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This paper describes several key components of a speech based dialog system. This system 
was developed to explore opportunities for speech recognition in an integrated office en- 
vironment. In order to achieve adequate performance despite speech recognition errors, it 
was necessary to develop a robust parser and a dialog generator which uses speech syn- 
thesis to converse with the user. Although designed for a specific application and recog- 
nition hardware, the underlying approach of the parser and dialog generator may be 
generalized to facilitate human-computer voice interaction in other environments. 

2 Motivation 

As part of a series of ongoing research projects exploring applications of intelligent voice 
telecommunications systems [Schmandt 85a, Schrnandt 841 the authors designed a voice 
interface to an office workstation. This system, called the Conversational Desktop 
[Schmandt 85b], used voice to interact with telephone, scheduling, airline reservation, 

3 and audio memoranda functions. 

The motivation for voice interactio~l with the office workstation is simply that speech is 
such a natural way of communicating in this environment. An office has major telecom- 
munication needs which are in a large part voice oriented, and voice may be used in dic- 
tating or conversing with co-workers face to face. 

As we were employing speech because of its ease of use, it was desirable to use connected 
speech recognition because of its tolerance for more natural spoken input. Connected 
speech recognition is more difficult than isolated word recognition, due in large part to 
difficulties finding word boundaries and variation in the pronunciation of words in an 
acoustical context [Oshika 751. 

To use connected recognition effectively, an application must take the output of the 
speech recognizer, consider it as a very noisy signal due to errors, and filter out the errors 
from the words which were correctly recognized. At that point, a variety of techniques 
may be used to try to interpolate the missirig words or interact with the user to complete 
the transaction. 

Our approach to  the problem used a parser designed specificaily for speech and the errors 
produced by a connected speech recognizer. The parser communicates with a dialog gen- 
erator capable of phrasing a series of questions in order to gather enough correct input to 
perform the user's request. This system employed a network of Sun Microsystems 
workstations, and was written in C under the Unix operating system. For recognition we 
employed an NEC DP-200 connected recognizer with a 150 word vocabulary. 



3 Systxm Components 

A parser is used to analyze speech input and detect errors: this analysis is based on z for- 
mal description of the syntax of the set of input utterances. The parser also generates a 
description of the input, in a frame-like [Schank 771 representation which is convenient for 
both the dialog generator as well as action routines embedded in the application itself. 
What is unusual about the parser described in this paper is that,  in addition to the usual 
syntax rules, it is designed to detect input errors and parse the remaining correct sentence 
fragments. 

When errors are detected, they usually i~d i ca t e  that an insufficient number of the user's 
spoken words have been recognized to complete the requested action. A rich a e a  of 
research, just touched in this project, is the use of semantic context to recover gaps in the 
inplut. When this is insufficient, the system needs to ask questions to complete its xmder- 
standing of the user's request. 

3 The dialog generator is passed knofiledge about what is missing, in the form of the frame 
structure (used in a sloi-and-f216er approach) generated by the parser. This structure has 
fields which can be fiiled in with specific instances of various parts of speech, such as 
names, dates, times, etc. While such informatim could be used to phrase a simple qtiery, 
such as "W-hen?" or "?$ ith whom?", such questions may mask other errors which were 
syntacticzlly correct (such as recognizing "Gary" for "Barry"). A more graceful approach 
takes advantage of the information already stored in the frame to simultaneously provide 
feedback to the ilser by echoing, such as " W h e n  do you want to meet with Borry?" Be- 
cause this echoing technique can generate many possible sentences, a text-to-speech syn- 
thesizer is used for audio output and to guide the discourse. 

4 Requirements for the Parser 

The parser must analyze the error-prone speech recognition results and detect errors in 
such a way as to identify those tokens most likely to be correct (i.e, most likely to have in 
fact been spoken by the user). It must generate a re~resentation of this postulated sen- 
tence, and invoke the dialog generator if the input is incomplete. The psrser must also be 
re-entrant so as to continue analysis of the user's responses to system queries while retain- 
ing the current context. 

Speech recognition errors can be classified in three categories: substitution, rejection, and 
insertion. A substztutfan error is one in which some number of words are spoken and the 
same number are recognized, but one or more of them is recognized incorrectly. A 
rejection error is one in which less words are recognized than were spoken, i.e. one or more 
input words were simply not recognized. -4n insert ion error is one in which more words 
are reported than were spoken, perhaps because one input word was recognized as seseral 
words or perhaps breath noise was matched against a word. 

Most conventional natural language parsers [Winograd 831 cannot cope with any of these 
problems, because they assume well formed input. Rather than detection of errors, their 



sc;le task is to  correctly determine the syntactic relationships of the input tokens. This is 
inadequate for voice input. 

