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ABSTRACT 
 
Distributed sensor networks offer many new capabilities for monitoring environments 
with applicability to medical, industrial, military, anthropological, and experiential fields. 
By making such systems mobile, we increase the application-space for the distributed 
sensor network mainly by providing dynamic context-dependent deployment, continual 
relocatabililty, automatic node recovery, and a larger area of coverage. In existing models, 
the addition of actuation to sensor network nodes has exacerbated three of the main 
problems with these types of systems: power usage, node size, and node complexity. This 
work proposes a solution to these problems in the form of parasitically actuated nodes 
that gain their mobility and local navigational intelligence by selectively engaging and 
disengaging from mobile hosts in their environment. This body of work evaluates 
parasitically actuated sensor networks as a solution to these problems through extensive 
software simulation and by designing, implementing, and demonstrating a parasitically 
mobile sensor network. 
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Chapter 1 
 
 
 

Introduction 
 
 
1.1 Basic Principle 
 

We are at a point in time where advances in technology have enabled production of 

extremely small, inexpensive, and wirelessly networked sensor clusters. We can thus 

implant large quantities of sensors into an environment, creating a distributed sensor 

network. Each individual node in the network can monitor its local space and 

communicate with other nodes to collaboratively produce a high-level representation of 

the overall environment. By using distributed sensor networks, we can sculpt the sensor 

density to cluster around areas of interest, cover large areas, and work more efficiently by 

filtering local data at the node level before it is transmitted or relayed peer-to-peer. [1] 

Furthermore, by adding autonomous mobility to the nodes, the system becomes more 

able to dynamically localize around areas of interest allowing it to cover larger total area 
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with fewer nodes by moving nodes away from uninteresting areas. It is well suited to 

sampling dynamic or poorly modeled phenomena. The addition of locomotion further 

provides the ability to deploy the sensor network at a distance away from the area of 

interest, useful in hostile environments. Cooperative micro-robots can reach places and 

perform tasks that their larger cousins cannot. [2] Mobility also allows the design of a 

system where nodes can seek out power sources, request the dispatch of other nodes to 

perform tasks that require more sensing capability, seek out repair, and locate data portals 

from which to report data. [3] 

But the creation of mobile nodes is not without a price. Locomotion is costly in terms of 

node size and power consumption. In dense sensor systems, due to the large quantity of 

nodes and distributed coverage, it is difficult to manually replace batteries or maintain all 

nodes. Some researchers [4] have explored using robots to maintain distributed networks, 

but this is difficult to implement over large, unrestricted environments. Additionally, the 

added intelligence and processing power required for a node to successfully navigate in 

an arbitrary environment further increases the power and size requirements of each node. 

Large nodes, in physical size, complexity, cost, and power consumption, prevent the 

sensor network from being implanted in most environments. [5] [6] 

This research is concerned with exploring a novel type of mobile distributed sensor 

network that achieves the benefits of mobility without the usual costs of size, power, and 

complexity. The innovation that allows this to happen is the design of nodes that harvest 

their actuation and local navigational intelligence from the environment. The node will be 

equipped with the ability to selectively attach to or embed itself within an external mobile 

host. Examples of such hosts include people, animals, vehicles, fluids, forces (eg. 

selectively rolling down a hill), and cellular organisms. These hosts provide a source of 

translational energy, and in the animate cases, they know how to navigate within their 

environment, allowing the node to simply decide if the host will take it closer to a point 

of interest. If so, the node will remain attached; when the host begins to take the node 

farther away from a point of interest, the node will disengage and wait for a new host. 
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This area of research aims to develop and understand a potential method for the 

combination of mobile sensor agents, dense distributed sensor networks, and energy 

harvesting.  This thesis presents the design and development of hardware and software 

systems to address the combination of these interests as parasitic mobility. 

1.2 Related Work 

Although this research has no direct precedent, it is inspired by systems in nature and 

human society (discussed in Chapter 2) and it builds upon current work in the 

encompassed fields of distributed sensor networks and mobile systems.  

Wireless sensor networks have become a large area of research, with many universities 

and institutes contributing. Strategic seed programs begun in the 1990s such as DARPA’s 

SENSIT initiative [7], have grown into an international research movement. 

Early work on highly distributed computation and sensor networks at MIT that provides 

the lineage to this project can be traced back to the Laboratory of Computer Science's 

Amorphous Computing Group’s research in emergent and self-organizing behaviors in 

computer systems [8]. This research conducted software simulations that provided a basis 

for designing distributed, cooperative systems, leading to the Paintable Computing [9] 

paradigm proposed by Bill Butera of the MIT Media Lab’s Object Based Media Group. 

This platform has progressed from software simulation to the very recent development of 

hardware implementing a distributed sensor network comprised of about 1000 nodes. The 

Responsive Environments Group at the MIT Media Lab designed an earlier versatile 

sensor network test-bed inspired by the Paintable Computing concept called the Push-Pin 

computing platform [10], which can support over 100 nodes arbitrarily placed atop a 1x1 

meter power substrate. Their subsequent interest in electronic skin as an ultra-dense 

sensor network [11] resulted in the creation of the “Tribble” project [12], a large sphere 

tiled by a hardwired multimodal sensor network. These systems consist of many nodes 

instrumented with environmental sensors that can communicate with each other to form a 

global picture of their situation. All the above projects illustrate many ideas in distributed 
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sensor networks that motivate this research and provide a basis for the design of a system 

useful in experimenting with the concept of parasitic mobility.  

The Smart Dust Project at UC Berkeley [13] has set a theoretical goal for extremely small 

nodes in dense embedded sensor networks. While the project itself did not put an actual 

hardware platform into production, it spun-off into the Mote [14] and more recently the 

Spec [15]. The Mote is currently the most popular platform for experimenting with 

compact wireless sensing. It has also served as a building block for many mobile sensor 

agent projects, all of which essentially involved putting a Mote onto some sort of robot 

[4]. The Spec is the current result of a project intended to shrink down the Mote to the 

theoretical goal of the Smart Dust project. While not yet that small, the Spec is around 

4mm x 4mm (not including the battery or antenna) and will open the door for many dense 

sensor array experiments. Similar work is also proceeding at other institutions (e.g. The 

National Microelectronic Research Center in Cork, Ireland [16]); the research community 

is congealing around the goal of producing millimeter sized multimodal wireless sensor 

nodes. Parasitic Mobility is intended as a means to add mobility to systems built to meet 

the specifications of these projects with regards to size, power, and node complexity; as 

the nodes grow smaller, parasitic mobility becomes increasingly feasible and desirable. 

As the power source remains a problem and current research in energy scavenging [17] 

and adaptive sensing [18] is very relevant to this initiative. Adaptive sensing is the 

technique by which sensing capabilities (active sensors, sampling rate, power 

consumption, bit-depth, transmission, processing) are increased and decreased according 

to the sensor data itself, never decreasing below a level capable enough to determine 

when more sensing power is necessary. Such approaches are currently being 

implemented using the Stack Sensor Platform [19] at the MIT Media Lab. The 

Networked InfoMechanical Systems research area at the Center for Embedded 

Networked Sensing at UCLA conducts research and builds systems to investigate 

adaptive sensing [18] and mobility for distributed sensor networks [20]. 
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The MIT Laboratory for Computer Science’s Network and Mobile Systems group has 

conducted substantial research in wireless and sensor networks. Several of their projects 

are directly related to the work of this thesis. They include a protocol for networking 

Bluetooth nodes [21] and the LEACH protocol for sensor networking [22]. These are 

examples of self-configuring network protocols that support mobile nodes of any variety 

including parasitically actuated. 

And finally, while not distributed sensor networks, there are several mobile sensor 

devices built by attaching large sensor packages to floating platforms that drift about in 

ambient flows while collecting data. Some examples include Sonobuoys [23] that 

acoustically hunt for submarines, drifting instrumentation packages to monitor ocean 

temperature [24], and balloon-borne modules for surveillance and proposed planetary 

exploration [25]. 
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Chapter 2 
 
 
 

Examples of Parasitic Mobility 
 
 
2.1 Parasitic Mobility in Nature 
 

The natural world provides us with many examples of parasitic mobility, including 

organisms that rely entirely on larger organisms to carry them to habitable locations. 

Parasitic relationships of this sort are called phoretic relationships from the word phoresis, 

which literally means transmission [26].  In the context of this thesis, these examples are 

separated into three categories: active parasitic mobility consisting of organisms that 

attach and detach at will from hosts with their own actuation, passive parasitic mobility 

consisting of passive nodes that are picked up and dropped off, knowingly or 

unknowingly, by hosts, and value-added parasitic mobility which consists of either 

passive or active parasitic organisms that provide additional value to the host in exchange 

for transportation. 
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2.1.1 Active Parasitic Mobility 

The first example that comes to mind when discussing 

parasites in nature is the tick. The tick actively attaches to 

hosts by falling from trees or by crawling directly onto 

the host. It remains attached by using an actuated 

gripping mechanism which it can release whenever it 

decides to seek food elsewhere.  Although the tick is 

transported to new locations by the host, its primary  

Figure 2-1: Close-Up of a 
Tick’s Gripping Mechanism
reason for attachment is to use the host as a source of 

food. It is therefore not normally considered a phoretic organism. It is still relevant to the 

topic as the main example of an active attachment mechanism. 

 

 

Figure 2-2: The Life Cycle of the Onchocerca Volvulus.  Adult females release millions of 
microfilariae into the bloodstream of the host. There they are picked up by feeding blackflies and 
brought to a new host where they can start the life cycle again. 

Several species of nematodes, a.k.a. round worms, exhibit phoretic behaviors. The 

Pelodera Coarctata is a nematode that is commonly found living in cow dung. When the 
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conditions in the dung deteriorate and become inhospitable for the nematode, it attaches 

itself to a dung beetle which will carry it to a new fresh dung pat. [27] Another such 

nematode is the Onchocerca Volvulus which is infamous as the cause of “River 

Blindness.” This worm attaches itself to Blackflies that in turn bite humans allowing the 

worm to travel through the skin and infect the host human. These Blackflies themselves 

are also an example of parasitic mobility. Their larvae require an aquatic stage for growth, 

so they often attach themselves to freshwater crabs to bring them into the water and 

protect them. [27] 

 

Figure 2-3: A Remora hitching a ride on a shark 

Marine life is ripe with examples of active parasitic mobility. One example is that of the 

Remora or Suckerfish. These fish have developed a sucker-like organ that they use to 

attach to larger creatures such as sharks or manta rays. By attaching to these larger, faster 

animals the remora covers area faster giving it more access to food. [28] 

2.1.2 Passive Parasitic Mobility 

Plants often employ parasitic mobility as a means of distributing seeds. A common 

example of this is the dandelion. The dandelion seeds have a tiny parachute that carries 

the seed with the wind. This allows the seeds to travel some distance in hopes of landing 
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in an area that provides the requirements of growth. It is completely passive and at the 

whim of the wind. It is not expected that all the seeds will land in arable areas. This is 

overcome by the sheer quantity of seeds released into the air. This is more opportunistic 

than parasitic, but still falls within the conceptual boundaries of this research. 
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Figure 2-4: Dandelion seeds 
catching a ride from the wind
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1.3 Value-Added Parasitic Mo
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Figure 2-5: Burs stuck to a foot being brought to a new
location 
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Figure 2-6: Bees are attracted to flowers by the petals and the nectar. Once inside the bees are 
covered with pollen which they carry to another flower to complete the pollination process. 

Flowers use their scented petals to attract bees and other insects. The flowers also provide 

nectar. The bees use the nectar to make honey and carry the pollen from flower to flower. 

This is an extremely well evolved symbiotic system that has very little wasted energy or 

resources. [29] 

The existence of many such well evolved systems in nature illustrates the validity of this 

type of mobility, and justifies researching further how to use this concept in our research. 
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2.2 Parasitic Mobility in Society 
 

 

Figure 2-7: People hitching a ride on a bus 

In human society, many of the systems surrounding us exhibit emergent behaviors that 

exemplify parasitic mobility. It is important to examine these systems, not only as 

conceptual examples, but also because it may be possible to embed sensor network 

technology directly into these existing systems and take advantage of their mobility. 

