
A Robust Parser and Dialog Generator
for a Conversational Office System

Christopher Schmandt
Barry ~ r o n s '

Media Laboratory
Massachusetts Institute of Technology

- - Proceedings , AVIOS Conference, 19 86

' ~ n r r e n t l ~ with Kewlet~-Packard Laboratories.

This paper describes several key components of a speech based dialog system. This system
was developed to explore opportunities for speech recognition in an integrated office en-
vironment. In order to achieve adequate performance despite speech recognition errors, it
was necessary to develop a robust parser and a dialog generator which uses speech syn-
thesis to converse with the user. Although designed for a specific application and recog-
nition hardware, the underlying approach of the parser and dialog generator may be
generalized to facilitate human-computer voice interaction in other environments.

2 Motivation

As part of a series of ongoing research projects exploring applications of intelligent voice
telecommunications systems [Schmandt 85a, Schrnandt 841 the authors designed a voice
interface to an office workstation. This system, called the Conversational Desktop
[Schmandt 85b], used voice to interact with telephone, scheduling, airline reservation,

3 and audio memoranda functions.

The motivation for voice interactio~l with the office workstation is simply that speech is
such a natural way of communicating in this environment. An office has major telecom-
munication needs which are in a large part voice oriented, and voice may be used in dic-
tating or conversing with co-workers face to face.

As we were employing speech because of its ease of use, it was desirable to use connected
speech recognition because of its tolerance for more natural spoken input. Connected
speech recognition is more difficult than isolated word recognition, due in large part to
difficulties finding word boundaries and variation in the pronunciation of words in an
acoustical context [Oshika 751.

To use connected recognition effectively, an application must take the output of the
speech recognizer, consider it as a very noisy signal due to errors, and filter out the errors
from the words which were correctly recognized. At that point, a variety of techniques
may be used to try to interpolate the missirig words or interact with the user to complete
the transaction.

Our approach to the problem used a parser designed specificaily for speech and the errors
produced by a connected speech recognizer. The parser communicates with a dialog gen-
erator capable of phrasing a series of questions in order to gather enough correct input to
perform the user's request. This system employed a network of Sun Microsystems
workstations, and was written in C under the Unix operating system. For recognition we
employed an NEC DP-200 connected recognizer with a 150 word vocabulary.

3 Systxm Components

A parser is used to analyze speech input and detect errors: this analysis is based on z for-
mal description of the syntax of the set of input utterances. The parser also generates a
description of the input, in a frame-like [Schank 771 representation which is convenient for
both the dialog generator as well as action routines embedded in the application itself.
What is unusual about the parser described in this paper is that, in addition to the usual
syntax rules, it is designed to detect input errors and parse the remaining correct sentence
fragments.

When errors are detected, they usually i~d i ca t e that an insufficient number of the user's
spoken words have been recognized to complete the requested action. A rich a e a of
research, just touched in this project, is the use of semantic context to recover gaps in the
inplut. When this is insufficient, the system needs to ask questions to complete its xmder-
standing of the user's request.

3 The dialog generator is passed knofiledge about what is missing, in the form of the frame
structure (used in a sloi-and-f216er approach) generated by the parser. This structure has
fields which can be fiiled in with specific instances of various parts of speech, such as
names, dates, times, etc. While such informatim could be used to phrase a simple qtiery,
such as "W-hen?" or "?$ ith whom?", such questions may mask other errors which were
syntacticzlly correct (such as recognizing "Gary" for "Barry"). A more graceful approach
takes advantage of the information already stored in the frame to simultaneously provide
feedback to the ilser by echoing, such as " W h e n do you want to meet with Borry?" Be-
cause this echoing technique can generate many possible sentences, a text-to-speech syn-
thesizer is used for audio output and to guide the discourse.

4 Requirements for the Parser

The parser must analyze the error-prone speech recognition results and detect errors in
such a way as to identify those tokens most likely to be correct (i.e, most likely to have in
fact been spoken by the user). It must generate a re~resentation of this postulated sen-
tence, and invoke the dialog generator if the input is incomplete. The psrser must also be
re-entrant so as to continue analysis of the user's responses to system queries while retain-
ing the current context.

