
VOICE ACCESS TO .

ELECTRONIC MAIL

Caren Hope Baker
p,C

SUBMITTED TO THE DEPARTMENT OF
ELECTRICAL ENGImERING AND COMPUTER
SCIENCE IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1983

I Copyright @ 1983 Massachusetts Institute of Technology

Signature of Author / ----
Department of Electrical Engineering and Computer Science

May 20, 1983
A

I Certified by --- -
Patrick Purcell

Thesis Supervisor
/

I /
1, Accepted by

David Adler
Chairman, Departmental Committee on Theses

Voice Access To Electronic Mail

Caren Hope Baker

Submitted to the Department of Electrical Engineering
and Computer Science on May 20, 1983 in partial
fulfillment of the requirements for the degree of Bachelor
of Science.

Abstract

Continued growth of electronic mail could be ensured by providing verbal
access to the mail. This thesis describes the software which comprises the
user-mail interface. Previously, only prerecorded messages could be accessed
verbally. This interface is unique in that it provides access to written mail.
This is difficult since conventional message format is not good for vocal
transmission. The software obtains and rearranges the message text to
facilitate comprehension as a vocal message. At the user's request, the
synthesizer will read a selected message, repeat it, or reply with set answers.
By providing these options, the verbal mail system gives the listener the same
flexibility as a reader in the use of electronic maiI.

Thesis Supervisor: Patrick Purcell
Title: Visiting Associate Professor of Computer Graphics

Acknowledgements

I would like to thank a number of people for their patience and

guidance:

Chris Schmnndt, who gave me many ideas which are embedded in this

project, including the topic itself.

Patrick Purcell, my thesis supervisor, for his help and support through

out the term.

Barry Arons, who provided many helpful suggestions incorporated into

this work.

Leo Hourvitz, who wrote the interface into the mail system.

Mark Vershel, who helped me find a thesis.

Julie Foster, Frank DiTaranto, M&ssa Miller, and Brenda Reale, for

helping to edit this thesis.

-4-

Table of Contents

1. Introduction

2. Motivation

3. Design Considerations

4. How Verbal Mail Works

5. System Appraisal

References

Appendix: Code Documentation

Chapter 1

Introduction

Current electronic mail systems, such as the one at MIT's Architecture

Machine Group, allow users access only through computer terminals. A

person's messages, stored in memo format, are kept in his "mailbox" and can

be read at any time from a terminal. But the rapid spread of electronic mail

systems [4] requires easier ways to get one's messages, for example, via push-

button telephones. To do this for MIT Architecture Machine Group's system

requires major hardware and software modifications.

At present, a typical message on a terminal may read:

#I
Date: Friday 20 May 1983 02:59:15 EDT (NM + 4d 9h 16m 15s)
From: Chris Schmandt <geekQmit-pamela>
Sender: Mark A. Vershel CmavQsri-kl>
Subject: Mail system
To: caren
cc: geek

When using a terminal, a person can read messages
and delete them afterward or keep them for future
reference. The user can read messages in any order
or select an option that summarizes the mail. The
summary states the message number, the sender, the
date, and the subject. If the sender has omitted the
subject from the header, the summary contains the
first 40 characters of the message.

But hearing voice and reading text differ in several
ways. For one, a spoken message takes longer to
understand than a written one; you can not go back
and reread. Furthermore, you must listen to a
message all the way through; you can not scan the

whole text or skip over unimportant parts. The
mail system's structure must change before voice
access will work.

My thesis project is part of an analog-digital telecommunications system

that will allow users to hear telephone messages or electronic mail messages

over the telephone. A voice recognizer and a text-to-speech voice synthesizer

will communicate with the caller. To login, users will call the computer and

enter their passwords. They can then "listen" to mail or phone messages. I

was responsible for providing the software interface for the verbal mail system.

Previous work has been done allowing users to receive and send voice

mail using a phone [8,9]. However, these systems use stored voice messages

instead of text. My system is unique in that it converts text to speech, thus

increasing access to the existing mail. system.

Chapter 2

Motivation

Traditionally, business communications have been by the following

methods: face to face, the mails, and the telephone. Disadvantages with

these methods include problems with location, wasted time, lack of .records,

and unnecessary formalities [4]. Electronic mail is becoming more popular

because it minimizes these difficulties.