Previous s p e e c h  parsers [Levinson 781 srzccessfu!lj dealt with substitution errors, by con- 
sidering a number of possible chokes for each word. Since Levinson's parser dealt with 
discrete speech in which each word has to  be spoken separately, the parser assumed that  
the number of input tokens was correct and would fail if an insertion or rejection error 
occurred. 

It  should be noted that  the parser described herein \\-as designed to  cope with one par- 
ticular connected speech recognizer (the KEC DP-200) and as such is constrained by 
many limitations of this particular de-~ice. Features of other recognition hardware could 
be employed to improve our parser and dialog generetor. Particular limitations included: 

e The lack of any second guess information for each ward or sentence. 

The lack of ar;y measwe of the recognizer's confidence in its selection for each 
word. 

e Inadeqgate subsetting capability. Subsetting allows recognition to be limited 
to  a particular set of words at any moment, thereby improving recognition. 

e No indication of the relative difficulty of discriminating between various words 
in the vocabidary (confusability matrix). 

Note: we use t'he term "words" relatively loosely here. Actually, we refer to an utterance, 
or a single template in the recognizer's wcabulary. To improve recognition, we often 
trained a phrase, such as "pIace a call" as a single, longer template rather than three 
separate ones. When this phrase is spoken it would generate a single token, and was dealt 
with in this manner by the parser 

5 Parser Overview 

A parser designed for speech input must cope with the various types of recognizer errors 
with no additional information about the input other than the tokens and the order in 
which they were returned from the recognizer. To achieve this, o s r  parser has two unique 
aspects: 

1. To cope with insert ion errors, we consider a11 subsets of the tokens returned by 
the recognizer. This will also detect those slzbslituticrn errors in which the sub- 
stituted word is syntactica!iy incorrect. For example, if "Place a, call to 
Barry5'u7as spoken, the parser would detect a recognizes errnr of "Place a call 
to lunch" but not of ""Puce a call t o  Gclry. " 

2. To cope with reject ion errors, our grammar accepts syntactically correct 



sentence fragments as well as complete sentences. This retains information 
about what was correctly recognized even though it is incomplete. 

There are two major software components in our system. The higher level extracts subsets 
of the tokens and calls the lower level repeatedly to test them against the grammar. A 
scoring metric is employed to select that subset which is most likely t,o correspond to what 
was spoken. A pruning technique is employed to minimize search time. 

The lower level is a set of grammar rules. This level is written for YACC (see section 7) 
and simply applies a set of rules to  analyze its input. While analyzing the output from 
the recognizer, a frame-like representation of the input is built up, which includes an in- 
dication of which slots in the frame are missing to complete the command. This lower 
level parser returns information that is used by the scoring metric in the higher level. 

2 6 Substring Extraction and Evaluation 

I Insertion errors cause spurious tokens to appear in the output from the speech recognizer. 
Substitution errors replace correct tokens with incorrect ones. In both cases, we wish to 
detect the incorrect tokens so as to continue processing only those believed to be correct. 
This can be accomplished by considering all substrings (ordered subsets) of the recognizer 
output,  and selecting the best by a scoring algorithm. 

For example, if the string ABCD were returned from the recognizer, the following substr- 
ings would be considered: ABCD, ABC-, AB-D, A-CD, -BCD, AB--, etc. Each substring is 
analyzed according to the grammar (see section 7), to determine whether it is syntac- 
tically correct. For each syntactically correct substring, a score is computed to determine 
the most likely match between the input and what the user intended 

,4ny substring which is either a sentence or a sentence fragment is a possible candidate. 
The correct candidate is chosen by applying a scoring metric based on the folhving: 

i. Completion: a complete sentence is preferred to a fragment, as one is more 
likely to speak a complete command to the machine. 

2. Namber: of two possible substrings: the one with the larger number of tokens 
will be selected. 

3. Adjacency: additional weight is given to adjacent tokens. For example, if 
the original input was ABCD, the substring ABC- has a higher adjacency score 
than AB-D. 

Adjacency is a pawerfui metric specifically f ~ r  co~nected speech, because a significant por- 
tion of the problem of connected recognition is segmentation, finding word boundaries. If 
it is postulated that the second token in an u t t e raxe  is correct, it is more Likely that the 
first and third tokens d l  also be correct because at  least one of each of their boundaries 
must have been determined correctly [Rabiner 81, Zue 851. 



