
AN AUDIO AND TELEPHONE SERVER FOR MULTI-MEDIA WORKSTATIONS

Chris Schmandt - Michael A. McKenna

Media Laboratory - Massachusetts Institute of Technology

Abstract

Workstation utility may be enhanced by the addition of
audio and telephony functions for a number of applications,
such as voice mail, multi-media documents, and computer
conferencing. We outline the requirements of these appli-
cations, and present an audio server architecture employ-
ing a personal computer with a disk and speech-processing
board as a server dedicated to the workstation. The func-
tional interface between client and server is described, as
well as our motivation for this specific server approach with
particular emphasis on user interface considerations. We
discuss our experience with this server architecture and
contrast it with alternate architectures.

1 Introduction

This paper describes the design principles and architecture for a
dedicated audio and telephone server to a general-purpose work-
station. This work was done as part of a larger research agenda
of exploring uses of audio, with particular emphasis on user inter-
face, in applications such as voice mail and telephone messaging
systems, conferencing, dictation, and audio document editing.

Audio and telephone services can be used for a variety of func-
tions on the workstation. Telephony functions are the natural
extensions of tools such as on-line directories of frequently called
numbers. Voice mail and telephone messaging complement text-
based electronic mail systems and may allow retrieval of messages
from remote locations using ordinary telephones. Remote access
to on-line databases over voice lines can be provided by DTMF
(Touch-Tone) decoding and text-to-speech synthesis. Audio may
be used for documents, including both dictation as well as multi-
media documents; editing, transmission, and perusal capabilities
are all required. Conferencing scenarios, involving multiple users
on multiple workstations cooperating on a task, necessitate trans-
mission and switching of audio. Human-computer interfaces may
be improved by the use of natural dialog, achieved through the
use of speech recognition and synthesis.

Our goal was to build a flexible and moderately inexpensive
means of adding audio and telephone functions to our worksta-
tions. We desired to interface various voice capabilities (digi-
tal recording, speech recognition, speech synthesis) and the tele-
phone to the ordinary software development environment in a
manner that would allow rapid prototyping. Our design deci-
sions were influenced by the need to build something realizable
in the short run and extensible in the long run. Because of the

computational resources available in our laboratory, we wished
to be able to use audio functions from a number of different kinds
of workstations, such as Suns, HP Bobcats, and Symbolics lisp
machines. In addition, we wanted to maintain flexibility to in-
corporate new speech-processing hardware. We did not make
any attempt to build the least expensive solution in terms of
production costs, although we will discuss comparative costs of
alternative solutions.

Our approach to audio/telephone service is an IBM PC-based
server, utilizing various commercial speech and telephone inter-
face cards. The server and workstation communicate over a se-
rial line. The server is dedicated to a single workstation and is

assumed to be in close proximity to the microphone and speak-
ers. Longer distance audio transmission is done using ordinary
switched analog telephone lines. A high-level command structure
was designed to isolate the workstation from audio-processing
and storage requirements. The audio file system resides on the
server. It has been imperative to provide efficient low latency real
time audio operations; the server architecture must not interfere
with responsiveness.

In the following sections we will outline the service require-
ments of these various applications of audio and present a server
architecture and functional interface to the client designed to sat-
isfy these requirements. We will indicate our motivations for this
architecture and for the use of standard telephone lines for audio
transport, especially during conferencing. We will also discuss a
number of alternate server architectures.

2 Service Requirements

The hardware, protocol and architecture of the audio component
to be added to a workstation depends upon the applications for
which the medium is to be used. This section will consider several
classes of applications and their corresponding functional require-
ments. In the next section we will describe an implementation
designed to serve all these applications; a partial implementation
would be adequate for specific limited situations.

2.1 Conventional telephone applications

A number of applications seek to integrate telephones and work-
stations. These include placing outgoing calls from an on-line
database (selected by menu or perhaps in response to a piece of
electronic mail) and voice message functions such as answering

~ ~ ~ c ~ e d i n ~ s , Second IEEE conference on Computer ~orkstations. -

IEEE, - Santa Clara, CA, 1988

I '
machines of various levels of intelligence. A phone line interfa~e
is required to detect incoming and place outgoing calls.

Simple audio functions to provide recording and playback of
sound files allow message taking to support answering machine
or voice mail applications. Recording is facilitated if pause de-
tection is provided to enable voice-activated variable-length mes-
sages (voice-activated switch). Lengths of sound files may be
used for the sake of graphic display of pending messages. DTMF
decoding may be useful to allow the workstation's owner access
of messages from remote sites by phone, as with "beeperless re-
mote" answering machines.