Location and time are major disadvantages of the telephone and the face

to face method. It takes time to locate people. It is often the case that when

you call someone they are not by their phone. Then if you leave a message,

and the person returns the call, you might be out. This process can continue

for a long time. After reaching the person, the original call may have lost its

importance. Similarly, -written mail is inappropriate for urgent messages

because of the time required for delivery.

Timing is difficult with traditional methods. You can contact people only

at certain times. People are not always willing to be disturbed. You can call

or see people only- if they are free. The time zone differences also limit the

time when you can reach someone. If you are calling someone in a different

time zone, it may be hard ta find a time when both people are in.

Automatic record keeping is not part of communication by traditional

methods, which is important in the business world. There is no record after a

telephone call or a meeting. In order to keep track of what was said, you

have to write everything down. Mail or memos can be used as records, but

they are difficult to arrange because of their inconsistaent format.

It is difficult to broadcast messages to everyone, as each person has to

be contacted individually. This redundancy can be avoided.

Long-windedness is another problem with all three means. For example,

when you contact a person, you cannot just say the message, you tend to talk

about general things first. Also, mail has to be written in a business letter

format, which is time consuming and may require secretarial help.

Electronic mail avoids many of these disadvantages. It is informal, thus

you can get right to the point. It is easy to use because it has an on-line

editor and can be used a t any time. There is no problem with location or

time. Once the recipient returns to their terminal they will get the message.

It is also fast; the message is immediately sent to the person. A record is

automatically made of the message, since it is stored in the user's mail box

and can be logged. It is easy to broadcast messages since you can send one

message to many people.

Unfortunately, electronic mail cannot always be accessed because of the

need for a terminal or modem. This creates the need for alternative methods.

Voice access using the existing telephone system will increase the use of

electronic mail.

Chapter 3

Design Considerations

The differences between hearing voice and reading text became apparent

during the design process. First a user can reread portions of written text

that are not completely understood, but cannot hear verbal messages again.

Also, a user can quickly scan written text to pick out important details, but

must listen to the entire spoken text to hear all important points. In this

way, verbal mail. can take longer to access than written mail. The verbal

mail interface must be adapted to take into account these differences.

In using verbal mail the ability to reread ambiguous phrases is lost. To

compensate for this, I have created a command that repeats the last phrase

spoken. The first time it is repeated, it is spoken slowly, while the second

time, each word is spelled out. This helps the user understand the voice

synthesized words.

To alleviate the scanning problem, the verbal mail messages are grouped

by sender, starting with the sender who has sent the most messages. This

order is more efficient for two reasons. One, the user should usually know

what each person's messages are about and can decide if he wants to hear

them. Also, the user can reply to all of the message from one sender a t one

time. This is especially useful when more than one message relates to the

same topic.

The f i s t implementation tried to imitate written electronic mail using

the new groupings, but ended up being too wordy. First the user heard a list

-10-

containing the names of the senders and number of messages they sent. Then

for each individual sender, the system provided a summary of his messages.

Then the user was provided with the message text. In this way the design

was similar to the written electronic mail system; however, the large amount

of information given confused the user.

The latest version eliminates the full summaries by starting the message

with its topic. This also helps to alleviate the scanning problem because the

user can hear the topic and decide whether or not to continue listening to the

message. In addition, the user can easily recognize the message by its topic.

Another problem with the first version is that it asked questions a t

every decision point. Redundant questions in written mail can be skipped

over by the eye, whereas all parts of verbal mail must be heard. This process

is very slow. In the second version each question was eliminated and replaced

by a three-second pause, that informed the user that a decision could be made

then. Unfortunately a three-second pause a t each decision point wasted time.

Finally the pauses were reduced to one second. A one-second pause is just

long enough for the user to give a command, but minimizes wasted time.

Because the pause is so short, there is a chance that a spoken command

will not be entered during the pause. Also, the voice recognizer does not

process the command immediately, so that further delay is incurred. A time

margin must be allowed for each command so that a command entered late

will be executed correctly. This is accomplished by allowing commands to be

entered while the synthesizer is speaking- For example, if the user does not

give a NEXT SENDER command soon enough, the command will be executed

after the voice message starts.

-1 1-

The user-mail interface is designed for both experienced and inexperienced

useks. This is accomplished by defaulting all options in the program to a

"normal" order. The "normal" order tells how many messages there are from

the first sender, pauses, and then reads them all starting with a summary.