Basic examples, such as people being pulled along by a bus as shown in Figure 2-7, exist 

throughout society. It is often beneficial to attach to something that can travel in ways 

that a person cannot. This example further illustrates the economies of parasitic mobility; 

the people are getting a free ride. This concept has been taken further by Neal Stevenson 

in his novel Snow Crash [30]. In Snow Crash, hitching rides on other vehicles is 

presented as a major method of transportation in the future setting of the story. 

A simple example of parasitic mobility is when a lost object, such as a cellular phone, is 

returned to its owner. This method of actuation is a combination of the device identifying 

its destination and a desire for the host to bring it there. Keeping this in mind, it may be 

possible to design devices that could identify some sort of reward for bringing them to a 

point of interest to the device. Another example of this behavior is that of a consumer 

survey (a sensor of sorts) that is redeemable as a coupon when returned. 
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There are many everyday objects that are only useful for short bursts. One example of 

this is a writing utensil. A pen is needed to record information when it is presented or 

invented; afterwards the pen sits dormant awaiting the next burst of usefulness. During 

this period where the pen is not deemed useful it is free to be relocated. It is often 

relocated by a host requiring its use in another location. As a result, pens generally cover 

large areas over time, and due to their unlikelihood of being returned, people usually have 

redundant supplies of pens. Equipping pens with a sensor device is a good way to gain 

coverage of an environment, particularly an office or academic institutional building. 

2.3 Fictional Examples of Parasitic Mobility 

In the movie Twister [31], a 

team of storm-chasers release 

a batch of sensors into a 

tornado. The sensors, 

collective called ‘Dorothy’, 

are sucked up into the vortex 

and collect data about the 

tornado from the inside. 

These sensor nodes are 

carried into the area of 

interest by winds themselves. 

In this case the sensor nodes 

are used to study the actuation force itself, and is mobile along with the force thereby 

always being at the area of interest. Although it seems possible that this system can be 

deployed, according to the National Severe Storms Laboratory [32], such devices have 

not been built. They have experimented with a large barrel-sized sensor device called 

TOTO (TOtable Tornado Observatory), but these tests have yielded only minimal success. 

Figure 2-8: Dorothy Sensors from the movie Twister.  Image 
copyright © Tim Ketzer. 
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Finally, the most famous example of an object that travels without its own actuation is 

‘The One Ring’ from the “Lord of the Rings Trilogy.” [33] This ring calls out to potential 

hosts to pick it up, and even renders the wearer invisible as a value-added service.  And 

finally, the ring desires to be brought to a location which also happens to be the only 

place it can be destroyed; a promised reward for its successful journey. 
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Chapter 3 
 
 
 

Software Simulation 
 
 
 
In order to better delve into and examine the concept of parasitic mobility, extensive 

software simulation was performed. Through the process of designing the software 

simulator, the proposed systems were examined from the ground up, looking at all the 

factors that influence a potential sensor network of this type. This was a critical first step 

into research of this topic. Upon its completion, the simulator was an invaluable asset for 

testing and examining ideas and algorithms, collection of data identifying expected 

behaviors, further proving the validity of the overall concept, and providing insights 

directly used in the design of the hardware system described in chapter 4. 

3.1 Design Overview 

The design of the software simulator can be broken down into three sections: 

Environmental Simulation, Host Behavior, and Paramor Behavior. “Paramor” is the name 
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given to a parasitically mobile node and is an apt anagram for PARAsitic MObility 

Research. On top of these areas, the simulator contains all the necessary hooks for 

interactively changing behaviors and trying out new algorithms, detailed logging of 

activity data, and unattended running of multiple simulations with a desired timescale. 

The simulator is grid based, and has been tested with maps as large as one million cells. 

The hosts and paramors participating in the simulation move by transitioning from cell to 

cell. 

3.1.1 Environment Setup 

 
Figure 3-1: Screenshot of the Parasitic Mobility Simulator Map Editor 

 
The first step in setting up a simulation is to layout the environment using the Parasitic 

Mobility Simulator Map Editor. This is the interactive graphical application shown above 
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in Figure 3-1. The user interface for this tool consists of a window displaying a scrollable, 

tile-based map, and a control panel for editing the parameters of the selected tile. The red 

square around a tile indicates the currently selected tile editable with the control panel, 

and the blue square follows the mouse pointer as a cursor for selecting a new tile to edit. 

The first section of the control panel located in the 

bottom left displays the coordinates of the currently 

selected tile. It also displays and allows modification of 

the current dimensions of the map. The zoom function 

scales the display, but has no effect on the map itself. 

It is important to note how the dimensions of the map 

relate to distances in the real world. The resolution of 

the map should be directly related to the resolution of 

the sensors and location system on the sensor nodes. 

For example, if you want to simulate an environment of 

100 meters by 100 meters populated by sensor nodes that can identify their location with 

a resolution of 2 meters by 2 meters, you would create a map that is 50 tiles by 50 tiles. 

Figure 3-2: General Map 
Control section of control panel 

The next section of the control panel is where you can 

assign walls and portals to the currently selected tile. 

The walls allow you to design a map with particular 

paths for the hosts to follow and to design a map that is 

based on a real environment. The portals are tiles that 

act as entrances and exits for the host bodies to enter 

and leave the environment. When a host arrives at a 

portal, it can decide to keep moving or it can exit and 

take itself out of the area. The attached paramors can 

react to this and jump off. The host stays outside for a 

duration according to its behavioral parameters (see 

section 3.1.2 for details on host behavior), and then returns through any of the available 

Figure 3-3: Wall and Portal 
section of the control panel 

 33



portals. Portals are not required for simulation, but they allow multiple maps to be linked 

together. At the far right of the control panel, six options for textures are able to be 

applied to the current tile. This is for display only, and has no bearing on the simulation. 

If you want to make a square inaccessible for a host body, you need to surround it with 

walls or set the host frequency to 0 for that square. The host frequency, or host traffic 

distribution weight, is the likelihood that a host will travel past a given location. It can be 

set per tile using the section of the control panel shown in Figure 3-4. This is further 

explained in section 3.1.2. 
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Figure 3-4: Environmental conditions and host frequency
section of the control panel
e control panel shown in Figure 3-4 allows the user to create areas of 

nsor nodes and for the hosts. By setting the power parameter above zero, 

 source of power for the node to recharge its reserves. This is described 

section 3.1.3 where the node behavior is described. The nodes can also 

o look for certain environmental conditions such as temperature. The 

ibution Weight parameter sets the tile’s attractiveness for a mobile host 

 100, where 0 means there is no interest at the tile and the hosts will 

ly, and 100 means the tile is very attractive to hosts and has the highest 

 traffic. 
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Figure 3-5: Host and Paramor Assignment Panel 
and map symbols for hosts and paramors 

 

And finally, the most important section of the control panel allows you to populate the 

environment with host bodies, deploy paramor nodes, and assign behaviors to these 

entities. Up to 100 hosts and paramors can be deployed per tile. Tiles that have hosts or 

paramors assigned to them are indicated on the map by a head and a tick, respectively. 

Clicking on the Assign Behaviors button brings up a window where a name can be given 

to the behavior of each paramor or host. During the map creation process, only a name 

can be assigned; designing the actual behavior is done at a later stage of the simulation 

setup.  

The created map is saved as an XML file. XML was chosen because it is easily readable 

by both humans and machines. As a result, maps can be created and modified without the 

use of the graphical map editor.  It is very easy to set up a multi-pass simulation where 

the map is changed with each pass, using XML parsing tools now standard with every 

major operating system.  
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<?xml version="1.0"?> 
<!--ParaSim Map File--> 
<!--Filename: 
C:\paramosim\parasim_run\parasim_run\bin\tests\distance_map_long2.xml--> 
<!--Created: 5/17/2004 9:18:47 PM--> 
<Map width="51" height="10"> 

 
. . . 

 
  <Tile X="3" Y="1"> 
    <WallN>False</WallN> 
    <WallE>False</WallE> 
    <WallS>False</WallS> 
    <WallW>False</WallW> 
    <Portal>False</Portal> 
    <Paramors num="0" /> 
    <Hosts num="1"> 
      <B0>Behavior 1</B0> 
    </Hosts> 
    <Power>0</Power> 
    <Temperature>0</Temperature> 
    <Light>0</Light> 
    <Altitude>0</Altitude> 
    <Vibration>0</Vibration> 
    <Radiation>0</Radiation> 
    <Texture>0</Texture> 
    <HostTraffic>100</HostTraffic> 

</Tile> 
 

. . . 
 

</Map> 
Table 3-1: Example snippet of XML file created by the map editor 

he complete code listing of the map editor is including in the appendices section. 
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Once a map file is created, it can then be imported into the Parasitic Mobility Simulator. 

 

Figure 3-6: Screenshot of the Parasitic Mobility Simulator executing a simulation of a small, plain 
map containing only hosts and paramors. The red blobs are mobile hosts, the yellow blobs are 
stationary paramors waiting for a host to come by, the green blobs are hosts at a goal destination, 
and orange blobs are mobile hosts with a paramor hitching a ride. Other possible colors are black 
blobs indicating dead paramors that have run out of power, and white blobs indicating a node that is 
sensing or charging its battery. 

 
Once the map is loaded into the simulator, a user can set up behaviors for the hosts and 

paramors, set up logging, and begin execution of the simulation. The simulation is 

displayed with full animation in real or time-scaled real time. The decision to implement 
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this in 3D although it is a 2D problem came from a desire to take advantage of the timing 

system available in the 3D coprocessor as well as to offload the graphical tasks to this 

coprocessor. It also allows control of the camera to view the simulation from any angle 

and from any distance. The camera can be made to follow a particular paramor or host, 

and entertaining videos can be captured. 

 

 

3.1.2 Host Behavior Simulation 

In order to accurately simulate parasitic nodes, credible hosts must be designed. It is also 

necessary to be able to adjust the hosts to simulate different types of real world entities. 

At the lowest level, a host body needs to randomly wander through the environment. It 

needs to avoid obstacles and heed other attributes of the geography. The simplest host 

will stand at a location, list all the possibilities for a new location to travel to, and 

randomly select one with the randomness weighted by the environmental parameters. For 

example, if a host is at a location with walls on two sides (those directions have a weight 

of 0), a new location with a host frequency of 50 on one side, and one with a host 

frequency of 100 for the final side, it will randomly select between the two sides with a 

weighting of 2 to 1 likelihood in favor of the side with the 100. 

Although this simulation can use just this simple model, a large number of other 

parameters are available to the Parasitic Mobility Simulator for more detailed host 

behavior simulation. 
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Figure 3-7: Popup window showing the parameters settable on a host-by-host basis 

 
The window shown in Figure 3-7 appears after hitting the “Setup Hosts” button from the 

main control panel shown in Figure 3-6. This panel shows the rest of the parameters that 

can be assigned to a host. On the left side, the menu will list all the behavior names 

assigned to hosts from the map editor. By selecting a behavior, the user can edit the 

parameters for the hosts that have that behavior assigned to them. These parameters are: 

• Stay Weight – This is the likelihood that the node will stay in its current location 

instead of heading towards one of the adjacent locations. 

• Stay Duration – If a node has decided to stay in its current location this is the 

duration of time it will stay before repeating the selection process to identify its 
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next move. By use of the Stay Weight and Stay Duration parameters, hosts can be 

designed that move often or hardly move at all. 

• Covered/Uncovered Weights – The hosts keep a record of everywhere they have 

been. These weights modify the weighting from the environment based on how 

often a host has visited the locations it is deciding between. These parameters 

allow the design of hosts that have a tendency to always follow a known course or 

are more likely to explore uncharted areas. 

• Portal Weight – This parameter denotes the likelihood that a host will choose to 

leave through a portal when it finds one at its current location. 

• Portal Duration -- This is the length of time a host that has left through a portal 

will wait before reemerging from the same or a different portal. 

• Speed – This is a floating point number that sets the host’s speed in simulator 

distance units per 1000 simulator time units. These units can be related to any 

value in the real world, provided the speed values that relate time to distance fit 

the scaling of the simulator units to real world units. 