2.2 Remote access of text databases

Closely related to external access to audio databases, such as
voice messages, is remote retrieval of text information from a
workstation. Although conceptually similar, text access requires
different audio capabilities and provides an interface to differ-
ent types of data. Such exchanges may include electronic mail
perusal [8,16f (particularly useful if an audio message can be
recorded as a reply), database query, or order entry.

These functions again require the telephone line interface,
ring detect, etc. DTMF decoding is required for input, and text-
to-speech synthesis for output. Because speech output is slow, in-
terruption by the user must always be possible. Local acronyms,
jargon, and proper names may require a text-to-sound excep
tions dictionary, which might be stored most conveniently in the
synthesizer.

2.3 Audio documents

Audio may be used for documents, either alone or in a multi-
media context including text, graphics, and image data types.
Both authoring and perusal of such documents must be consid-
ered.

Audio documents obviously require recording and playback
capabilities. In addition, especially for editing or annotation, 'it
is useful to be able to play back or record smaller pieces of the en-
tire sound. Both the editing and perusal software probably need
to know the length of the audio segments for display purposes.
Sound file editing functions must be provided, such as cut, paste,
and replace [1,11,15]. These functions must incorporate the de-
tails of whatever speech compression algorithm may have been
used to record the sound.

Transmission of audio documents may be done over analog
phone lines or digital computer networks. In the latter case,
transport protocols must be provided, but, as with electronic
mail, this need not be real time. For analog transmission, some
handshaking would be needed between siteKeither through the
computer network to set up the call, or perhaps using a modem
or DTMF signals to preface the analog transmission with header
information.

2.4 Computer conferencing

Computer conferencing is concerned with allowing multiple users
of workstations to exchange information and work together, with
some level of connectivity maintained between workstations dur-
ing the conference [6,7,10,21,22]. These conferences may be multi-

media, including video or facsimile links as well as audio, al-
though the audio is probably the primary channel [12]. These
conferences are real time shared workspace events, not discus-
sions carried on with a number of parties through mail distribu-
tion lists.

In this environment the audio task consists of establishing
a real time link between users at their workstations. This link
may be analog or digital, and may use computer or telephone
networks. Although some researchers argue for the need to syn-
chronize audio with other media being transmitted (video, mouse
motion, screen display), we believe this is either unnecessary (in
the event that all media are being transmitted in real time) or
counter-productive (there is no need to always slow down all
channels to the slowest channel, as humans will compensate with
appropriate behaviors when needed). For this reason, we have
opted to use the telephone network, accessed and routed through
the phone line interface.

3 Server Architecture

Our implementation of an audio/telephone system to handle the
above service requirements consists of a PC-based server using
appropriate speech and telephone interface boards and communi-
cating with its client over a 9600 baud asynchronous serial inter-
face (see figure 1). The server is dedicated to a single workstation,
so its audio is routed to that workstation's location. The server
has its own disk on which to store speech files, as well as other
information such as user templates for speech recognition.

The server is a standard 5 MHz IBM XT. We have used speech
cards from Dialogic (phone interface and voice digitization with
ADPCM) and Texas Instruments (optional phone interface, digi-
tization using a variety of compression algorithms, speech recog-
nition, and text-to-speech). Server software is written in C with
assembly language as needed and runs under MSDOS with an
added interrupt-driven serial 110 handler. Client software has
been written for Sun workstations and, partially, for Symbol-
ics computers. One of our former research computers, a Perkin
Elmer 3230 running a homemade operating system (Magic 6),
was also configured as a high-end server for some applications.

I

client I
I

server

I

I

audio
library - 0 I I

I u
serial interface

Figure 1: The basic server-client architecture

The protocol between client and server is designed to mini-
mize communication requirements and hide device-dependent de-
tails of server configurations. Most commands are simple byte-
oriented command/acknowledge sequences, with arguments such
as strings (file names) and integers (file lengths). A simple packet
protocol provides for burst-oriented transfers such as uploading
a sound file; the host specifies the block size depending on how
well it can handle bursts of serial input.

The server supports the construct of an open file which may
stay open for a series of operations. Portions of that file may re-
side in memory temporarily as a buffer. The server may support
multiple channels, each associated with a particular hardware
component (board, phone line, AID). However, channels may
also be virtual, sharing hardware and independent at the soft-
ware level only. Virtual channels each maintain their own buffer
in memory, as well a descriptor specifying an open file. Events
defined on virtual channels may be queued to minimize latency
(see below) or to support modularity in client software.