This procedure is repeated for all of the senders until there are no more

senders and then the program ends. This design lets an inexperienced user

hear all his messages without knowing any commands, while the experienced

user can issue commands for added flexibility.

The number of possible commands is limited to twelve, which

corresponds to the number of keys on a standard touch-tone telephone. This

number was chosen because compound commands are difficult to remember.

The commands allow the user to hear the next or previous message or sender,

or to repeat messages. In addition, the user can pause in the middle of a

message in order to increase comprehension.

Another feature of the interaction is pitch differentiation by the voice

synthesizer. The synthesizer uses a low pitch when reading the message, and

a higher pitch when reading control words, such as "Message 1". This helps

the user distinguish between message text and control words.

Chapter 4

How Verbal Mail Works

To start the system, the user calls up the computer from a push-button

telephone and enters his password. The Prose 2000 voice synthesizer [7] will

prompt the user with a question, asking if he wants to hear his electronic

mail or his phone messages. If the user selects his mail messages the verbal

mail system is called.

The interface between the software for the verbal mail and the rest of

the system is shown below.

SYNTHESIZER

message
I *
SOFTWARE MAIL

1 SYSTEM
read

' *

RECOGNIZER

The verbal mail system starts by asking the user if he wants to hear

only his new messages. Then it states how many messages there are: "You

have 15 messages." It then tells how many messages there are from the first

sender and waits one second for a command: "5 from Caren <pause>." The

-13-

one second waiting period allows the user to alter the "normal" order (which

will be described later). There are twelve commands, each initiated with a

different button on the telephone (Figure 4-1) or the user's voice. Each

command does the following:

BUTTON

NEXT MESSAGE

BACKUP MESSAGE

REPEAT
NEXT SENDER
BACKUP SENDER

MORE INFO

ANS: YES
ANS: NO
CALL ME A T

PAUSE
CONTIPU'UE
QUIT

If no response is given, the

ACTION

Goes to next message of sender, if
last message goes to next sender

Goes back to previous message
(if a t the start of message)

Goes back to start of message
(if in the middle of message)

Repeats the last phrase spoken
Goes to the next sender
Goes back to beginning of current

sender (if past the first message)
Goes to previous sender

(if on first message)
Tells the full name and user name

of the sender and the date and time
of the message

Replies yes to the sender's message
Replies no to the sender's message
Replies to sender's message with the

message to call back a t a number
Pauses the program
Continues in the "normal" order
Exits program

first sender's messages are read, the default

order. The message starts with the prompt "message I <pause>" and waits

one second for a command. If no command is given, the synthesizer reads the

summary of a long message (more than 150 characters) or reads the entire

text of a short message. The summary starts with either "it's about:," if the

sender defined a subject, or "it begins:" if the summary was created from the

i I I I
I 1 I I
I NEXT 1 BACKUP I REPEAT I
] MESSAGE I MESSAGE I I

I I I I
I I I I
I NEXT I BACKUP I MORE I
I SENDER I SENDER I INFO I
I I 1 I

I YES 1 NO I ME AT 1
I I I I
I I I I
I I I I
I I I
I PAUSE 1 CONTINUE I QUIT

I
I

I I I I
I I I

Figure 41: Commands for telephone key pad

-15-

message. After the summary, there is another pause. The default is to read

the message. Mter the message is read the next message of the same sender

begins.

While hearing the message text the user can give any command, and the

system will immediately respond. This option allows the user to stop in the

middle of the message if he has heard enough, or pause temporarily t o find

out more information or write something down. If he wants to continue, the

message will restart where it left off.

The user can have phases repeated by giving the REPEAT command.

The first time something is repeated it is spoken slower. If the user still

cannot understand, he can invoke REPEAT again, and the words will be

spelled.

The user can get more information about the message by giving the

MORE INFO command, which gives the full name and user name of the

sender, and the date the message was sent. This information is not said each

time, but is always available on request. The date format is determined by

how long ago the message was sent. If it was sent more than a week ago,

the month and date are returned without the time. If it was sent less than a

week but before yesterday, the day and time is returned, for example,

"Wednesday 2:15 p.m." If it was sent yesterday or today, "yesterday" or

"today" and the time are returned.