An important point which makes this scheme useful is the definition in the grammar sf 
sentence fragments in addition to complete sentences. This implies that if ABC is a legal 
and complete sentence, then all substrings including A-c' (which has a token missing from 
the middle) are considered legal, and scored using the same metric. The motivation is 
correct acceptance of AB if the recognizer returns an incorrect sentence ABX. Even thoilgh 
AB is incomplete, it; is an accurate indication of a portion of the speaker's i n t e ~ t  azd 
sholdd guide further dialog. 

7 Grammar and Knowledge Representation 

Each phrase in the vocabulary is a particular i n s f a n e e  of a small number of syntactic 
categories. For example, "Chris5' is an instance of category NAME, and "place a calf" 
(recognized as a single utterance) is an instance of category CIViD-NAME, a command which 
requires a NAME for completeness. In general, this grammar was structured such that the 
category to which a command belongs indicates the number and types of the arguments 
to the commarrd. Examples of these classes include CMD-TIME and CIVID-NAME-AND-TIME 
(an instance of which is "schedule a meeting"). 

This categorization was stored in human readable form in a vocabulary file, which in- 
cludes the prompts used to train the recognizer and generate dialog. The file also contains 
symbolic constants suitable for programmatic access to the categories and instances for 
each word (figure I). 

/**Utterance Type Instance * a /  

monday 
t ~ e a d a y  

-t DAY -i 1 
-t DAY -i 2 

-t HOUR -i 20 
-t KOUR -i 11 

- t NAME -i CHRIS 
-t NAME -i BARRY 

clear -t CMD -i CLEAR 

place a call to -t CMD-M -i PHONE 
hangup -t CMD-N -i KkItGiiP 

schedule a meeting - t CMD-NT -i MEET 

Figure 1: Sample portion of a vocabulary file. Note that Types and 
Instances are referenced through symbolic constants. 

This classification was used in the source code for a parser compiled under YACC, which 
would analyze each of the possible substrings. YACC is a standard Unix utility which 



converts a context-free grammar into a set of tables for a simple automaton which ex- 
ecutes an LALR(1) parsing algorithm [Aho 771. YACC generates a parser b m d  on the 
supplied grammar rules; when one of the rules is recognized, then user supplied code, an 
action, is invoked. 

Note that the categorization of commands by the types and numbers of their q m e n t s  
allows the parser to incorporate semantic knowledge as well as syntax, and dso con- 
veniently reflects the level of lexical description used for the recognizer. Thus, =Ben one 
speaks "Schedule a meeting with Barry," the recognizer should match agakst two 
templates, "schedule a meeting" and '.Barry." This is also reflected in the frame 
representation; although there are slots for both name and time, for example, saxe com- 
mands may require only one or the other of them. 

sentence : CMD 
I CIVID-N name 
1 name CMD-M 
/ CMD-I\TT n-and-t 
1 n-and-% CMD-NT 
I name CMD-NT time 
I t ime CMD-NT nane 

n-and-t : name time 
I t ime name 

name 

t in;e 

t od  

: NAME 
I NAME AND NAME 
I 

: DAY tod 
I t od  DAY 
I 

: HOUR 
I HOUR IiiiIN 

f 

Figure 2 :  Simplified example of YACC specifications. Rules for seritence 
fragments and user defined action routines are not included. 

When each rule is executed, associated C routines set variables to be used by the scoring 
algorithm and fill slots in the frame abstraction to reflect the particular instance of the 
rule. For example, the 'CMD-N name' rule (figure 2) applied on "Place a call to  Chris" sets 
the 'command' field to PHONE and the 'name' field to CHRIS. 



t4'hile the command syntax may seem limited when decomposed ht!o such rules, the 
vocabulary and grammar actually afford quite a bit of flexibility by allowing commands 
to be specified in several ways. For example, times could be of the form: Wednesday at  3,  
tomorrow afternoon, 3 o'clock tomorrow. etc. 

In addition to defining complete sentences, as in the examples above, the grammar also 
contains rules for fragments, or incomplete sentences. Examples of such might be "Barry 
tomorrow afternoon," C'tomorrow," or "piace a call." A speech parser must recognize 
such fragments, because the recognizer m a j  make a rejection error, and return such a 
fragment even if the user spoke a complete sentence. No further processing of the input is 
done at this level, as it is up the substring generator and scoring metric to accept the best 
choice, even if it is incomplete, for further consideration. 

8 Dialog Generation 

A robust parser is designed to extract as much information as possible from error-prone 
input. Detecting the errors allcivs the correct information in the input to filter throngh, 
but usilally enough has been lost that it is not possible to act on the user's request yet. 