The execution of the host’s behavior is fairly straightforward. When a host reaches a new 

destination, it identifies the possible choices for its next destination, and using the 

weightings for these choices, it randomly selects its next move. By setting these 

parameters, hosts can be created that have high levels of randomness or hosts can be 

created that have no randomness and follow a specific pattern. This implementation 

allows the simulation of most environments populated with mobile hosts, such as cars, 

people, and animals. 
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3.1.3 Parasitic Node Behavior Simulation 

The basics behind a parasitically mobile node’s behavior are a set of objectives for the 

node. When a node is idle and a host body comes in range of it, the node attaches to the 

host. While attached to the host, the node uses the information it can gain from the 

environment and host to determine if detaching will help it reach its objectives. 

 
Figure 3-8: Popup window showing the parameters for paramor nodes 
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Similar to the host behavior setup, the panel shown in Figure 3-8 allows the assignment 

of objective and behavior parameters to each of the named behaviors assigned to paramor 

nodes in the map editor. In more detail, the parameters are: 

• Power Rate – This is the amount of power the node uses per 1000 units of 

simulator time. Currently, the simulator supports only a steady rate of power 

usage regardless of whether the node is sensing, traveling, or waiting. However, it 

can log the amount of time spent in each of these states allowing complete power 

calculations to be made after the simulation is complete. This is illustrated in 

Section 3.2.2. 

• Attachment Power – This is the amount of power used for each attachment or 

detachment the node performs.  

• Battery Life – This is amount of power the node has available. When this runs to 

zero, the node dies. 

• Power Threshold – When the node’s power level drops below this threshold, it 

enters a mode searching for power sources. In this mode, it will always detach if 

near a source of power. 

• Goal X/Y – The coordinates that the node is told to head towards. 

• Goto Goal – If this is checked, the node will try and reach the location stored in 

Goal X/Y. If it is unchecked, the value stored in Goal X/Y is ignored. 

• Stop at Goal – If this is checked, when the node reaches the location stored in 

Goal X/Y, it will remain there indefinitely. 

• Goal Time – This is the duration a node will stay at its goal if Stop at Goal is not 

checked. After the time is up, it will attach to the next host that comes by and start 

looking for a new area of interest. 
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• Light/Vibration/Altitude/Temperature/Radiation Threshold – These values 

tell the node what constitutes an area of interest. If the area contains quantities of 

these elements above the threshold value, it considers it interesting and will 

detach to start sensing. Setting these values to 100 disables checking for that 

element as values over 100 are not available in the map editor. 

• Sensor Time – This is the duration that a node will stay at a sensor point of 

interest before trying to seek a new location. 

• Coverage – If this is checked, the node will take into consideration where it has 

already been when deciding to remain attached or to detach. This is useful for 

applications that are looking for sensor points of interest, or trying to cover an 

entire area for reconnaissance.  

• Hops Per Locale – When a node attaches to a new host and determines that the 

host is taking it in an undesirable direction, the node has the ability to hop off. 

However, it is possible that the node is at a spot where the only route that the host 

can take it is undesirable. The Hops per Locale setting assigns the maximum 

number of detachments the node should perform before it should stay on the host 

and ride to a new location. At this new location it can begin the process over 

again. 

Once the above parameters are set up, the paramor behavior is easily implemented in the 

simulation environment. When a host comes within range, the paramor attaches. If it 

comes across an area of interest it will hop off and remain there for the specified duration. 

The power calculations are constantly being updated, and when it crosses the power 

threshold the node will not detach at a sensor point, only at a power location. It is 

possible to change these priorities. For example, if it is okay to risk running out of power 

in order to find something, the power can be lowered in priority below sensor events or 

destinations. 
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In general, if the node has a set destination, it will try to reach it. If it comes across an 

area of sensor interest, it will detach, stay for the sensor duration, and then try to continue 

towards its destination. 

If a node is on a path to a destination or trying to go to where is has not been, it needs to 

hop off when it is on a host that is taking it farther away from its destination, or back into 

a covered area. This is a matter of simply calculating the distance to the destination at 

two points on the trajectory and testing the change in distance to the destination, or 

figuring out the direction and comparing it to the node’s stored coverage map. It is 

important to allow the node to travel a distance long enough to sense the direction before 

hopping off. The “hops per locale” parameter is used to prevent situations with nodes 

being stuck as described above.   

3.1.4 Final Simulator Design Notes 
 
After all the parameters are set up, the simulation can be executed. Behind the scenes, the 

simulator takes 1ms for each simulation time unit. This unit can be scaled to any real 

world time unit provided that the time dependent values of host speed, power rate, goal 

time, sense time, portal duration, and stay duration are scaled similarly. To make the 

simulator execute faster, the amount of simulation time units that complete in 1ms can be 

increased. The distances can be dealt with similarly, scaling the distance dependent 

parameter of host speed and taking into account the distance metric when setting up 

behaviors. 

Besides the ability to record the 

simulator into a video file, extensive 

logging capabilities are implemented. 

It is possible to log all the activities 

that happen to the hosts and paramors. 

The parameters are shown in Figure 3-

9 and are pretty straightforward. Each 

Figure 3-9: Logging controls and Run Loop Button 
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event is time-stamped in the log file. The host and paramor trajectory logging routine 

records every movement they make and the data can be reconstructed to map out all 

activity. The host trajectory section of the software places log results into large log files, 

and is mainly useful in debugging the host behaviors. The log files are recorded in XML 

format for easy parsing, as shown in Table 3-2.  
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?xml version="1.0"?> 
!--ParaSim Log File--> 
!--Filename: C:\paramosim\parasim_run\parasim_run\bin\tests2\distance_log4.xml--> 
!--Created: 5/18/2004 3:14:51 AM--> 
Log> 
 <LoggingStarted TimeScale="1">103613478</LoggingStarted> 
 <ParamorAttachment Paramor="1" Host="6" X="5" Y="2">103616322</ParamorAttachment> 
 <ParamorAttachment Paramor="5" Host="36" X="5" Y="6">103616632</ParamorAttachment> 
 <ParamorAttachment Paramor="7" Host="43" X="5" Y="8">103616773</ParamorAttachment> 

. . . 
 <ParamorAttachment Paramor="0" Host="0" X="5" Y="1">103630242</ParamorAttachment> 
 <ParamorDetachment Paramor="4" EventType="AwayFromGoal" X="6" Y="5">103630552</ParamorDetachment>
 <ParamorDetachment Paramor="2" EventType="Goal" X="9" Y="3">103630693</ParamorDetachment> 
 <ParamorGoalEvent Paramor="2" X="9" Y="3">103630693</ParamorGoalEvent> 

. . . 
 <ParamorAttachment Paramor="0" Host="31" X="8" Y="1">103743415</ParamorAttachment> 
 <ParamorDetachment Paramor="0" EventType="Goal" X="9" Y="1">103744146</ParamorDetachment> 
 <ParamorGoalEvent Paramor="0" X="9" Y="1">103744146</ParamorGoalEvent> 
 <LogStopped>103747641</LogStopped> 
/Log> 
 

Table 3-2: Example snippet of XML log file 
 

he “Run Loop” button shown in Figure 3-9 will execute a block of code that sets up exit 

onditions for the simulator, such as when all the paramor nodes have reached their 

estinations or the entire map has been covered by the nodes collectively. It then runs the 

imulation multiple times, making defined parametric changes with each pass. 

.2 Simulator Data and Results 

ith the appropriate parameters, the package can simulate many environments and help 

est out algorithms and ascertain the requirements for a particular parasitically mobile 

ensor network. It can also be used to generate numerical data for predicting behavior, 

uch as how long it will take a node to reach a location according to the hosts in the 

nvironment, the power usage compared to standard robotic devices, and how many 

odes should be deployed to cover an area in a particular amount of time. This section 

resents these types of data collected from thousands of hours of simulation time. 
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3.2.1 Velocity Data 

Distance versus Time and Hops
Host speed = 1 d/t
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Figure 3-10: Graph showing distance versus time data collected and averaged from repeated 
simulation passes. 
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The data in the graph shown in Figure 3-10 results from simulating an environment with 

a constant size and host population. The speed of the hosts is also a constant 1 unit of 

distance per unit of time. The simulation parameters can be mapped to any units provided 

everything is scaled appropriately. In the next section, this data is used to calculate real-

world energy usage values, and the simulator distance units are related to meters and the 

timing units are related to seconds. This would mean the hosts travel with a speed of 1 

m/s, similar to the walking pace of a human. 

The paramor behavior chosen for this test is simply to go to a particular location at a 

known distance away. The algorithm for attachment and detachment is to attach to every 

host that comes by, decide whether it is bringing the node closer to or farther away from 

the destination. For a real device to be able to ascertain this information, it must ride the 

host for long enough to get a fix on the motion or the new location. Based on the GPS 

and Bluetooth localization systems described in the next chapter, this was set in the 

simulator as 1/2 of a time unit before the node knows the new location with a resolution 

of 1/2 of a distance unit. 

This simulation was executed 25 times for each distance and the results were averaged. 

The linearity of this graph is due to the host’s random behavior with respect to the node’s 

destination. In other words, at each point (a point being at the end of the node’s minimum 

cycle required to ascertain the direction that the host is traveling) the host is just as likely 

to turn away from the node’s destination as it is to continue moving towards it. Therefore, 

the average time it takes for a host to take you from one location to the next location that 

is closer to the destination is the same regardless of how you arrived at the current 

location. Since the host reassesses its path at each point, the average time it takes a node 

to find a host going one step closer to the destination and to ride it to the next point, is 

constant over the entire travel. Hence, the average time it takes to go N number of steps 

should be N times the average time it takes to go one step, leading to a linear relationship.  

A simulation that uses hosts that behave less randomly, as they might in a real world 
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situation where the hosts are governed by pathways and destinations, is discussed in 

Section 3.2.3. 

Besides the total time it took to reach a destination, the graph also shows the time spent 

attached to a host, in other words, the time spent non-idle and actually traveling. This line 

is quite smooth; especially in comparison to the total time including time spent idly 

waiting for a host to pick it up. This smoothness shows that the algorithm is working 

properly as most of the time is spent waiting for a beneficial host, which varies according 

to the random flows of the hosts. This randomness is eliminated by the paramor’s 

decision process. The reason that the attached time and distance don’t exactly scale with 

the host velocity is because the nodes still need to attach to the host to ascertain its 

direction, and even hosts that head towards the destination are not guaranteed to go 

exactly straight, especially considering the coarse location system of the node. 

The graph also contains the number of hops, a complete cycle of attach and detach, which, 

along with the total time and attached time will be used to calculate the energy 

consumption in Section 3.2.2. 

 48



Distance versus Time and Hops
Host Speed = 2 d/t
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Figure 3-11: Graph showing distance versus time data collected and averaged from repeated 
simulation passes. This run uses hosts that move at a speed of 2 d/t. 
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The graph shown in Figure 3-11, repeats the same test as the graph shown in Figure 3-10, 

but with an environment consisting of hosts that move at a speed of 2 d/t, twice the speed 

of the first test. It shows that the overall node velocity is almost exactly proportional to 

the speed of the hosts, in an environment where the hosts move fairly randomly but with 

uniform distribution. 

The line illustrating the time spent traveling in this second test is slightly less smooth 

than the same line in the first test. This is due to the increased speed causing the node to 

travel further off course before it can sense the direction it is traveling and detach from an 

inhospitable node. This is discussed further with the data in Figure 3-12. 

Also shown on the graphs in Figure 3-10 and Figure 3-11 are the lowest recorded total 

times, lowest recorded attached time, and lowest recorded number of hops. Due to the 

proposed inexpensiveness of parasitically mobile sensor nodes, redundancy may be 

utilized. One hundred nodes can be deployed in situations where only one needs to reach 

a destination. In this case, it is more than likely that the first node will be there in a 

shorter amount of time than the average time of all the nodes. 

Several additional runs, each with different host speeds, were executed. From these runs, 

average node velocity versus host velocity data was collected and is shown in Figure 3-12. 
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Figure 3-12: Host Velocity versus Node Velocity 

The beginning of the curve looks as expected, a linear relationship between host velocity 

and node velocity. But the second half of the curve looks quite strange at first glance. The 

node velocity peaks at around a host velocity of 15 d/t and then drops. This is where the 

resolution of the location sensing system becomes a more serious factor. When the host 

speed increases, it takes the attached node farther off course in the time that the node 

needs to sense its trajectory. At some point, the algorithm is rendered completely useless 

and the nodes attachment and detachment becomes completely random. In the simulator, 

the time needed to sense the trajectory can be turned very small, or even eliminated, by 

allowing the nodes to sense the host’s direction before attaching. But this will definitely 

be an issue when designing real mobile systems where in all but very special cases (such 

as scheduled vehicular systems like trains) the node will have to attach to the host to find 

out where it is going. 
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The graph shown in Figure 3-13 displays the results of a similar simulation, except that in 

this run the distance to the destination is kept constant and the host frequency 

surrounding the destination is altered. The host frequency was described in the prior 

section under environmental simulation.  