The user can answer any message with a simple response using the

responding keys: "Ans: Yes," "-411s: No," "Call Me At." The computer first

asks if the user wants to send the message to make sure it understood him

correctly. If the answer is yes (A N S : YES) a message with predefined text is

-16-

sent to the sender. The text begins: "I called in and read the message you

sent <date of message> about <subject of message>." It then says one of

the following: "The answer is yes," "The answer is no," or "Please call me

at <number to be entered by user>."

When the user is done hearing all the messages from one sender, the

next sender's messages automatically begins: "2 from Chris <pause>," and

the process continues. If he wants, he can return to the first sender by

giving the BACKUP SENDER command. If he just wants to repeat the last

message he can use the BACKUP MESSAGE command.

After hearing all the senders the computer asks if the user want to

continue: "There are no more senders. Do you want to repeat the senders?

<pause>." The program ends unless a CONTINUE command is given.

A person can exit the program at anytime by giving the QUIT

command.

A sample dialog is as follows:

Do you want to hear only your new messages? <pause> ANS: YES
You have 6 new messages <pause>
9 from Chns <pause>
Message 1 <pause>
It's about the Prose 2000 driver <pause>
<message text>
Message 2 <pause>
It's about Meeting <pause>
We will have a short meeting today at noon to discuss your
progress. Is that time ok? ANS: YES
Do you want an affirmative reply sent? <pause> ANS: YES
Message was sent.
Message 3 <pause> NEXT SENDER
2 /rum Barry <pause>
Message 1 <pause> How's mail coming? Any new REPEAT

Hoooww'sss mmmaillll cccooommmingggg? REPEAT
H-o-w-s m-a-i-l c-em-i-n-g? Any new successes or problems?
Message 2 <pause> NEXT MESSAGE
1 from Caren <pause> Remember to MORE INFO
Caren H. Baker at MIT pamela, yesterday at 2 p.m. BACKUP SENDER
2 from Barry <pause> BACKUP SENDER
9 from Chris <pause>
Message 1 <pause> CALL ME AT
Do you want a return phone number reply sent? ANS: YES
Please enter a number after each tone ending with a number
sign. Enter a star to cancel message
beep 7 beep 3 beep 7 beep 2 beep #
Is this number correct? 7872 ANS: YES
QUIT
Goodbye

Chapter 5

Performance Evaluation

The verbal mail system has a good interface and wastes as little time as ,

possible. However, because of the hardware limitations, the response time is

slower than desired. Some of the limitations were compensated for, while

others still affect the system.

For novice users, the pronounciation of the text-to-speech voice

synthesizer is difficult to understand. Also, because of the irrregular rules of

pronounciation in the English language, the synthesizer often mispronounces

words. For example, "message" is pronounced "mes-ig". A subroutine that

contains a short .dictionary of common words with their pronounciations was

erehted to correct this problem. Another compensation for the pronounciation

is the availability of the REPEAT command, which first slows down the

speech and then spells the words. One advantage of the Prose 2000 over the

other text-to-speech synthesizers is that it pronounces whole sentences using

normal inflections rat her than monotones [1,7].

A voice recognizer is used to recognize the touch-tones even though a

integrated circuit could perform this task faster. Although the response time

is slower, the voice recognizer was chosen because it allows for voice input.

The user can issue commands by either hitting a button or speaking into the

telephone. In this way, the user-mail interface is simplified.

The voice recognizer sometimes makes mistakes and must be trained for

both the specific user's voice and for touch-tones. Training involves the user

reading each command several times into the voice recognizer. Also the

recognizer does not always understand verbal commands in the presence of

noise on the phone. If the spoken command is not understood, the user can

reissue the command using the phone's key pad. The touch-tone sounds are

easily distinguished even over the noisiest phone l ies , so the tone command

will almost always be understood.

In the future the user should be able to speak a message into the

telephone and the computer will change it to text and mail it to the

appropriate person [2,3]. It is advantageous to hear a message and

I
immediately respond with any reply. Ease of replying is a quality that makes

I

i electronic mail superior to written mail.
I

1 Another improvement is to increase the dictionary size. This will

improve the system, by making the synthesizer more intelligible.

References

[I] Allen, J."Linguistic-based algorithms offer practical text-to-speech - -
systems." Speech Technology. Fall 1981, v. 1, no. 1, pp. 12-16.