4 Server Functions

The server supports a number of functions for audio and tele-
phone service at various levels (see figure 2). This section de-
scribes those functions including several improvements in progress
or a t the planning stage at the time of this writing. Note that
each function will be implemented as completely as possible for a
particular hardware device. For example, independent functions
are provided to control playback and recording amplification; on
some boards these may be identical, while on others they may
have no effect a t all.

4.1 Audio functions

Simple audio functions: Simple audio control begins with
PL~~(sound-name), RECORD(SOU~~-name), PAUSE, CONTINUE,
and HALT. These regulate the flow of data between files and
sound processing hardware such as digitallanalog converters. Am-
plification control is provided through VOLUME (value) for play-
back and GAIN (value) for recording. CALIBRATE allows the
server to set gain appropriately on devices with Automatic Gain
Control (AGC). SPEED (value) controls the rate of playback.
METHOD (value) selects a speech rate or coding algorithm for
recording, allowing the host control over the disk space/voice
quality tradeoff where applicable (not yet implemented).

Audio s ta tus functions: Several functions provide access to
status information about sounds and the current audio- rocessing B
state. GET-LENGTH (sound-name) returns the length of the
sound; all times are in milliseconds. DONE returns a flag indi-
cating whether the current play/record operation has finished.
WHERE returns a value indicating how many milliseconds of
the current sound have been played or recorded; in conjunction
with GET-LENGTH this can be used for graphic displays show-
ing progress while the sound is played [15,17]. DURATION (value)
sets the maximum time to record a sound if a HALT or PAUSE
command is not received.

Specialized audio functions: Several specialized functions
have been written for particular applications. One set of func-
tions allows control over automatic pause detection and silence
removal during recording, as in voice-activated tape recorders.
PAUSE-DETECTION (flag) enables pause detection. PAUSE- VAL-

telephone functions speech
board

audio file functions wq
Y Y

Figure 2: Server functions and components

UES (start-value, stop-value) defines the length of two time pe-
riods. The first period is the initial timeout: if audio is not de-
tected in this time period, recording is aborted. The second value
defines the length of continuous silence that terminates record-
ing. CLIP removes the leading and trailing silences from sounds
recorded with pause-detection enabled; this saves disk space and
allows a crisper user interface by avoiding playback of silence
later.

Some audio-processing functions provide specific functions
used for acoustic analysis in speech research or for displays for
audio editors (see section 5.3). The functions may be applied
to portions of an audio data file, with their results sent to the
host. MAGNITUDE returns average magnitude, ENERGY returns
power, and PITCH returns fundamental frequency.

U P L O A D - S O U N D (S ~ U ~ ~ - ~ ~ ~ ~) and D O W N L O A D ~ O U N D (~ ~ U ~ ~ -
file) functions must be provided for the sake of transmitting an
audio file digitally over the computer network. They use the
packet transfer mode to move the actual sound data between
the client and server. Of course, a downloaded file will not be
playable on a server that does not support the same speech coding
algorithm as that used when the sound was originally recorded.
Note that we do not use UPLOAD-SOUND for audio editing; this
is instead supported at the server level (see 'Audio editing func-
tions' below) to isolate the client from knowledge about the de-
tails of speech coding.

Sound file system functions: Sounds are stored in the
file system of the server, and although details of that imple-
mentation are not needed by the client, some general file sys-
tem functions are required. NAME (sound-name) opens a sound
file for some series of operations, such as editing. ALLOCATE
(sound-name, value) reserves space for a particular sound file,
and was convenient for a particular audio file system that forced
sound to occupy contiguous disk blocks for transfer efficiency.
Standard file system commands include CHANGE-DIRECTORY
(directory), C~~A~E(sound..name), REMOVE(SOU~~-name), and
C0P~(source sound-name, destination sound-name). A DIREC-
TORY function to get a list of files in the current directory is cur-
rently being implemented, as are MAKEDIRECTORY and RE-
MOVE-DIRECTORY.

Audio editing functions: Sound files are stored on the
server, and we desire to avoid uploading them to the host. Some
audio editing functions are provided for on the server, to be con-
trolled by user interfaces written on the client. LOADBUFFER
reads all or part of a file into a specified section of a memory
buffer. SAVEBUFFER writes all or part of a memory buffer to
a file. COPY-BUFFER writes a section of one buffer to another.
SET-BUFFER-LENGTH allocates memory for buffers. Higher-
level operations such as cut and paste are built from these pro-
tocol primitives.