The attached time in this test is fairly constant, whereas the total time varies greatly in 

proportion to the host frequency. This shows that the node is spending an increasing 

amount of time waiting for a proper host as the frequency of such hosts goes down. The 

large discrepancy between the quickest node and the average is further justification for 

the redundancy allotted from cheap sensor nodes. Low host frequencies can be combated 

with the deployment of enough nodes to guarantee that one will find a host headed for the 

destination regardless of how rare it is. 
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Host Frequency at Destination versus Time and Hops
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Figure 3-13: This graph shows the results of the simulation where the distance is kept constant and 
the host frequency around the destination is varied. 
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Of particular interest to mobile sensor networks, is the ability to release nodes without a 

specific destination and have them attempt to scan over the entire area. In order to 

simulate this behavior, a new algorithm for attachment and detachment had to be 

implemented. The simulator allows quick trial and error of such algorithmic ideas. 

The first component of the algorithm is to equip the nodes with the ability to record 

where they have been. When a host takes them back to a location they have already 

covered, they detach. This proved to be inadequate as the nodes quickly found 

themselves surrounded by places they had already covered up to the radius of their ability 

to sense where the host was taking them.  Depending on the processing ability of the 

node, it may be possible to analyze the entire map of coverage and determine general 

desired directions even if it the node first must travel through an already covered area.  

After experimenting with several behaviors, it appears that the key to coverage is to keep 

moving even if you might be heading in a direction that has a area in the immediate 

vicinity that the node has already visited. The chosen algorithm for this simulation is to 

limit discarded hosts (hosts that are heading to a location already visited) to one per 

location. In other words, when a host comes by an idle node, the node will attach, and 

decides if the host will take it to an unvisited location. If not, the node detaches and waits 

for the next host. This time it will take the new host without question and ride it until it 

finds an uncovered location, or at least arrives at a location that has nearby unvisited 

locations so it can detach and have a high likelihood of a host coming by that will go in 

that direction. It is also important not to attach to a host that already has a paramor 

attached to it. If two nodes are on the same path, both looking to cover the environment, 

they will most likely remain together by making the same decisions. Simple broadcast 

commands sent from individual nodes can aid with the dispersal of mobile sensor nodes. 

These commands can tell other nodes which areas have been covered and areas of high 

host traffic.  
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The graph in Figure 3-14 shows the timing results of the coverage simulations. The 

environment was set up as a 200 square unit area with a coverage map resolved in 1 unit 

squares. The test was run with sets of 5, 10, 15, and 20 node deployments. 
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Figure 3-14: Graph showing the time to cover an area for different quantities of deployed nodes 
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The results are fairly straightforward. A large percentage of the area is covered fairly 

quickly. The last ten percent, usually comprised of unvisited locations surround by 

covered areas, takes most of the time and is completely proportional to the number of 

nodes deployed. This behavior is quite similar to most mobile robotic systems seeking to 

cover an area, such as the system designed by Maxim A. Batalin and Gaurav A. 

Sukhatme [34] from the University of Southern California’s Robotic Embedded Systems 

Laboratory. Their system evaluates algorithms for mobile robots deploying sensors 

intended to maximize sensor coverage area. The data of the coverage area versus number 

of deployed robots for several of their algorithms is very similar to that for the parasitic 

mobility simulation, further identifying parasitic mobility as a potential replacement for 

standard means of mobility. 

 

3.2.2 Energy Usage Calculations and Comparison 

By examining the hops, attached/traveling times, and wait times from the simulator as 

described in section 3.2.1, we can calculate predicted values for the energy consumption 

rates of a parasitically mobile sensor node. In this section, we introduce the two kinds of 

nodes designed as the hardware components of this research and compare their predicted 

power usage statistics to that of two standard mobile robotic sensor devices. 

3.2.2.1 Semi-passive Parasitic Node Power Calculations 

The first device designed for this experiment is a 1 cubic inch device mimicking the 

passive attachment mechanism of a bur with the ability to actively detach by shaking 

itself loose. This device is further detailed in Chapter 4.  

Since the attachment is passive and it sticks to every nearby host (bur-like attachment), it 

requires no additional power, actuation, or sensing during the host discovery and 

attachment process. When it is idle and waiting for a host, it can remain in a low-power 

mode and wake up on motion caused by being picked up by a host as defined in Chapter 
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4. The low power mode runs using a 32 KHz clock and keeps alive a comparator on 

accelerometer data. This low power mode draws around 35 uA. Additionally, the node 

will wake up once per second and check for a wireless message. This check lasts around 

10 ms and uses 16 mA for that duration. However, the power for the communication 

system will not be included in these calculations because, at this point, we are just 

looking at the power needed for mobility to compare to standard techniques of moving 

sensors.  

While attached, the semi-passive node can enter a different low-power mode and 

periodically wake up to check its location, progress, and sense the new surroundings. 

Assuming that the location system has a resolution of one meter, in the simulation of the 

environment with the hosts that move at 1m/s, the device will have to wake up and sense 

once per second of attached time. Depending on the type of location system and sensors, 

the node could use up to 60 mA for up to 60 ms for gathering data about the location and 

conditions surrounding it.  Two location systems are described in Chapter 4, both systems 

require less power than this estimate. 

And finally, when the node decides that it is time to detach, it needs to activate a 

detachment mechanism, which in the case of these sticky nodes is a pager motor with a 

draw of 15mA activated for 500ms to shake loose. 

So the power usage of the proposed semi-passive node can be defined in three parts as 

follows: 
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Using these formulas and the data shown in Figure 3-10, time and hops versus distance, 

we can graph power used versus distance. Figure 3-15 at the end of this section shows 

this calculation. 

 

3.2.2.2 Active Node Power Calculations 

In addition to the semi-passive nodes, an active node was design that adds an actuated 

method for attachment as well as detachment. Detailed design information on this “tick” 

modeled node is provided in Chapter 4. 

The active node power calculations are fairly similar to the semi-passive node. The active 

node requires 30 seconds drawing 10mA to wind the spring and execute an attachment or 

detachment. This node hops at a height of around 6 cm and weighs around 40 grams. If 

the device were 100% efficient the power usage per hop could be calculated as: 

024.0060.081.9040.0 =××=××= hgmEnergy  Joules 

The above calculation is for a single jump; two jumps are required for a complete 

attachment/detachment cycle. Hence, the calculated value of 0.048 Joules per hop is 

substantially less than the observed value of 1.98 Joules per hop calculated below. This 

makes sense because the hopping mechanism is far from 100% efficient. Therefore, we 

will use the observed values in the overall power calculations. 

Additionally, when the active node is not attached it requires more power than the semi-

passive node because it needs to identify and locate a potential host to attach to. This 

requires 30mA of constant power draw to run an IR proximity detection circuit with a 

fairly high sampling rate. This sampling rate can be reduced, but worst-case ratings are 

being used for these calculations.  
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The power equations for the active node are: 
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3.2.2.3 Power Comparison 1 – NASA Urban Reconnaissance Robot 

The first robot chosen for power comparison with parasitic mobility is NASA’s Urban 

Reconnaissance Robot. [35] This robot is equipped with an enormous array of sensors, 

actuators, and processing power. It is designed to navigate through very tricky 

environments. Parasitically mobile nodes gain this ability from the hosts they attach to, 

and these hosts have evolved to navigate their environment in the best way possible. The 

NASA robot is an ideal comparison as it is a prime example of the power needed to build 

a device that navigates in a way that parasitically mobile nodes potentially get for free. 

This robot draws 145 Watts while moving, sensing, and navigating on flat ground at a 

rate of 80cm/second. It can also climb stairs using 245 Watts of power. For this 

comparison, we will assume it is on flat ground.  Using this energy consumption rate and 

speed of travel we can create power versus distance data and compare it to that of the 

parasitic node. This comparison is shown in Figure 3-15. 
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3.2.2.4 Power Comparison 2 -- The RoboMOTE 

On the other end of the spectrum from the NASA robot is University of Southern 

California’s RoboMOTE [36]. It is a small wheeled robot measuring less than 6 cubic 

centimeters in volume. While it does not have the navigation or actuation abilities of the 

NASA robot, it makes up for it in size, cost, and power consumption. The RoboMOTE 

exhibits many of the desirable attributes in mobile sensor networks, such as small cheap 

nodes that can work together. When all the features required for navigation are active, the 

RoboMOTE uses 1.5 Watts and can travel at a speed on 0.27 km/h.  

Parasitic Mobility is an attempt to bring the navigational power of the NASA robot into a 

device the size and cost of the RoboMOTE. That is why these two projects were chosen 

as points of comparison for the power consumption of these new types of networks. The 

RoboMOTE power consumption values are added to the data graph in Figure 3-15. 

 

3.2.2.5 Power Comparison Results 

Figure 3-15 illustrates the results of the above formulas, simulation tests, and comparison 

with robot information, in the form of power with respect to distance. The power scale is 

shown logarithmically since the power consumption of the NASA robot is drastically 

much more than that of the parasitic nodes.  
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Figure 3-15: Power versus Distance of parasitic and non-parasitic mobile devices. 

Figure 3-15 shows that power usage of even the small RoboMOTE with its low power 

actuation is close to an order of magnitude greater than that of the active node, and over 2 

orders of magnitude greater than that of the semi-passive node. The NASA urban robot is 
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another order of magnitude greater than that of the RoboMOTE. This confirms the 

hypothesis that parasitic mobility leads to large power savings when compared to 

standard mobile devices. 

 

3.2.3 Maze Simulation 

The final simulation was an attempt to simulate a real-world host behavior scenario. 

 

Figure 3-16: Maze layout for simulation of a real scenario 

 
For this test, a maze was laid out, populated with hosts, and a single paramor node. The 

paramor was given orders to try and reach the cell in the top-rightmost corner indicated in 

Figure 3-16 by a red square.  The hosts were programmed to move forward along their 
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current path until reaching a point of decision. At this point they decide which way to go 

not including the direction that they came from, unless it is a dead end. Of the possible 

directions at an intersection, the host chooses randomly, but gives a slight preference to 

places that it has already been. This is intended to simulate people in an office building or 

other environment familiar to the host; the assumption being that people in a familiar 

environment will tend to take the same paths to get to where they want to go, which is 

normally a small subset of possible locations in the environment that differs from person 

to person. When a host reaches a dead end, before turning around, it remains stationary 

for some time to simulate arrival at a destination such as an office. 

Three different paramor behaviors were implemented and compared. The first paramor 

behavior simulated was the as-the-crow-flies distance calculation that is the same as the 

previous simulations described in this chapter. The second is a basic maze-solving 

algorithm. For this behavior, it is assumed that the node can sense or has enough 

knowledge of its immediate surroundings to be able to tell which directions that the host 

can travel.  If the host takes any path but the rightmost path, the node will detach and wait 

for the next host. The final behavior assumes that the node has knowledge of the 

complete map, not an unreasonable assumption considering the diminishing size of GPS 

mapping devices. In this behavior, the node decides upon pickup as soon as it can predict 

the direction of travel, whether the presumed destination maze point that this host is 

heading towards, is better than the current one. Essentially, it simplifies down to the node 

choosing the shortest route from its current destination and only remaining attached to 

hosts traveling on this chosen path. 

 63



 

Figure 3-17: Maze simulation executing 

 
The simulation was run ten times with each of the three behaviors with a single node with 

its start and goal positions remaining the same for all runs. The environment has ten hosts 

in it, each starting at a different location and behaving as described above. 

Since the hosts were programmed to favor places they have already been, and they were 

deployed in unique locations, the trend in host behavior throughout these simulations was 

to make a few random decisions in the beginning to establish its route, then remain 

generally in that area, looping, and converging with the other hosts at some of the 

intersections towards the center of the maze. This turned out to be quite a favorable 

situation for the nodes which could get relayed from host to host along the central path. 