[21 Bahl, L. R., Cole, A.G., Jelinck, F., Mercer, R.L., Nadar, A., Nahamoo,
Picheng, M.A. "Recognition of Isolated-Word Sentances from a 5000-
Word Vocabulary Office Correspondence Task." Proc. 1983 IEEE
Intl. Conf. on Acoust. Speech and Signal Proc. April 1983, Boston
M4, pp. 1065-1067.

[3] Das, K. S. "Some Dimensionality Reduction Studies in Continuous Speech
Recognition." Proc. 1983 IEEE Intl. Conf. on Acoust. Speech and
Signal Proc. April 1983, Boston MA, pp. 292-295.

[4] Holden, J. B. "Experiences of and electronic mail vendor." National
Computer Cooference. May 1980, pp. 493-497.

[5] Hunt M. J. "Further Experiments in Text-Independent Speaker
Recognition over Communication Channels." Proc. 1983 IEEE Intl.
Conf, on Acoust. Speech and Signal Proc. April 1983, Boston MA,
pp. 563-566.

[6] Pierrehumbert, J. "Synthesizing intonations." J. Acoust. Soc. Am. Oct
1981, v. 70, no. 4, pp. 985-995.

[7] Prose 2000 Text-to-Speech Converter User's Manual. Telesensory Systems,
Inc. Palo Alto, CA, 1982.

[8] Saxton, W. A., Edwards, M. "Voice mail comes of age." Infosystems Aug
1980, v. 28, no. 8, p 72.

[9] Tomanek, G. "Implementing electronic mail in a telephone system: more
that just talk." National Computer Conference. May 1980, pp.
527-531.

Appendix
Code Documentation

There are thirteen procedures that run the verbal mail system. The two

start up procedures are Verbal - mail and Pointer. Six data procedures:

Top - summ, Sort - senders, Sender, Get-mail - header, Sen - summ, and Dater

that rearrange the mail messages into organized structures. Finally there are

five procedures: Ask - sender, Ask - mess, Proc - mess, Get - tone, and Wait

control the actions of the system.

The flow of the system is to initiate the pointers, obtain and organize

the information, tell the messages, and then terminate the pointers.

The two start up procedures are:

Verbal mail or vw -
dcl verbal mail entry;
call v e r b a l - mail();

This is the driver of the system. It controls the basic flow of
the system. It starts by asking for the user's name and the
pasla name. It sets the username to the current user's with
chuname. This is because when replies are sent the correct
sender name must be placed in the from field. The username is
restored at the end of the program, This procedure attaches the
prose to the requested pasla. It calls pointersinit to initiate all
the pointers. It then calls sender to get the information from
the messages and top summ t o sort the messages. Then
ask sender, the procedure with the user interaction, is called.
~ o i ~ e r $ t e r m is called a t the end t o terminate the pointers.

Pointer:
Pointer$init

dcl pointer$init entry (char[l68]vary, ptr, ptr, fn[31]);
call pointer$init (mbx - name, mbx - ptr, info - ptr, code);

This initiates all the pointers. It calls get - mail header which

makes a copy of the user's mailbox and returns a pointer to the
copy. It also finds a segment for the header info structure and
returns a pointer to this segment called info - &.

Pointer$term
dcl pointersterm entry (ptr);
call pointer$term (mbx - ptr);

Terminates the temporary mailbox and the segment where
header - info is stored.

The mail messages are originally stored in the user's mailbox as one long

I string. The six data procedures extract information from each message and

store it in structures. The data is organized using two structures:

header - info and sort. Header - info contains the entire message organized so

1 that each part is stored separateIy. Sort contains information about each

sender. These two structures contain all the necessary information to

recontruct the message. The control prmedures use these structures to read

the message, instead of the actual message stored in the user's mailbox.

