157-1.html?hhTest=1
http://news.cnet.com/2300-1008_3-6111157-1.html?hhTest=1
http://www.streetlinenetworks.com/site/index.php
http://en.wikipedia.org/wiki/Tricorder
http://en.wikipedia.org/wiki/Tricorder

	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Tricorders
	2.2 Browsing Sensor Network Data
	2.3 Augmented Reality
	2.4 Programming by Demonstration
	2.5 Query Languages, Stream Processing, and Data Acquisition from Sensor Networks
	2.6 Sensor Scripting

	3 Task Model And Interface Design
	3.1 Browsing
	3.1.1 Navigation and Context
	3.1.2 Point and Select

	3.2 EDITY(Event Definition and IdenTification sYstem)
	3.2.1 Motivation
	3.2.2 Overview
	3.2.3 Relation with Browsing
	3.2.4 Role of Mobility

	3.3 EDITY: Grammar
	3.3.1 Definitions
	3.3.2 Formal Grammar

	3.4 EDITY: Simple Rules: Definition, Visualization and Actuation
	3.4.1 Selecting a Sensor
	3.4.2 Filters
	3.4.3 Defining and Manipulating Decision Rules
	3.4.4 Linking Actions, Recording Simple Rules

	3.5 EDITY: Compound Rules: Combining Rules
	3.5.1 Design Logic
	3.5.2 Boolean Combination of Simple Rules
	3.5.3 Time Dependency
	3.5.4 Linking Actions, Recording Compound Rules
	3.5.5 Advantages of Rule Setting

	3.6 Sample Walkthrough
	3.6.1 Simple-Rule A,B,C,D,E
	3.6.2 Compound Rule (i)
	3.6.3 Time Slack
	3.6.4 Result
	3.6.5 Simple-Rule F
	3.6.6 Compound Rule (ii)
	3.6.7 Overall Discussion

	4 Middleware for Inference and Visualization
	4.1 Overview
	4.2 Example Interface

	5 Software And Hardware Implementation
	5.1 Summary and Goals
	5.2 High Level Description of the System
	5.3 Hardware Overview
	5.3.1 Mobile Computer System
	5.3.2 Extra Hardware

	5.4 Sensor Networks
	5.4.1 MERL Sensor Network
	5.4.2 Spinner Sensor Network

	5.5 Software
	5.5.1 Software Environment
	5.5.2 Discussion

	6 Experiment
	6.1 Introduction
	6.2 Study Setup
	6.2.1 Infrastructure
	6.2.2 Participant Profile

	6.3 Study Design
	6.3.1 Profile Survey
	6.3.2 Introduction
	6.3.3 Task
	6.3.4 Exit Survey

	6.4 Observations and Implications
	6.4.1 Completion
	6.4.2 Defined Rules
	6.4.3 Post-Completion Questionnaire (Likert Scale Evaluation)
	6.4.4 Post-Completion Questionnaire (Subjective Evaluation)

	6.5 Successes
	6.5.1 Browsing
	6.5.2 Defining, Manipulating and Using Rules
	6.5.3 Learning about Sensors and Sensor Networks
	6.5.4 Interface

	6.6 Shortcomings
	6.6.1 Limitations and Critical Analysis of the User Study
	6.6.2 Shortcomings of the System

	7 Conclusions and Future Work
	7.1 Future Work
	7.1.1 Smaller, Lighter, and Faster
	7.1.2 Suggesting Rules
	7.1.3 Expressivity of Rules
	7.1.4 Generalizing the Interface
	7.1.5 Interface
	7.1.6 Building a Community
	7.1.7 New Applications

	7.2 Concluding Remarks

	A User Study Material
	B Firmware: USB Code (C)
	C EDITY Logic Code (Java)
	Bibliography