The simulation was executed and the averaged data collected is shown below in Table 3-

3. 
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 Node Behavior 1 
(distance algorithm) 

Node Behavior 2 
(right-hand rule) 

Node Behavior 3 
(path omniscient) 

Total Time 230 600 210 
Attached Time 100 300 80 
Number of Hops 22 30 12 
 

Table 3-3: Maze simulation results 

 
As expected, the omniscient behavior performed the best. This makes sense since these 

nodes will always take the same path, and the number of decision points they will pass is 

fixed. So it becomes a probabilistic function of the number of decision points and 

possible directions that a host can turn at each of these points. It is further helped by the 

fact that hosts in the test do not turn around, cutting down the number of wrongful 

directions. 

The distance algorithm behavior did not perform that much worse than the omniscient 

behavior. This is probably due to the fact that the maze is relatively simple, and the 

distancing algorithm can easily resolve the situation and more or less find the same path 

as the omniscient node.  

Of the three behaviors, the right-hand-rule behavior is the only one that has the potential 

to get way off track. By nature of this type of pattern it can take a long time to reach the 

destination, but it is guaranteed and the coverage of the area is procedural and predictable, 

which may be desirable for some applications. 

 65



 

 
3.3 Software Simulation Conclusion 
 
The software simulator has proven an invaluable tool with which to experiment with 

ideas and specific algorithms for implementing parasitic mobility. The experiences with 

the software simulation and the presence of these types of systems in nature have 

presented a favorable proof of concept for this type of mobility. The following chapter 

describes the design and implementation of an actual parasitically mobile sensor network, 

which takes into account all the quantitative and qualitative results from the software 

simulator. 
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Chapter 4 
 
 
 

Hardware System 
 
 
4.1 Electronics Design 

To test the concept of parasitic mobility in a real-world setting, a hardware system 

comprised of electronic nodes equipped with all the necessary elements to implement the 

specific ideas introduced through the software simulation was designed and built. The 

nodes required processing, communication, data storage, a location system, a suite of 

sensors, and an onboard rechargeable power source. The electronics should also facilitate 

experimentation with different types of attachment and detachment mechanisms. 
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Figure 4-1: Node Hardware with 3 layers 

 
The electronics were designed as small as could be easily built by hand using easy to 

obtain components. The design is based on stackable layers each around 1 square inch in 

size. When four layers are stacked, they are less than 1 inch high. More details on the 

mechanical specifications of the node hardware are given following the breakdown of the 

individual layers. The complete schematics, circuit board layouts, and bill of materials 

are listed in the appendices.  

 

4.1.1 Power Module 

 
Figure 4-2: Power Module top and bottom 

The power module is based around a Lithium Polymer rechargeable battery. Lithium 

Polymer, LiPo for short, was the chosen battery chemistry because it is the current leader 
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in charge density (capacity with respect to volume) amongst easily obtainable 

rechargeable battery cells. Charge density is important when trying to design a node as 

small as possible.  

The specific battery chosen is a flat package measuring 25mm by 20mm by 4.5mm and 

weighs 3.5 grams. This is within the size requirements of the node. The battery has a 

capacity of 145 mAh at a voltage of 3.7 V. The battery can discharge at rates up to 

approximately 1 amp. 

The power module also needs to be able to switch off the battery when an external power 

source is present and power the node from this source as well as recharge the battery. 

This requirement is to facilitate harvesting power from the environment whenever it 

power is available and make the switch transparent to the node systems. 

The power module also contains a highly efficient step-down converter that provides a 

regulated 3.3V to the rest of the node. The battery at full charge provides a voltage of 

4.2V. When the battery drains and the voltage drops below 3.3V, the step-down converter 

allows the battery voltage to pass through directly. When the battery drops below 3V the 

step-converter turns off and stops draining the battery. Draining a lithium polymer battery 

below 3V can destroy the battery, so this feature acts as a battery protection circuit. In 

addition, a resistor network is used on the feedback circuit that senses the battery voltage 

to provide some hysteresis preventing the battery from turning off and on due to the 

battery voltage rising when the load is removed. 

The last feature of the power module is a gas gauge chip. This chip uses a 0.02 ohm 

current sense resistor to monitor battery usage and calculate remaining battery life in 

seconds. It provides a HDQ digital interface to allow a microcontroller to query the 

battery life information. HDQ is a bi-directional serial interface over one wire; it is Texas 

Instruments’ version of the 1-Wire protocol from Dallas Semiconductor [37]. 
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4.1.2 Processing 

 
Figure 4-3: Top side of Processing and Communication 
Module showing the Microcontroller and Memory 

 

A Silicon Labs C8051F311 microcontroller was chosen as the processor for the node. 

This processor can run up to 25 MHz using its internal digitally controlled oscillator and 

will use 300 uA per MHz. Also included in the processing module is an external 32 kHz 

crystal which is used when the processor goes into a low power mode. At 32 kHz, the 

analog peripherals and internal timers are still sufficiently alive to wake the processor. By 

alternating between these two oscillators, the battery usage can be minimized.  

This processor is a fully-featured mixed signal processor with a hardware SPI controller, 

hardware UART, hardware I2C controller, 4 PWM/Frequency generator outputs, and a 17 

input 10-bit analog-to-digital converter. It has 1.2K of internal RAM and 16KB of flash 

for program storage. The C8051F311 comes in a 5mm-square leadless MLP package, 

making it the smallest processor available at the time of design with the peripherals 

needed for the Paramor node. 

Lastly, the processing layer of the paramor node also contains an Atmel Dataflash 

memory chip with a capacity of 16MB. This storage is required to store the firmware for 

the GPS module (discussed in section 4.1.4), which requires 1MB of storage, and to store 

collected sensor data for later retrieval or transmission. 
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4.1.3 Communication 
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Figure 4-4: Bottom side of Processing and Communication
Module showing the Bluetooth Radio
quipped with a wireless communication system to allow nodes to 

th each other for distributed sensing applications, passing of navigational 

 cable-less retrieval of data from nodes.  

mobile telephone industry has driven down the size and power 

Bluetooth modules, and Bluetooth is easily interfaced to (if not already 

Cs and other devices. For these reasons Bluetooth was chosen as the 

l and hardware. Bluetooth modules are available with embedded 

munication ranges up to 100 meters in a 13mm by 24mm package. 

etooth module used is the BR-C11A Class 1 Bluetooth module from 

 [38] which includes an antenna and has a Bluetooth protocol stack 

ectly into the module itself. This allows complete control of the 

ia simple UART commands. 

luetooth stack supports Bluetooth Inquiry to find other devices in range 

to and communicate with 7 nodes simultaneously. It is easy to discover, 

, and disconnect nodes allowing large-scale peer-to-peer networks to be 
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4.1.4 Sensor Suite 

 
Figure 4-5: Sensor/Actuation Module top and bottom

The sensor and actuation module contains the following input and output mechanisms: 

• 2 Axis Accelerometer – Used to determine if the node has been picked up or 

dropped off, as well as for collecting vibration and inertial data 

• Microphone – Used to collect audio data from the environment 

• Active Infrared Proximity Sensor – Used to test node distance from an external 

object or used to test presence of a potential host 

• Temperature Sensor – Used to collect environmental data 

• Light Sensor – Used to collect environmental data 

• RGB LED – Used to display status and sensor information, as well as to act as a 

signal or attractive device to potential hosts 

• Pager Motor – Used as a detachment device in the semi-passive node design or 

to signal host to release node 
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• Motor Controller – Used to control an external motor used for attachment and 

detachment in the active node design 

This module also contains the analog circuitry necessary to interface the sensors and 

outputs to the microcontroller 

 

 

4.1.5 Location System and Monitor System 

Each node needs to be equipped with a system for placing itself in the environment. The 

first location system designed for this system is a GPS module.  
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Figure 4-6: Top and bottom of the GPS Module layer shown
without GPS chipset populated
e GPS layer is based around the Motorola FS OnCore single chip GPS 

odule can work in Assisted Mode (which requires a GPS beacon) and 

de. The design of the GPS layer includes the Motorola Module, a Yageo 

Antenna, and the required power supply components. The GPS system 

ough storage to store the GPS firmware, and a processor capable of 

are into the GPS module over its SPI interface at boot time. 
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A prototype GPS module was built using the sample FS OnCore chip included in the 

development kit. Using the Assisted GPS mode, a position fix, accurate within a few 

meters, could be achieved in 1 second using 75 mW of power. While not working on a 

position fix, the module could be put into a sleep mode where it will draw only a few 

micro-amps. The GPS module worked decently indoors (with the Assisted-GPS beacon 

placed in front of a window) and outdoors and proved itself as a usable location system 

for this application.   

Unfortunately, at the time of writing this, Motorola could only provide a few samples of 

their GPS chipset, and could not yet ship the quantity needed for this research. So a 

second type of location system was designed to be used until the GPS chipsets become 

available. 

The second location system is a series of Bluetooth beacons, each with a 10 meter range, 

placed in an overlapping grid around the area of interest. The nodes can inquire to find 

out which beacons are in range and figure out their location from this information. 
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Figure 4-7: Bluetooth Location beacons ready to be deployed 

 
Each Bluetooth beacon is comprised of a Bluetooth radio module, a power supply, and a 

Lantronix XPort. The Xport is an Ethernet controller and a processor built into an 

Ethernet connector form-factor. The XPort allows quick and easy development of a 

sockets interface to the functions of the Bluetooth module. 

With this network capability, the beacons can also be used to connect from a central 

location on the network to any of the nodes that are in range of any of the beacons. This 

facility can be used for test purposes to track the nodes, retrieve any collected data, or 

manually control the functions of the node.   
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Figure 4-8: Bluetooth beacon with LAN cable attached and power supply plugged in 

The central monitoring software maintains a list of IP addresses of the beacons in the 

systems, and can inquire to find out what nodes are in range of each beacon. It can then 

put together a node-centric view which will list all the nodes and allow connection to an 

individual node. 

 76



 
Figure 4-9: Screenshot of the central control software for monitor node behavior from the network. 
The left panel contains IP addresses for the beacons, the center panel allows commands to be sent 
and received from a particular beacon, and the panel in the bottom right allows inquiry commands 
to be sent to all the connected beacons and a global node list to be built. A node can be selected from 
this list and a control panel for that node can be opened. Manual commands can be sent to a node 
once connected using the beacon controls in the center panel. 
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Figure 4-10: Screenshot of the node control panel allowing control and visualization of a specific 
node. The red sphere moves according to acceleration data, and glows according to light sensor data. 
Using this control panel, a user can also turn the motor on and off, change the LED color, listen to 
the audio from the microphone, view temperature sensor data, and view the remaining battery life. 

 

 
 
4.2 Mechanical Design 

The electronics described in the preceding section need to be encased and equipped with 

the mechanisms to support parasitic mobility. In chapter 2, we have identified four types 

of parasitic mobility attachment/detachment mechanisms: active, passive, semi-passive, 

and attraction/value-added. In this section, hardware designs to support experiments for 

these four types of mechanisms are described.   
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4.2.1 Active Node Design  

The first node was built to test the concept of an active node based on the natural 

parasitic behaviors of fleas and ticks. The basic idea is to build a hopping robot that can 

sense a nearby object, hop at it or onto it, and attach. The mechanism needs also to be 

able to cause the node to detach on command and fall off the host. 

 

Figure 4-11: The active node, nicknamed the ParaHop. 

 
This active node, shown in Figure 4-11 and Figure 4-12, is 40mm tall by 30mm wide by 

30 mm deep, including a mechanical launching mechanism and all electronics, comprised 

of the power module with battery, processing and communication layer, and 

sensor/actuator module as described in the preceding section. 
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The device consists of the electronics mounted to a frame consisting of 3 horizontal bars 

and two vertical bolts using nuts to position the plastic crossbars. The frame also contains 

two aluminum feet to hold the node upright, ready to jump. A future enhancement will be 

to encase the node in a self-righting egg-shaped plastic case.  

Down the center of the frame are the hopping piston and a planetary-geared, 8mm in 

diameter motor used to reset and release the piston. The design of the piston is shown in 

Figure 4-12. 