The procedure sender takes the information from Get mail header, - -
restructures it, and stores it in the header info. The structure header info - -
is:

1 Header info
2 ~ e y a ~ e (1)

3 Summary

3 Sum - typ

3 Date time
4 on^
4 Day
4 Date
4 Month
4 Year
4 Time
4 Mdh - hms

3 From
4 Long
4 Name
4 User

3 Re
3 Message

4 Point
4 Len

3 Seen

char[l68Jvary

char[l2]vary

char(64lvary
char[l6]vary
char [l6]vary
char(l6lvary
char [l6]vary
c har[l6]vary
charI201vary

char [64]vary
charI321vary
char(64lvary
char(l68lvary

ptr
fix
char[32]vary

/* The summary used: either the
subject or the start of the
message */

./* either "It begins" or
"It's about" */

/* of the form: */
/* Monday 25 July 1983 */
/* Monday */
1"s *"/
/* July */
/* 1983 */
/* 02:56:30 */
/* mm-dd-yy hh:mm:ss */

/* whole name and username */
/* f i s t name */
/* username */
/* Subject field of message */

/* pointer to start of text */
/* length of message */
/* "Viewed" or "Not Viewed" */

All the information about the message is stored in header - info. To

save space the actual message text is not stored in the structure, only a

pointer to the beginning and the length of it is stored. The Date and Sender

are stored in different forms so they can be used alone later any of the ways.

This structure is stored in its own segment mail info that is pointed to by -
info - ptr.

The sort structure contains information about each sender and is used to

sort the messages by sender, and the senders by most messages sent. The

structure is:

1 Sort
2 Total mess count fix -
2 Num senders fix
2 OM m e s s f i i
2 ~ e n c r s (2 5)

3 Name char[64]vary
3 Long - name char[l68]vary
3 Mess count fix -

3 Mess - num (25)fix

2 Current sender charI641vary
2 Long sender char11 681vary
2 sender - num fix
2 Quit bit(1)
2 Backup bit(1)
2 Priority (2 5) fix

/* Total number of messages */
/* Total number of senders */
J* Number of viewed messages */

/* First name of sender */
/* Full name and user name */
/* Number of messages from the

sender */
/* Actual message number of each

message corresponding t o
number in header info. */

* Name of current sender */
/* Full name of current sender */
/* Index into sender array */
/* Set to 1 if quit */
/* Set to 1 if backing up */
/* Array of the priority of each

sender */

Associated with each sender is his name, the number of messages he

sent, and an array of the actual message numbers in the mailbox of his

messages. Also associated with each sender is a priority found in the priority

array, The priority is determined by the number of messages a sender has

sent. There is a one to one correspondence between senders and priority.

The first sender is determined by sort.sender(sort.priority(1)). The actual

message number of this sender's first message is found in

sort.sender(sort.priority(l)).mess - number(1). Once this number is determined

the information about the message can be obtained in header - info.msg(the

number). These two structures contain all the necessary information about

the messages.

The six procedures that organizes the data into the structures are:

Sender
dcl sender entry (ptr, fix, ptr, fiix(311);
call sender (mbx - ptr, entry - number, info - ptr, code);

Calls get mail header$get nth, which creates a structure called
header co<tainigg the and lengths of each part of the
message for one messa.ge. Using header, it creates a structure
containing the text from different parts of the message's header,
and a pointer and length of the message text. It stores this in
the structure header - info. Sender calls sen - summ t o create a
summary for each message.

Sen summ -
dcl sen summ entry (fix, ptr);
call sen- - summ (entry - number, info - ptr);

Creates a summary of the message from the text, if one is not
defined, and stores it in header info.msg().summary. The
summary is created from either the &t six words, the first line,
or the first sentance, whichever is shortest.

Dater
dcl dater entry (char[l5]vary, char[20]vary, char[32jvary, char[32]va,ry);
call dater (weekday, mdy - hms, day - t o - use, time);

Dater figures out the date and time of message compared to
today. (i.e. Today, Yesterday, Tuesday...). It takes the weekday
and date-time abbreviation and returns normal time and tells
which date to use.

Top summ -
dcl top summ entry (ptr, , bit(l), fix);
call top- - s u m [info - ptr, sort, new, count);

This procedure sets up the structure sort that contains
information about each sender. It calls sort senders t o sort the
senders, and then determines the priority o f each sender. This
priority is stored in sort.priority().

Sort senders -
dcl sort senders entry 0;
call s o r t - senders (sort);

Sort sender sorts the messages by sender. It stores the name of
eachsender, the number of messages he sent, and the actual
message number of each message in the sort structure.