Speech recognition errors can be classified in three categories: substitution, rejection, and
insertion. A substztutfan error is one in which some number of words are spoken and the
same number are recognized, but one or more of them is recognized incorrectly. A
rejection error is one in which less words are recognized than were spoken, i.e. one or more
input words were simply not recognized. -4n insert ion error is one in which more words
are reported than were spoken, perhaps because one input word was recognized as seseral
words or perhaps breath noise was matched against a word.

Most conventional natural language parsers [Winograd 831 cannot cope with any of these
problems, because they assume well formed input. Rather than detection of errors, their

sc;le task is to correctly determine the syntactic relationships of the input tokens. This is
inadequate for voice input.

Previous s p e e c h parsers [Levinson 781 srzccessfu!lj dealt with substitution errors, by con-
sidering a number of possible chokes for each word. Since Levinson's parser dealt with
discrete speech in which each word has to be spoken separately, the parser assumed that
the number of input tokens was correct and would fail if an insertion or rejection error
occurred.

It should be noted that the parser described herein \\-as designed to cope with one par-
ticular connected speech recognizer (the KEC DP-200) and as such is constrained by
many limitations of this particular de-~ice. Features of other recognition hardware could
be employed to improve our parser and dialog generetor. Particular limitations included:

e The lack of any second guess information for each ward or sentence.

The lack of ar;y measwe of the recognizer's confidence in its selection for each
word.

e Inadeqgate subsetting capability. Subsetting allows recognition to be limited
to a particular set of words at any moment, thereby improving recognition.

e No indication of the relative difficulty of discriminating between various words
in the vocabidary (confusability matrix).

Note: we use t'he term "words" relatively loosely here. Actually, we refer to an utterance,
or a single template in the recognizer's wcabulary. To improve recognition, we often
trained a phrase, such as "pIace a call" as a single, longer template rather than three
separate ones. When this phrase is spoken it would generate a single token, and was dealt
with in this manner by the parser

5 Parser Overview

A parser designed for speech input must cope with the various types of recognizer errors
with no additional information about the input other than the tokens and the order in
which they were returned from the recognizer. To achieve this, o s r parser has two unique
aspects:

1. To cope with insert ion errors, we consider a11 subsets of the tokens returned by
the recognizer. This will also detect those slzbslituticrn errors in which the sub-
stituted word is syntactica!iy incorrect. For example, if "Place a, call to
Barry5'u7as spoken, the parser would detect a recognizes errnr of "Place a call
to lunch" but not of ""Puce a call t o Gclry. "

2. To cope with reject ion errors, our grammar accepts syntactically correct

sentence fragments as well as complete sentences. This retains information
about what was correctly recognized even though it is incomplete.

There are two major software components in our system. The higher level extracts subsets
of the tokens and calls the lower level repeatedly to test them against the grammar. A
scoring metric is employed to select that subset which is most likely t,o correspond to what
was spoken. A pruning technique is employed to minimize search time.

The lower level is a set of grammar rules. This level is written for YACC (see section 7)
and simply applies a set of rules to analyze its input. While analyzing the output from
the recognizer, a frame-like representation of the input is built up, which includes an in-
dication of which slots in the frame are missing to complete the command. This lower
level parser returns information that is used by the scoring metric in the higher level.

2 6 Substring Extraction and Evaluation

I Insertion errors cause spurious tokens to appear in the output from the speech recognizer.
Substitution errors replace correct tokens with incorrect ones. In both cases, we wish to
detect the incorrect tokens so as to continue processing only those believed to be correct.
This can be accomplished by considering all substrings (ordered subsets) of the recognizer
output, and selecting the best by a scoring algorithm.

For example, if the string ABCD were returned from the recognizer, the following substr-
ings would be considered: ABCD, ABC-, AB-D, A-CD, -BCD, AB--, etc. Each substring is
analyzed according to the grammar (see section 7), to determine whether it is syntac-
tically correct. For each syntactically correct substring, a score is computed to determine
the most likely match between the input and what the user intended

,4ny substring which is either a sentence or a sentence fragment is a possible candidate.
The correct candidate is chosen by applying a scoring metric based on the folhving:

i. Completion: a complete sentence is preferred to a fragment, as one is more
likely to speak a complete command to the machine.