 

Figure 4-12: CAD Drawing of the hopping actuator. 

 
The hopping actuator is designed around two telescoping square tubes. Both of the tubes 

have plastic end caps with a hole for the threaded rod (lead screw) to pass through the 
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middle of the piston. Around the lead screw in the outer tube is a spring. By turning the 

lead screw, the lead nut located inside the inner tube is pulled upwards, compressing the 

spring, and pulling the inner tube up inside the outer tube. When the inner tube is pulled 

completely inside the outer tube, a spring plunger latches the inner tube in place through 

a hole near the bottom end of the inner tube. 

Once the inner tube is latched, the motor is no longer under any strain and can be 

disengaged until it is time to hop. When it is time to hop, the motor reverses and sends 

the lead nut downwards until it hits the plunger on the inside of the inner tube. When the 

lead nut keeps going, it will push the plunger and release the latch. This will free the 

spring to expand, pushing the inner tube outwards and causing the node to hop. For more 

precision, the motor can reverse after the latch engages, and stop with the lead nut just 

above the latch. In this state, it is ready to trigger a hop on a moments notice. A minor 

change in the design would allow the node to be deployed with a spring pre-wound for a 

certain number of hops. 

The node was then equipped with 5 hooks protruding in all directions, each with a 

curvature of 1 inch in diameter. The robot would hop to heights around 8 cm from the 

ground at an angle of around 70 degrees. Due to the placement of the motor and the 

battery it always hopped in the same direction relative to itself. This height proved 

enough to hook into a person’s pant leg or shoe. Other attachment devices were tried 

including Velcro and silicon adhesive, but only a large hook could grab clothing, given 

the irregularities in the approach vector. The power usage statistics were given in Chapter 

3. Other attachment mechanisms such as shuttered magnets for vehicles and electrically 

activated adhesives were briefly examined. Most of these methods were deemed 

unsuitable for testing on humans. 
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4.2.2 Semi-Passive and Passive Node Design  

The next experiment was to design nodes with semi-passive and fully passive attachment 

and detachment mechanisms. The power calculations shown in Chapter 3 denote huge 

power savings for these types of nodes. 

To build nodes of this type, the electronics were enclosed in a plastic sphere with an outer 

diameter of two inches. The electronics were attached strongly to the spherical case, 

allowing the pager motor’s vibrations to affect the external surfaces.  

 

Figure 4-12: The node electronics in their spherical casing 

To make these spherical devices into semi-passive nodes, the surface was coated with a 

polyester double-sided adhesive tape from 3M. Polyester tape was chosen because it can 

stretch and form a tight, smooth layer around the sphere. It is necessary that the surface is 

smooth to prevent too much of the surface from sticking to a host, making it difficult for 

the ball to shake loose. The polyester tape is very thin and works perfectly in this regard. 

It is available in a wide range of sticking strengths. Through trial and error, the 

appropriate stickiness was found that allowed the ball to easily stick to anything it 

touched and remain stuck until it is shaken loose from inside with the pager motor.  
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In order to create passive nodes, a different adhesive needed to be used. The bond, when 

attached, would have to degrade over time, allowing a new bond formed on the opposite 

side of the sphere to be the stronger bond allowing the node to be pulled from its original 

host. If no new host came about, the bond would degrade and the node would eventually 

fall free without the use of the pager motor or any form of actuation. Various 

consistencies of silicon were mixed and tested. Through this trial and error, a working 

silicon adhesive was created that performed as desired. When a bond was made, the 

silicon would get weakened at the spot of the bond by getting soiled by the host’s surface. 

This worked quite well; however, the ball would have a limited number of attachments 

before it became too dirty to stick at all. The polyester tape did not have this problem 

because it was much stickier and less greasy, but required the pager motor to dislodge it. 

Other attachment mechanisms, such as devices based on hooked microstructures, could 

be potential candidates for parasitic nodes, but would require more resources to develop. 

 

4.2.3 Value-Added/Attraction Node Design  

The basic spherical node without any sticky surface falls into this category by way of its 

full spectrum LED. This LED can be programmed to display attractive patterns that catch 

the eye of a passerby, especially in an academic research institution where everyone is 

attracted to blinking lights and novel objects of technology. Once attracted, the host can 

receive instructions from the node as to what the node does and what the host can do with 

it. Figure 4-13 shows a label that can be applied to the node to give the host specific 

instructions. 
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Figure 4-13: A label that can give the host instructions as to what to do with the node. This can be 
combined with a reward from the node for the host if the instructions are followed 

The nodes can then reward their attracted host for following the instructions. Example 

rewards can be discounts provided on purchases while carrying the node, or providing 

useful information to the host. When the node wants to be dropped off, it can stop 

providing these rewards, vibrate or make a sound signaling a desire to be put down, 

and/or turn off the LED until it is ready to be picked up again. 

While extensive testing was done on all the mechanisms described in this section, the 

complete multi-node test described in section 4.4 was done using the simplest of the 

nodes, the labeled value-added sphere. As shown in section 4.4, this attachment 

mechanism worked quite well given the test environment, a building at the Massachusetts 

Institute of Technology. 
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4.3 Firmware Design 

The firmware design is based around the software simulator’s node behavior design. The 

node firmware can be seen as being formed from three entities: data structures that hold 

state information, behavior information, and map information; background processes that 

handle actions implemented in hardware or through the use of hardware peripherals such 

as the wireless communication and the sensor readings; and the main firmware code that 

executes the node’s activity. The firmware is written for the Silicon Laboratories series of 

8051-style processors using the Keil C compiler. 

 

4.3.1 Data Structures  

The basic data structures used by the firmware to store its internal information are shown 

below in Table 4-1.  
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//----------------------------------------------------------------------------- 
// Data Structures 
//----------------------------------------------------------------------------- 
 
typedef struct { 
 unsigned int btX; 
 unsigned int btY; 
 unsigned char latDir; 
 unsigned int latDeg; 
 unsigned int latMin; 
 float latSec; 
 unsigned char lonDir; 
 unsigned int lonDeg; 
 unsigned int lonMin; 
 float lonSec; 
} location; 
 
typedef struct { 
 unsigned int powerThreshold; 
     location goal; 
 unsigned char gotoGoal; 
 unsigned char stopAtGoal; 
 unsigned char coverage; 
 unsigned int LightThreshold; 
 unsigned int VibrationThreshold; 
 unsigned int TemperatureThreshold; 
 unsigned int AltitudeThreshold; 
 unsigned int AudioThreshold; 
 unsigned int senseTime; 
 unsigned int stopTime; 
 unsigned int hopsPerLocale; 
} behavior; 
 
typedef struct { 
 location *good; 
 location *bad; 
 location *visited; 
 location *unvisited; 
} map; 
 
typedef struct { 
 unsigned int sensors[]; 
 unsigned int powerLeft; 
 unsigned int hopsRemaining; 
 unsigned int senseTicks; 
 unsigned char state; 
 location current; 
 map node_map; 
 behavior node_behavior; 
} node; 
 
enum { IDLE, ATTACHED, SENSING }; 
 
Table 4-1: Data Structures used in node firmware 

here are four basic data structures used in the firmware. The first structure, location, 

ontains information to identify a location in a coordinate system. The structure uses both 

he Bluetooth location system, which gives an XY coordinate, and the GPS system, 

hich returns the coordinates in longitude and latitude. The GPS location system is not 
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currently implemented in the firmware, but the data hooks for it are included for future 

use. 

The map structure is used to store geographic information. This structure is created from 

lists of locations. The first list includes locations considered as good. These locations are 

ones that the node considers as attractive to visit. These can be locations known to have a 

high host frequency or hosts that are most likely to bring a node to a point of interest. The 

structure also contains a list of bad locations, which are locations that are known to have 

a low host frequency or to be a dead end. Good and bad locations can be entered 

manually, either prior to deployment or over a communication channel if available. They 

can further be discovered and identified by the nodes themselves. Once discovered, a 

node can broadcast these locations to any other nodes in range. The map structure also 

contains a list of the locations visited and a list of the locations that are known to be 

unvisited. These lists are used by a node trying to maximize coverage. Like the good and 

bad locations, the unvisited locations can be entered in manually or discovered and 

transmitted from node to node.  

The behavior structure holds data that is very similar to the parameters identified in 

Section 3.1.3’s discussion of the node behavior in the software simulator. Please refer to 

this section for details about the behavioral parameters. 

The last data structure is the main structure for the node, including instances of the map 

and the behavior structure. This structure contains the current state, which uses the 

enumerated values of idle, attached, or sensing. The senseTicks variable is an internal 

counter that tracks the time left. The hopsRemaining variable is also an internal variable 

used to track how many hops have happened at the current location.  The sensors array 

contains the current value of the six sensors described in Section 4.1.4 and the powerLeft 

variable stores the remaining time left on the current charge of the battery. Finally, the 

node structure contains the current location returned from the location system. 
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4.3.2 Background Processes  

The chosen microcontroller and the hardware design combine to allow several activities 

to happen without taxing the main program loop.  

The first of these systems is the Bluetooth radio. The radio module contains an embedded 

processor with a Bluetooth communication stack. This stack defaults to a mode where 

other nodes can find it, connect to it, and communicate to it. The data is then passed to 

the processor through a serial connection. On the processor side, the serial 

communication is handled by a hardware UART and the data reception is interrupt-driven. 

The serial interface is set to a speed of 9600 bits per second to allow successful operation 

in the low power mode running at a processor speed of 32 kHz.  

Most of the possible wireless communication packets contain information that gets stored 

in the node’s data structures for the main loop to use in its state machine. This happens 

completely in the interrupt service routine and the data is immediately available to the 

main loop.  

The environmental sensors are read using the processor’s analog to digital conversion 

hardware. This is also an interrupt-driven processor. After the conversion is finished, the 

interrupt service routine stores the values in the sensor array. The sampling is much 

slower when the node is in the low-powered idle state. In this state, the sensors are 

mainly used to detect when the node has been picked up and should transition to the 

attached state. The lower sampling rate is still adequate to identify this occurrence.  

The battery life is monitored by a specialized gas gauge chip. However, the interface to 

read the battery life value from this chip is not connected to a hardware peripheral in the 

microcontroller hence must be controlled in the firmware. Furthermore, this 

communication is too fast to be performed in the low power mode. This proves to be 

adequate since the power drain in the low power mode is so minimal. Accordingly the 

battery life is checked routinely during the attached and sensing states. 
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4.3.3 Main Firmware Execution Code 

The main firmware execution can be illustrated by the three diagrams shown in Table 4-3, 

Table 4-4, and Table 4-5. Each flowchart illustrates one of the three states that the node 

can be in: idle, attached, and sensing, respectively.  

 

Idle State

Motion
Sensed?

Turn on High
Speed OscillatorYes

Host In Range?
(Active Node Only)

Hop
(Active Node Only)

Wait
(Active Node Only)

Yes

No

Enter Attached
State

No

Store Current
Location

 

Table 4-3: Flow chart showing the basic operation in the idle state for both the active node and the 
semi-passive node. 
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Attached State
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Yes

Yes

No

Yes

Yes

Yes

 
Table 4-4: Flow chart showing the firmware execution when the node is in the attached state 
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Table 4-5: Flow chart showing firmware execution while in the sensing state 
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Tables 4-3, 4-4, and 4-5 illustrate the general firmware flow for a generic parasitic node 

based on the ideas developed from the software simulator. It is quite easy to modify this 

basic code to support many specific sensor network applications. 

It is important to note that the sensing state is the state where the node has detached and 

is collecting data, but it is not the only time the sensor data can be collected. The sensors 

are fully active in the attached state and the data can be stored or collected in this state as 

well. It is also possible to collect data in the idle state, but with a sacrifice of power 

depending on the sampling rate and how many sensors are active. Furthermore, it is 

possible to combine the idle state and the sensing state into one state that is always 

collecting data and looking for a host. 

In general, the three states exist only for power management reasons. The states allow the 

node to enable and disable peripherals and functions according to what the node needs in 

a particular state. For applications with less of a power restriction, the node can always be 

sensing, checking its location and power, and calculating whether it should detach or 

attach. 

For semi-passive and passive nodes, the node can transition to the attached state from 

either the idle or the sensing state when it senses that it is moving. This is shown in Table 

4-5. Active nodes, on the other hand, can control their state change into and out of the 

attached states.  