After all of the data procedures have sorted the message, the contol

procedures are called. The actions of the system is mainly controlled by

ask sender and ask mess. These procedures keep track of the state of the - -
system and perform the different commands. They determine what the voice

Proc - mess. The control procedures do the following:

synthesizer will say. They use the procedures Get - tone, Wait, and

Ask - sender
dcl ask sender entry (, ptr, bit(l), bit(1))
call ask- - sender (sort, info - ptr, term, nee)

This procedures takes the two structures: sort and header info
(based info ptr). It also takes two booleans: term and-nec.
Term is t rue if the terminal is being used, not the prose, and nee
is true if the phone buttons and the nec is being used, not the
terminal keys. These options are there to help testing the
system.

Ask sender controls which sender's messages are being heard. It
starts with the sender with the highest priority (sort.priority(1)).
The sender is changed with the commands. The procedure
contains one large "do while" loop that keeps checking with "if"
statements for different values of the variable "ans". The
variable "ans" represents the command that the user has given.
If there was no command given, that is ans = " ", then the
current sender's messages are read. If the command is not
understood, the sender does not change. When a QUIT command
is given, the program ends, and returns to the top procedure.
After the procedure has gone through all of the senders it asks if
they should be repeated. To read the message, this procedure
calls ask mess. It passes the two structures sort and
header in%, the two booleans, and the sender number to
ask - mTss.

Ask mess -
dcl ask - mess entry (, ptr, fix, bit(l), bit(1))

call ask - mess (sort, info - ptr, sender - num, term, nec)

This procedure keeps track of which message you are hearing
from one sender. Like in ask sender there is one large "do
while" loop that is continuously Thecking for the value of "ans".
However each command does not always have the same affect.
The effect of the command depends on what part the message is
up to. There are four different states that the message can be
in. They are:

State 0 At the start of the message
State 1 After message number is stated
State 2 After the summary is stated
State 3 At the end of the message

The variable "state" contains the current state. The system can
also be in the middle or at the beginning of the message. There
is a boolean msg-middle that keeps track of this. Some of the
commands change the state of the system, while others do not.
The state must be recorded in order to return to the right place.
The commands NEXT MESSAGE, BACKUP MESSAGE, NEXT
SENDER, BACKUP SENDER, and QUIT change the state of the
system. The others cause an action and return to the process to
the original place.

When the message is to be read the procedure proc mess is
called. It is passed a structure msg, that contains inzrmation
about the message.

Proc mess -
dcl proc mess entry (, char[l]vary, bit(l), bit(1))
call ask - -mess (msg, ans, term, nee)

This procedure processes the message before it is sent out to the
voice synthesizer. It splits the message up by the punctuation
into phrases. There is an index sent after each phase to keep
track of how much was said. If the message is interrupted, the
index can be retrieved to determine where it is stopped. AU of
the information about the message is stored in a structure called
msg. The phases are parsed before they are sent to the voice
synthesizer for words that have to be corrected for
pronounciation.

The structure msg is, passed between ask - mess and proc - mess to help

process the the message. The stucture is as follows:

1 msg
2 s ptr
2 len
2 proc len -

2 done
2 middle
2 total offset
2 offsetT(50)
2 index - no (50)

2 stop - index
2 stop offset -

2 repeat - offset

2 repeat
3 on
3 state
3 num
3 len
3 times
3 long

ptr /* Pointer to start of message */
fix /* Length of message */
fix /* Length of message processed

(sent to prose with an index) */
bit(1) /* True if done with message */
bit(1) /* True if in the middle of message */
fix /* Number of indexes sent */
fix /* Offset from start of message */
fix /* Index number associated with

each offset */
fix /* Index where stopped */
fix /* Associated offset from start of

message where Stopped */
fix /* Offset for repeating from

when message stopped */

bit(1) /* True if want to repeat */
fix /* The state that is repeated */
fix /* The message number repeated */
fix /* The length of message */
fix /* The times same thing is repeated */
bit(1) /* True if repeat 2 indexes,

false if only one */

This structure contains information about the message. There are two arrays,

offset and index - no, that contain information about each index. The offsets

from the start of- the message and the index number sent after the phrase are

stored. There is also information telling if you are repeating or not. It

records what was repeated and how many times it was.

Two procedures are used through out to get the input from the user.

Get tone -
dcl get tone entry (char[l]vary)
call get- - tone (ans)

This procedure gets a tone from the voice recognizer,

Proc mess
h

dci wait entry (char[l]vary, bit(1))
call wait (am, nec)

This procedure waits one second, but checks for commands.