2. Namber: of two possible substrings: the one with the larger number of tokens
will be selected.

3. Adjacency: additional weight is given to adjacent tokens. For example, if
the original input was ABCD, the substring ABC- has a higher adjacency score
than AB-D.

Adjacency is a pawerfui metric specifically f ~ r co~nected speech, because a significant por-
tion of the problem of connected recognition is segmentation, finding word boundaries. If
it is postulated that the second token in an u t t e raxe is correct, it is more Likely that the
first and third tokens d l also be correct because at least one of each of their boundaries
must have been determined correctly [Rabiner 81, Zue 851.

An important point which makes this scheme useful is the definition in the grammar sf
sentence fragments in addition to complete sentences. This implies that if ABC is a legal
and complete sentence, then all substrings including A-c' (which has a token missing from
the middle) are considered legal, and scored using the same metric. The motivation is
correct acceptance of AB if the recognizer returns an incorrect sentence ABX. Even thoilgh
AB is incomplete, it; is an accurate indication of a portion of the speaker's i n t e ~ t azd
sholdd guide further dialog.

7 Grammar and Knowledge Representation

Each phrase in the vocabulary is a particular i n s f a n e e of a small number of syntactic
categories. For example, "Chris5' is an instance of category NAME, and "place a calf"
(recognized as a single utterance) is an instance of category CIViD-NAME, a command which
requires a NAME for completeness. In general, this grammar was structured such that the
category to which a command belongs indicates the number and types of the arguments
to the commarrd. Examples of these classes include CMD-TIME and CIVID-NAME-AND-TIME
(an instance of which is "schedule a meeting").

This categorization was stored in human readable form in a vocabulary file, which in-
cludes the prompts used to train the recognizer and generate dialog. The file also contains
symbolic constants suitable for programmatic access to the categories and instances for
each word (figure I).

/**Utterance Type Instance * a /

monday
t ~ e a d a y

-t DAY -i 1
-t DAY -i 2

-t HOUR -i 20
-t KOUR -i 11

- t NAME -i CHRIS
-t NAME -i BARRY

clear -t CMD -i CLEAR

place a call to -t CMD-M -i PHONE
hangup -t CMD-N -i KkItGiiP

schedule a meeting - t CMD-NT -i MEET

Figure 1: Sample portion of a vocabulary file. Note that Types and
Instances are referenced through symbolic constants.

This classification was used in the source code for a parser compiled under YACC, which
would analyze each of the possible substrings. YACC is a standard Unix utility which

converts a context-free grammar into a set of tables for a simple automaton which ex-
ecutes an LALR(1) parsing algorithm [Aho 771. YACC generates a parser b m d on the
supplied grammar rules; when one of the rules is recognized, then user supplied code, an
action, is invoked.

Note that the categorization of commands by the types and numbers of their q m e n t s
allows the parser to incorporate semantic knowledge as well as syntax, and dso con-
veniently reflects the level of lexical description used for the recognizer. Thus, =Ben one
speaks "Schedule a meeting with Barry," the recognizer should match agakst two
templates, "schedule a meeting" and '.Barry." This is also reflected in the frame
representation; although there are slots for both name and time, for example, saxe com-
mands may require only one or the other of them.

sentence : CMD
I CIVID-N name
1 name CMD-M
/ CMD-I\TT n-and-t
1 n-and-% CMD-NT
I name CMD-NT time
I t ime CMD-NT nane

n-and-t : name time
I t ime name

name

t in;e

t od

: NAME
I NAME AND NAME
I

: DAY tod
I t od DAY
I

: HOUR
I HOUR IiiiIN

f

Figure 2 : Simplified example of YACC specifications. Rules for seritence
fragments and user defined action routines are not included.