The system was designed around a conversational model, in which dialog is employed to 
clarify ambiguous or incomplete inprrt. As the parser was designed specifically for speech 
input, the dialog generator employs speech output. Since the number of sentences which 
could be generated is quite large, a text-to-speech synthesizer was used instead of pre- 
recorded replies (which are more intelligible). 

The conversational model allows for a human initiated major task, or transaction, with a 
series of machine initiated sub-tasks, or questions, to clarify the user's intent. With each 
query, new information is gathered and added to the current frame. When a frame is 
finally complete, it can be passed off to an action routine which will perform the user's 
request. 

As part of this model, we incorporated the concept of indirect echoing [Hayes 831 as a con- 
firmation technique. A query by the computer contains as much injorrnation as possible 
about what has been assumed to be correct. Recognition errors may result in input which 
is syntacticdly correct but erroneous, and otherwise undetectable, such as substituting 
one name for another with a command requiring a person. Indirect echoing is an efficient 
way of alerting the user to such errors. 

The parser, under guidance of the substring selector and scoring algorithm, produces both 
the frame, with slots filled by specific instances from the vocabulary, and a simpler struc- 
ture wihich indicates what information is missing for this particcllar parse path. Because 
discrete speech is easier to recognize than connected speech, the dialog generator initiates 
a series of questions, each designed to elicit a single word response. Each question is 
phrased so as to echo as much as is known; or rather assumed, to be correct in the ut- 
terance. 



For example, if the user said "Schedule a meeting with Chris Friday afternoon" and the 
recognizer reported -'Schedule a meeting ... Friday.'' the  first question generated would 
be "With shorn do you wish to meet on Friday?" The query is generated from the frame 
information as a text string, end sent to the speech synthesizer to be spoken. 

The dialog generator can also be used to generate queries that are not directly related to 
completing a user's command. After a user's request is completed. an incomplete set of 
tokens can be programmatically passed to the parser, and hence to the dialog generator. 
This will cause a new question to be generated, initiating further dialog. 

For example, the user might initiate an interaction with "Schedule a flight to Chicago 
Friday morning." Yote that the machine tracks the user's whereabouts, so it is not neces- 
sary to give the city from which 1ou are leaving. The computer would first confirm this 
request, perform the appropriate action, and enter the event into its calendar database. 
The command "Schedule a return flight from Chicago" would then be passed to the par- 
ser, initiating the query "W-hen would you like to return from Chicago?", as flight 
scheiiuling commands require a place and a time for completion. In effect, incomplete 
user input is simulated to cause the proper prompt to be generated automatically by the 
dialog generator. 

9 Context in Sentence Completion 

In many cases it is possible to fill in the slots of an incomplete command through pre- 
existing knowledge in the system. No attempt was made to create a general knowledge 
based system, but rather to apply simple rules which extract information from the context 
of the dialog and current state of the system. Use of this Information can reduce require- 
ments on the speech recognition hardware and tends to make the system more conver- 
sational. 

For example, the command to disconnect a telephone conversation normally requires a 
name ( e g .  "Hangup Chris"), as our system assumes multiple audio connections. If there 
is only one current connection (to Chris), then saying "Hangup" is sufficient, as the name 
crin be deduced from context of the command. This not only lets the user say the short 
form of the command. but effectively increases the recognition rate if the name is spoken 
but not properly recognized. In a similar vein, "Schedule both of us a meeting" can be 
applied to the person on the phone, or to someone with v\ horn one is currently meeting. 

A more interesting example is illustrated by the "When is my flight?'5 command. If a 
destination city is not explicitly stated, the next airline reservation that occurs in the 
calendar is reported. However, if the user is on the phone with a person who lives in 
another city, the schedule is first scanned for flights to that city (unless there is a flight 
departing imminently, in which case it is reported). 



I0 Conclusions 

A robust parser can be built from a fairly simple set of building blocks by designing it for 
the specific types of errors encountered in speech recognition. A descriptive grammar 
keyed more toward function rather than strict syntax facilitates both the writing of rules 
by the progrxnmer and the generation of queries by the dialog subsystem. Use of indirect 
echoing in these queries by the computer helps the user detect and correct errors which 
the parser cannot find. 

It should be pointed out that this particular parser was designed to cope with the limita- 
tions of a particular recognition device. Many other sources of information could enhance 
the decision algorithm if available. Some of these include: a confnsabiliiy matrix for the 
vocabuiary, knowledge of the lengths of utterances or stress in the sentence to weight 
probabilities for each word, or second guess results on the words recognized. 

: 
a The authors believe, however, that many aspects of this parser/dialog generator combina- 
i tion are generalizable and could be utilized in a variety of h~man-computer voice inter- 

action scenarios. 
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