The complete code listing of the firmware used in the test is given in Appendix B. 
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4.4 Test Application and Results 

 
The final stage in this body of work was to execute a test of the parasitic nodes described 

above in this chapter by releasing them into a real-world situation. More specifically, ten 

semi-passive, value-added, spherical nodes were given orders and released into an 

environment populated by human hosts. 

 

4.4.1 Test Application Description 

The area selected for this test application was the third floor of the Media Lab at the 

Massachusetts Institute of Technology. This floor is usually inhabited by about 40 

students and faculty and has light but steady traffic through its pathways. Furthermore, its 

inhabitants are known to be attracted to strange devices with blinking LEDs and are more 

than willing to pick up and carry around the sensor nodes.  

In order to run this test, the floor first needed to be covered with the Bluetooth location 

beacons. The entire floor was able to be covered with only 6 beacons. These beacons 

were set at the 100-meter-range power output class of Bluetooth. However, the real range 

of the beacons indoors is closer to 25 meters. With these six beacons and the areas where 

two or three beacons overlap, we were able to divide the floor into a grid of 16 distinct 

zones. This resolution is more than adequate for this test. The beacons are given base-two 

numbers allowing unique numbers to be formed for the overlapping areas. 
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Figure 4-14: Bluetooth Location system coverage of test area 

 
The location system’s Bluetooth-based locations were mapped to the test area by 

performing a walkthrough calibration carrying a test node. These locations were given 

X/Y coordinates that the sensor nodes can use in calculations concerning direction of 

travel related to their goals. 
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Figure 4-15: Distinct zones formed from overlapping beacons in the location system. 

The nodes were then prepared, first by programming the application-specific firmware 

into each node. The firmware for this test closely follows the flowcharts in Section 4.3. 

This test application firmware uses all three identified states (idle, attached, sensing) and 

specifically enables and disables peripherals and alters the sampling rates accordingly. 

This allowed the application to be optimized for power usage. 
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The firmware for this test run logged the sensor data, state changes, and location 

information to the flash memory for the entire test run, regardless of state. Special modes 

were added for retrieving the data from the nodes via the Bluetooth location system and 

for general health monitoring. 

The nodes were then given their specific behaviors. Of the ten nodes released, six were 

told to try and get to specific geographic locations using the distance checking algorithm 

from the software simulator. The version of this algorithm that runs on the embedded 

platform in the node is quite scaled down from the algorithm used in the software 

simulation due to processing power restrictions. The algorithm used in the nodes just 

simply uses the last two locations it recognized to guess the next location that it will be 

brought to based on a linear extrapolation. If this guessed location is closer (with an 

adjustable threshold) to its goal than the current position, it will stay in the attached state; 

if it is farther away from the goal than the current position, it will try to detach. 

Detachment for this test involves vibrating the pager motor and flashing a red LED in an 

attempt to be put down. It also maintains a counter of how many detachments it has 

attempted and will ignore its distance-checking algorithm if it has hopped multiple times 

and not gotten any closer to the destination. This prevents getting stuck in a situation such 

as being at a dead end, where all hosts will take the node away from the goal, at least 

temporarily. 

The remaining four nodes were given specific sensor conditions to look for. All ten nodes 

will constantly collect sensor data throughout the test, but these nodes are also 

programmed with desired sensor conditions that will cause them to detach. The node will 

then stay in this location to observe the phenomenon it has found interesting for a pre-

determined amount of time, or until the sensing condition disappears. If the node is 

picked up from this state or from a state where it has reached its geographic goal, it will 

immediately attempt to detach until its, time spent at the goal or sensor point of interest 

has elapsed.  
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The batteries were then completely charged and the nodes were sealed into their plastic 

spheres as shown in Figure 4-12 and labeled with the instruction label shown in Figure 4-

13. To additionally aid the attachment and detachment process, an email was sent to the 

building’s inhabitants telling them to keep an eye out for the spheres, and to feel free to 

pick them up and carry them around, being sure to put them down when they shake. No 

information was given about the devices or the test, and the nodes all looked identical, 

regardless of their goal. There were about 40 people in the building when the test started. 

The nodes were then deployed in a high-traffic hallway, where they would wait to be 

picked up. The positions of the nodes can be monitored from any PC on the network. 

Within fifteen minutes all of the nodes had found their way to a new location. Some were 

knocked around and rolled, and some were picked up a brought around to new locations. 

The people carrying them mostly obeyed the device when it shook and wanted to be put 

down, sometimes even tossing it away, startled by the vibration. 

The batteries lasted for close to four hours. This is discussed further in Section 4.4.2. 

While the test was running, the nodes collected sensor data at a rate of 30 Hz. The 

sensors were sampled faster when the power modes allowed it, but logged at a rate that 

would let the flash storage last for the duration of this test. The nodes collected location 

data, attachment data, state changes, sensor data, and the time when they reached their 

goals. The networked location system also recorded the trajectory of each node on its 

central computer. 

The test generally ran without a hitch, other than the disappearance of one of the ten 

nodes. This is an expected loss considering the unknowns of the host’s behaviors. This 

node was thought to have been carried outside the range of the location system, 

purposefully stolen, or had a power issue.  Trajectory data for this node was still able to 

be recovered from the location system up until it disappeared. Fundamental to the 

concept of parasitic mobility is that the nodes are cheap and the potential to lose many 

nodes is made up for with redundancy of inexpensive nodes. The node was found one 

week later and its sensor data was recovered.   
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Another node got locked inside an office soon after deployment and remained there for 

the duration of the battery life. And one other node was discovered to have 

manufacturing defects preventing it from recording data to the flash, so it was removed 

from the test. The remaining eight nodes easily covered the test area. 

 

 

 

4.4.2 Power Usage Discussion 

As mentioned above in Section 4.4.1, the test lasted for 4 hours on a single charge of the 

battery. The battery that was used has a capacity of 145 mAh, however, the protection 

circuitry on the node’s power layer disconnects the battery when it has drained to 3.0V. 

At this point the battery still has 20% of its capacity. Accordingly, the nodes had an 

average current draw of just less than 30 mA. This test run incroporated many power 

optimizations, but also had many features enabled for the logging and observation of the 

test operation such as the constant flash writes, data dumps over the wireless network, 

and health monitoring communications with the observer’s PC. Further power savings 

could be achieved by cutting the output power of the radio transceiver from Bluetooth’s 

specified high power mode to its normal output power mode. 

The following two sections, Section 4.4.3 and Section 4.4.4 present the actual trajectories 

the nodes traveled and an environmental mapping observed by the sensors, respectively.   
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4.4.3 Trajectory Data 

The following Figures show the floorplan of the area used for this test and the trajectory 

that the nodes followed, including any major stops. These trajectories are re-created from 

the log files of the location system and the data collected and recovered from each node. 

The position data can have a refresh rate as slow as 3 minutes, so some interpolation is 

done based on the layout of the floor and regions where people can walk free from 

obstacles. Furthermore, since the resolution of the location system is fairly sparse, some 

activities that happened completely within a single zone of the location system are 

omitted from these maps. For example, if a node is picked up that has reached its goal or 

is in an area that it does not want to leave, it shakes to be put back down, hence (ideally) 

is released into the same general area. This scenario does not show up in these maps 

because they are generally not important to the trajectory discussion. However, all 

significant attachments and detachments leading to changes in trajectory or to the 

completion of the node’s goal are shown with timing information.  Section 4.4.4 presents 

the sensor data which gives a more detailed narrative of the individual node’s encounters. 
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Figure 4-16: Trajectory for node #1 

Node 1 was given the orders to try a find a specific geographic location. This location 

was zone 1 as shown in Figure 4-15. Since this is the deployment location, this node was 

also told to wait until it has crossed through a few other zones to try and find its goal. It 

returned to its goal after 42 minutes, where it remained and was promptly released every 

time it was picked up. It had one significant detachment, after it filled the requirement of 

leaving the original zone; it eventually realized it was going further away from its goal 

and detached outside room 326. It waited there for 33 minutes until a suitable host came 

by and picked it up; this host was walking towards its goal, it hung on until its destination 

was reached. According to the data collected, it took close to 4 minutes to walk the length 

of this hallway. This data is taken from the location system which has a refresh rate 
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dependent on many factors, including the number of other Bluetooth devices in the area; 

it can refresh as quick as a few seconds or as slow as every 4 minutes.  

 

Figure 4-17: Trajectory for node #2 

Node 2 was given orders to try a find location zone 2. Location zone 2 is one of the more 

difficult locations to find, because it is a narrow zone existing where beacon 2 is not 

overlapped by any other beacon. When the map was built, it turned out that beacon 2 was 

mostly overlapped by beacons 1 and 4, leaving only a sliver of beacon 2 left to build zone 

2. Unfortunately, node 2 wound up being locked in an office within the first 5 minutes of 

the test and could not be recovered until the next morning, long after the batteries had 

died, leaving its goal unfinished. With better power management techniques, such as 

those discussed in Ari Benbasat’s paper on adaptive power management [39], this 

situation does not have to drain the batteries, even though it is technically considered to 
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be in a sensing state. These techniques allow low-powered sensing based on using exactly 

as much sensing power is needed to accurately depict the environment. 

 

Figure 4-18: Trajectory for node #3 

Node 3 was given the orders to find its way to location zone 4, which is in the top right 

corner of the map. It found its way there in 75 minutes. The batteries lasted for around 4 

hours; however, since the test was started in the evening, the number of people in the 

building was decreasing and fell to almost none at around 2 hours into the test. So it can 

be assumed that very little or no mobility happened after this time. The nodes did 

continue to sense and collect data.  

Node 3 made a fairly large loop going away from its goal. This area of the map is the 

sparsest as far as the location system goes, so the detachment algorithm for finding the 
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specific goal has trouble here. However, it did detach 3 times in the span of 15 minutes, 

showing that it was trying to get back on track, which it eventually it did. 

 

Figure 4-19: Trajectory for node #4 

Node 4 was told to try and find location zone 8, which is located around the left side of 

the open area in the center. It appears that the node passed right through this zone. This 

means that either the person carrying the node ignored its wishes to be dropped off or it 

was carried too quickly across the zone to react. This was the node that disappeared and 

was recovered one week later. The sensor data recovered shows a lot of accelerometer 

activity during the time that it was in-between zone one and zone 16. The logs show one 

attempted detachment at the goal location, but no stopping of motion. It seems that the 

host ignored its call for detachment.  
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Figure 4-20: Trajectory for node #5 

Node 5’s trajectory was pretty straightforward. It was told to try and get to zone 16 which 

is in the top left corner of the map. It made it there in 43 minutes with one significant 

detachment due to the host changing course and leaving it in the hallway when it shook. 

It waited 38 minutes for another host to come by and took it to its destination. 
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Figure 4-21: Trajectory for node #6 

Node 6 was the last of the nodes told to go to a specific location. It had some hardware 

problems and was removed from the test. 
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Figure 4-22: Trajectory for node #7 

The remaining four nodes whose trajectories are shown in Figures 4-22, 4-23, 4-24, and 

4-25, were given environmental conditions to try and find.  The first two of these nodes 

were told to look for bright lighting conditions. When an acceptable condition is found, 

the node will detach and start a sensing timer. If it is picked up before this timer runs out 

and the sensing condition persists, it will immediately ask to be put down. If the sensing 

condition becomes uninteresting and it gets picked up again, it will take the ride. If the 

sensing timer runs out and the sensing condition still exists, it will still catch the ride. If it 

returns to the same location or any other location where the sought-after condition is 

present, then it will detach and start the timer again. The duration of the sensing timer is 

set as part of the node’s behavioral orders.  
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Node 7 found a location in the top left corner that it considered to be of interest, in this 

case contained a bright light source, as the node was instructed to seek bright illumination. 

The data recovered from the node showed that this was indeed the case, but that the 

lighting condition dipped and became uninteresting. Since the nodes are spherical, how 

the node winds up being oriented becomes important for the light sensor especially. 