When each rule is executed, associated C routines set variables to be used by the scoring
algorithm and fill slots in the frame abstraction to reflect the particular instance of the
rule. For example, the 'CMD-N name' rule (figure 2) applied on "Place a call to Chris" sets
the 'command' field to PHONE and the 'name' field to CHRIS.

t4'hile the command syntax may seem limited when decomposed ht!o such rules, the
vocabulary and grammar actually afford quite a bit of flexibility by allowing commands
to be specified in several ways. For example, times could be of the form: Wednesday at 3,
tomorrow afternoon, 3 o'clock tomorrow. etc.

In addition to defining complete sentences, as in the examples above, the grammar also
contains rules for fragments, or incomplete sentences. Examples of such might be "Barry
tomorrow afternoon," C'tomorrow," or "piace a call." A speech parser must recognize
such fragments, because the recognizer m a j make a rejection error, and return such a
fragment even if the user spoke a complete sentence. No further processing of the input is
done at this level, as it is up the substring generator and scoring metric to accept the best
choice, even if it is incomplete, for further consideration.

8 Dialog Generation

A robust parser is designed to extract as much information as possible from error-prone
input. Detecting the errors allcivs the correct information in the input to filter throngh,
but usilally enough has been lost that it is not possible to act on the user's request yet.

The system was designed around a conversational model, in which dialog is employed to
clarify ambiguous or incomplete inprrt. As the parser was designed specifically for speech
input, the dialog generator employs speech output. Since the number of sentences which
could be generated is quite large, a text-to-speech synthesizer was used instead of pre-
recorded replies (which are more intelligible).

The conversational model allows for a human initiated major task, or transaction, with a
series of machine initiated sub-tasks, or questions, to clarify the user's intent. With each
query, new information is gathered and added to the current frame. When a frame is
finally complete, it can be passed off to an action routine which will perform the user's
request.

As part of this model, we incorporated the concept of indirect echoing [Hayes 831 as a con-
firmation technique. A query by the computer contains as much injorrnation as possible
about what has been assumed to be correct. Recognition errors may result in input which
is syntacticdly correct but erroneous, and otherwise undetectable, such as substituting
one name for another with a command requiring a person. Indirect echoing is an efficient
way of alerting the user to such errors.

The parser, under guidance of the substring selector and scoring algorithm, produces both
the frame, with slots filled by specific instances from the vocabulary, and a simpler struc-
ture wihich indicates what information is missing for this particcllar parse path. Because
discrete speech is easier to recognize than connected speech, the dialog generator initiates
a series of questions, each designed to elicit a single word response. Each question is
phrased so as to echo as much as is known; or rather assumed, to be correct in the ut-
terance.

For example, if the user said "Schedule a meeting with Chris Friday afternoon" and the
recognizer reported -'Schedule a meeting ... Friday.'' the first question generated would
be "With shorn do you wish to meet on Friday?" The query is generated from the frame
information as a text string, end sent to the speech synthesizer to be spoken.

The dialog generator can also be used to generate queries that are not directly related to
completing a user's command. After a user's request is completed. an incomplete set of
tokens can be programmatically passed to the parser, and hence to the dialog generator.
This will cause a new question to be generated, initiating further dialog.

For example, the user might initiate an interaction with "Schedule a flight to Chicago
Friday morning." Yote that the machine tracks the user's whereabouts, so it is not neces-
sary to give the city from which 1ou are leaving. The computer would first confirm this
request, perform the appropriate action, and enter the event into its calendar database.
The command "Schedule a return flight from Chicago" would then be passed to the par-
ser, initiating the query "W-hen would you like to return from Chicago?", as flight
scheiiuling commands require a place and a time for completion. In effect, incomplete
user input is simulated to cause the proper prompt to be generated automatically by the
dialog generator.

9 Context in Sentence Completion

In many cases it is possible to fill in the slots of an incomplete command through pre-
existing knowledge in the system. No attempt was made to create a general knowledge
based system, but rather to apply simple rules which extract information from the context
of the dialog and current state of the system. Use of this Information can reduce require-
ments on the speech recognition hardware and tends to make the system more conver-
sational.

For example, the command to disconnect a telephone conversation normally requires a
name (e g . "Hangup Chris"), as our system assumes multiple audio connections. If there
is only one current connection (to Chris), then saying "Hangup" is sufficient, as the name
crin be deduced from context of the command. This not only lets the user say the short
form of the command. but effectively increases the recognition rate if the name is spoken
but not properly recognized. In a similar vein, "Schedule both of us a meeting" can be
applied to the person on the phone, or to someone with v\ horn one is currently meeting.

A more interesting example is illustrated by the "When is my flight?'5 command. If a
destination city is not explicitly stated, the next airline reservation that occurs in the
calendar is reported. However, if the user is on the phone with a person who lives in
another city, the schedule is first scanned for flights to that city (unless there is a flight
departing imminently, in which case it is reported).

I0 Conclusions

A robust parser can be built from a fairly simple set of building blocks by designing it for
the specific types of errors encountered in speech recognition. A descriptive grammar
keyed more toward function rather than strict syntax facilitates both the writing of rules
by the progrxnmer and the generation of queries by the dialog subsystem. Use of indirect
echoing in these queries by the computer helps the user detect and correct errors which
the parser cannot find.

It should be pointed out that this particular parser was designed to cope with the limita-
tions of a particular recognition device. Many other sources of information could enhance
the decision algorithm if available. Some of these include: a confnsabiliiy matrix for the
vocabuiary, knowledge of the lengths of utterances or stress in the sentence to weight
probabilities for each word, or second guess results on the words recognized.

:
a The authors believe, however, that many aspects of this parser/dialog generator combina-
i tion are generalizable and could be utilized in a variety of h~man-computer voice inter-

action scenarios.

II Acknowledgement

This work has been supported by NTT, the Nippon Telegraph and Telephone Corpora-
tion, as part of ongoing research into intelligent voice telecommunications. Further
hardware support was supplied by NEC, Sun Microsysterns, Speech Plus, and Digital
Equipment Corp.

12 References

[Aho 771 Aho, Alfred V. and Ullman, Jeffrey D.
Principles of Compiler Design.
Addison-Wesley, 1977.

[Hayes 831 Hayes, P. and Reddy, R.
Steps Toward Graceful Interaction in Spoken and Written Man-

-Machine Communications.
Int'l J . h4an-Machine Studies 19231-284, 1983.

[Levinson 781 Levinson, S.E.
The Effects of Syntax Analysis an Word Recognition Accuracy.
Bell System Technical Journal 57(5):1627-1644, 1978.

[Oshika 751 Oshika, B.T. et. al.
The Role of Phonological Rules in Speech Understanding Research.
IEEE Transactions on, A caustics, Speech, and Signill Precessing

ASSP-23(1):104-112, 1975.

[Rabiner 811 Rabiner, L. and Levinson, E.
Isolated and Connected P?7ord Recognition -- Theory and Selected Ap-

plications.
IEEE Transactions on Communications 25(5):621-659, 1981.

[Schank 771 Schank, R.C. and Ableson, R.P.
Scripts, Plans, Goals, and Understan&ng.
Lawrence Erlbaum Press, 1 977.

[Schmandt84] Schmandt,C.andArons,B.
-4 Conversational Telephone Messaging System.
IEEE Trans. on Consumer Electr. CE-30(3) :mi-xxiv, 1984.

[Schmandt 85a] Schmandt, 6 . and Arons, B.
Phone Slave: A Graphical Telecommunications Interface.
Proc. of $he Soc. for Paformation Displag 26(1):79-82, 1985.

[Schmandt 85b] Schmandt, C., Arons, IS., and Simmons, C.
Voice Interaction in an Integrated Office and Telecommunications En-

: vironment .
In 1985 Conjerence Proceedings. American Voice Input/Output

Society, 1985.

[Winograd 831 Winograd, T.
Language as a Cognitive Process - Syntax.
Addison- Wesley, 1983.

[Zue 851 Zue, V.W.
The Use of Speech Knowledge in Automatic Speech Recognition.
Proceedings of the IEEE 73(11):1602-1615, 1985.