According to the data from the node, this node was picked up but then noted a lighting 

condition that was below the threshold for it to consider it interesting. In fact, it was far 

below the level that it had seen before it was picked up. This indicated that the person 

who picked it up must have covered the light sensor. The node therefore thought that the 

location was undesirable and did not ask to be put back down. When it returned the 

second time, it was better oriented and noticed the lighting condition, detached, and 

remained there for the rest of the test. This took only 26 minutes to happen, meaning that 

the node was able to fend off hosts picking it up for the remaining hour and a half of high 

traffic time. The data collected shows 4 attempted pick ups, all successfully ending in the 

node being placed back in the same location. This can be seen in the sensor data graphs 

of Section 4.4.4 as areas where the location curve is flat and there are level shifts (re-

orientation) in the accelerometer data. 

The issue with the sensor readings being influenced by the way in which they are carried 

and how they are oriented when at rest can possibly be improved by the addition of 

redundant and symmetric sensors to each node. 
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Figure 4-23: Trajectory for node #8 

Node 8 was given the same orders as Node 7. It also wound up in the same spot as Node 

7, verifying that it is a spot of brightness. In actuality, it is a spot that receives light from 

several sources and is clearly the brightest spot on the floor on the average. 

Node 8 did a similar zig-zag as Node 7. It found the location, but then was taken away 

briefly and found its way back. However, unlike Node 7, this node allowed itself to be 

picked up because it had exhausted its sensor timer. The end result was the same, and it 

returned to the area of interest. Both nodes remained there until the end of the test.  
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Figure 4-24: Trajectory for node #9 

Node 9 was told to look for an area of high temperature. It found one right away at its 

first detachment location. It stayed there until it exhausted its sensor timer. When it was 

picked up again, it fairly quickly found another location that met its criteria. In fact, it 

was encountered as soon as the node crossed into the next zone. This indicates that this 

area was most likely a few degrees warmer on the whole. 
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Figure 4-25: Trajectory for node #10 

Node 10 was given similar orders as Node 9 but with a higher degree of temperature to 

look for. It passed right by the area that Node 9 had detected as interesting, but since it 

was in between the thresholds on the two nodes, Node 10 did not detach. It came back 

close to an hour later and the temperature was now high enough to now find it acceptable 

to detach and start sensing.  
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Figure 4-26: Trajectories for all nodes 

Figure 4-26 shows the travels of all the nodes. It shows that the nodes pretty covered 

many times over all the publicly accessible areas of the floor. Figure 4-27 shows which 

node was in which zone at what time. This information is presented in greater detail in 

Section 4.4.4. 
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Figure 4-27: Occupation schedule for zones (which node was in which zone at what time) 

 

4.4.4 Sensor Data 

This section presents the sensor data retrieved from the nodes after the test was complete. 

The nodes had enough storage to store just less than 2 hours of sensor data at around 30 

samples per second. This proved enough as little or no activity happened after 85 minutes 

and the trajectory data discussed in Section 4.4.3 does not pass this time point. The 

sampling rate varied slightly from node to node and some of the nodes used up their 

memory faster than others. The data is presented normalized across all the nodes for 

comparison. For each node, six subplots are shown all with a common X axis of time in 

seconds as shown on the location plot. The position vector is from the location system 

which is less resolute than the sensor data; therefore there is usually some slight framing 

error correlating the sensor data with the location data. This is minor and it is quite easy 

to observe the relationship between the trajectory activity and the sensor activity. 

 112



Node #1 Sensor Data 
 

Accelerometer X

350

400

450

500

550

600

650

 
 

Accelerometer Y

350

400

450

500

550

600

650

 

Audio Magnitude

200

300

400

500

600

700

800

900

1000

 

 113



Light

0

200

400

600

800

1000

 

Temperature

0

1

2

3

4

5

6

7

8

9

10

 

Location

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000

Elapsed Time (in seconds)

 
Figure 4-28: Sensor Data for Node #1 
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Node #2 Sensor Data 
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Figure 4-29: Sensor Data for Node # 2 
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Node #3 Sensor Data 
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Figure 4-30: Sensor Data for Node #3 
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Node #4 Sensor Data 
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Figure 4-31: Sensor Data for Node #4 
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Node #5 Sensor Data 
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Figure 4-32: Sensor Data fro Node #5 
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Node #7 Sensor Data (Node #6 was D.O.A.) 
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Figure 4-33: Sensor Data for Node #7 
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Node #8 Sensor Data 
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Figure 4-34: Sensor Data for Node #8 

 126



Node #9 Sensor Data 
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Figure 4-35: Sensor Data for Node #9 
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Node #10 Sensor Data 
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Figure 4-36: Sensor Data for Node #10 
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The first thing that can be seen from the graphs in Figures 4-28 through 4-36 is the 

relationship between location change and sensor activity. The nodes themselves use the 

accelerometers to assess their current state (attached/moving, idle, sensing). Combining 

all this data presents a very detailed picture of the behavior of the node.  

For example, in Section 4.4.3 we mentioned that Node #7 found a light source and 

remained there for 4 attempted attachments. This can easily be seen by looking at the 

graphs in Figure 4-33. The light sensor shows two areas where the light value dropped 

very low, indicating a bright area. These two areas roughly match the times that the node 

was in zone 16. During the second stay in zone 16, there were several level shifts in the 

accelerometer data.  These indicate a change in orientation, and the activity in between 

these levels is due to the node being picked and vibrating to be put back down.  

The un-calibrated data shown in Table 4-6 was gathered by taking the average of all 

sensor data collected by all the nodes in each location zone. Please refer to Figure 4-15 to 

see where these zones map to on the floor plan. 

Zone Light (lower is 
brighter) 

Temperature Audio Level 

1 633.9 5.0 423.0 
2 624.8 5.1 423.6 

3 624.9 5.0 424.9 

4 603.9 4.8 424.8 

6 613.3 4.8 424.8 

8 608.4 5.7 423.9 

10 609.2 5.5 424.6 

16 594.1 4.7 423.0 

20 603.2 4.7 425.1 

24 603.4 5.1 423.3 

28 602.8 5.0 424.8 
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30 605.4 5.0 423.8 

32 617.3 4.8 425.4 

33 626.3 4.9 426.2 

40 612.2 5.2 424.1 

43 613.2 5.3 424.2 

 

Table 4-6: Average Data per Zone (raw un-calibrated sensor data) 

The data in Table 4-6 gives an overall view of the area. It is important to note that some 

of the sensor data can be influenced by how the device is attached and carried by the host. 

For example, a rolling node can have alternating light and dark views presented to the 

light sensor. These factors average themselves out somewhat and general information 

about the environment can be gleamed. This is verified by the trajectory data from 

section 4.4.3, which constantly identified certain areas as higher in temperature and 

brighter in light. Generally, the sensor data stayed around a known baseline, as the 

environment is fairly controlled and regulated. 

 

4.5 Hardware Evaluation 

 
The hardware design proved quite adequate for experimentation with the concept of 

parasitic mobility. The specific version used for this test was mechanically robust and 

none of them stopped working due to mechanical stress. 

Of the ten nodes deployed, only one suffered from complete failure due to the hardware, 

and it was most likely due to a manufacturing problem.  Another node may have had 

some hardware issues, but it is not conclusive. Further testing on the node after its 

recovery was successful and show that it is working fine. 

 132



The firmware also proved to be quite robust, and there were no unexpected firmware 

crashes or missed or mangled data.  

One issue was that the sampling rate of the sensors was too slow. This is an easy fix for 

the next version. It was kept low while testing to simplify development, testing, and 

debugging, as well as to allow the flash to last for the entire test. As the development 

progresses, the sampling rate will most likely increase and become adaptive. The 

sampling rate at the time of this test was too slow to pull features out of the audio other 

than the net amplitude. 

One of the major successes of the hardware design was the power supply and power 

management systems that each node incorporates. The battery lasted as long, if not longer, 

than expected considering the additional data logging and communication requirements 

of running such a test. Clever wakeup and adaptive sensing can improve this considerably. 

The size of the nodes is currently too big to attach to a human or an animal without its 

knowing. The current size is more than adequate, however, for applications where the 

hosts are vehicles.  

The location system, while it worked adequately for this test, was not resolute enough for 

fine-grained indoor tracking. Using this type of system properly on such a scale would 

require 3 times as many location beacons. It would also need to refresh faster and more 

consistently. Many indoor location systems are under active development [40], hence this 

situation is rapidly evolving. 
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Chapter 5 
 
 
 

Conclusion 
 
 
5.1 Summary 
 
Through the work described in this thesis, a new field of research has emerged. This field 

sits at the crossroads of distributed sensor networks, mobile systems, and power 

harvesting.  

Through simulation and test we have illustrated that it is possible to develop a 

parasitically mobile sensor network. Our results indicate that they can, in some ways, 

perform as well as standard robotic mobile sensor networks, but with huge potential 

savings with regards to power consumption, node complexity, and general robustness due 

to their relative simplicity.  
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5.2 Possible Applications of Parasitic Mobility 
 
In certain environments, parasitic mobility can be used as a replacement for standard 

mobility for dense, distributed sensor systems. Systems of this sort include applications to 

sense toxic areas requiring sensor deployment at a safe distance, dynamically 

reconfigurable systems such as weather monitoring sensors that need to follow the 

relative phenomena, and systems where the accuracy of node deployment is minimal 

such as for nodes being released in water or from a vehicle. 

Going further, parasitic mobility can possibly lead to applications that can only be done 

(or are better done) with parasitic mobility than standard mobility. Any example where 

the host behavior is part of what is desired to be monitored would fit this category. In 

these systems, parasitically mobile nodes would attach to their subjects and would always 

be at the points of interest. 

One application that would be interesting to explore is the idea of a rating system based 

on breadcrumb trails. Essentially, the parasitic nodes would attach to hosts and pool up in 

spots of high traffic. These points can propagate through the system and provide 

information on the popularity of certain pathways and locations.  

 

5.3 Future Work 
 
Our systems can be further perfected, e.g., a first step would be to increase the 

performance of the system by increasing the sample rate of the sensors, the onboard 

processing power, and the resolution and refresh rate of the location system. Deploying 

the GPS system would also be advantageous. By increasing the node’s capabilities, it will 

be possible to give the nodes more information about the environment such as onboard 

databases of map information. 
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Hooking this research up with actual power harvesting could be a natural fit, allowing 

self-maintaining, perpetual systems to be developed. These systems can harvest the 

power from their environment (taking inspiration from the tick, which harvests chemical 

energy from its host) or from forces acted upon the nodes, such as when they are in the 

attached state. Smarter power management can be developed, as well as power adaptive 

sensing, to improve battery conservation. 

Also, adding more distributed, node-node communication to the test system would open 

up some new venues for research. By collaboration, the sensor nodes could optimize their 

mobility and detachment and attachment algorithms. 

More experimentation with new types of attachment and detachment mechanisms could 

lead to new applications of parasitic mobility, e.g. attaching to vehicles. Also, embedding 

sensor nodes into everyday objects is an exciting prospect. These directions can benefit 

from smaller nodes. Adding sensors (e.g. camera, motion sensor, and magnetic sensor) 

can also allow detection and attachment to a larger variety of hosts, as well as a wider 

range of sensing applications. 

Finally, the major outstanding piece of work would be to develop and deploy the system 

for a real application. Some possible applications were mentioned in Section 5.2 and can 

arise from inspiration that comes about from further technical enhancements and 

conceptual experiments.  
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Appendix A 
 
 
 

Schematics and PCB Layouts 
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Figure A-1: Node Power Module Schematic 
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Figure A-2: Node Processing and Communication Module Schematic 
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Figure A-3: Node GPS Module Schematic 
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Figure A-4: Node Sensor Module Schematic 
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Figure A-5: Node PCB Layout Top Layer  



 
Figure A-6: Node PCB Layout Bottom Layer 
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Figure A-7: Node PCB Layout Top SilkScreen 
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Figure A-8: Node PCB Layout Bottom SilksScreen
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Figure A-9: Schematic of Bluetooth Location System Beacon 



 

Figure A-10: Bluetooth Location System Beacon PCB Layout Top Layer



 
Figure A-11: Bluetooth Location System Beacon PCB Layout Bottom Layer 



 
Figure A-12: Bluetooth Location System Beacon Top SilkScreen
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Appendix B 
 
 
 

Microprocessor Code 
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Appendix C 
 
 
 

Software Simulator Code 
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Location System Code 
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