In order to interactively edit sounds, it is necessary to play
segments of larger sound files. START (value) and STOP (vahe)
set the time bounds for PLAY operations. Another aid to editing
is a visual display. The MAGNITUDE and PITCH and ENERGY
commands discussed previously can be used to obtain data for
graphic displays (see section 5.3).

4.2 Telephony functions

Outgoing call functions: A simple set of functions controls
the placement of outgoing phone calls. HOOK takes the phone
on or off hook to initiate or terminate a call. DIAL (num-
ber-string) causes a number to be dialed, typically with DTMF
signalling. CALL-PROGRESS returns the current call completion
status (ringback, busy, dialtone, "answer", etc.). The sophistica-
tion of this information depends on the level of signal processing
supported by the board and may also depend on characteristics
of the local PBX.

Incoming call functions: Incoming calls need to be de-
tected and answered, and for interactive functions, DTMF dig-
its need to be decoded. Both non-blocking (~011) and block-
ing (sleep) versions are provided for flexibility. POLL-RING and
WAIT-RING detect ring, while POLL-TONE and WAIT-TONE
return the value of a single DTMF digit if one occurs. The HOOK
function described above answers the phone.

Audio rout ing functions: For some functions, such as con-
ferencing or hands-free phone operation, one wishes to connect
the phone to the local audio environment using microphones and
speakers. In other cases, such as an answering machine, it is a p
propriate to disable the microphone and probably the speaker as
well, except for call screening. The MONITOR function sets flags
to enable microphone and/or speaker connection to the phone
line. Some boards do not allow these to be switched indepen-
dently.

4.3 Speech recognition and synthesis functions

We are expanding the audio server functions to support speech
recognition and synthesis. More advanced speech and phone
boards are built around digital signal processor components, such I
as the Texas Instruments TMS320 family of microcomputers. In
addition to speech coding and advanced call progress functions,
these boards may support recognition and synthesis algorithms.
In such cases the server should support these as well.

Speech recognition: The local disk on the dedicated server
is especially useful for speech recognition, which involves train-
ing and storing vocabulary reference templates. If high-speed
transfer between word template storage and recognizer memory
is available, dynamic vocabularies may be implemented. Tem-

plates may be changed in real time as a function of user input to
provide recognition for a larger number of words (201. The key
requirement is high-speed transfer between disk and recognizer
memory.

D o w N L o A D ~ V O C A B U L A R Y (~ ~ C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~) and UPLOAD-
VOCABULARY (vocabulary-name) provide for transfer of vocab-
ularies between disk and the recognizer memory. TRAIN (word-
number) and UPDATE (word-number) provide for the initial train-
ing and later modification of previously trained templates; in
some implementations these may be identical, while in others
the latter may invoke a template-averaging function. RECOG-
NIZE causes the server to return a stream of word numbers as
they are recognized until a halt command is received. RECOG-
NIZE-ALL returns a packet for each word, with device-specific
recognition information such as second word guess and quality
of the match. VOOAB-LENGTH reports how many words are in
the currently loaded vocabulary.

Speech synthesis: Work is in progress to implement a set of
functions providing access to speech synthesis (text-to-speech).
In addition to entering synthesis mode and receiving a stream
of text to synthesize, synthesizers generally also support func-
tions to control speed, pitch, "voice" (speech style), stress, and
phonemic input mode. We have not yet decided whether to sup-
port these as separate functions, or simply have the client embed
them in the serial stream as escape sequences to remain compat-
ible with commercial stand-alone synthesizers. In any event it is
most useful a t the client end to support functions such as SPEAK-
ING-RATE and BASELINE-PITCH as separate entries. The client
also has to know when the server has finished speaking text, to
allow synchronization with other events.

4.4 Latency-Reducing Functions

Speed is a serious drawback of audio as a data medium, and
responsiveness is needed for any good user interface. In isolat-
ing the workstation from audio operations, an additional delay is
introduced into a play or record operation. As it has been essen-
tial in our work to minimize this delay, two levels of functionality
have been added to the basic server audio operations to minimize
latency.

At the lower level, latency may be reduced through PRE-
PARE-PLAY and PREPARE-RECORD functions, which act on the
currently specified sound files. PREPARE-PLAY causes the file to
be opened, the associated memory buffer to be filled from disk,
and hardware data buffers to be preloaded if possible. PRE-
PARE-RECORD creates the file (if necessary), opens it, and al-
locates memory buffers. The associated CONTINUE-PLAY and
CONTINUERECORD functions simply enable the board to start
moving data between buffers and hardware. A number of inde-
pendent channels can be prepared and then played in sequence
or as needed.

This suggests the next layer of latency reduction, that of
queues. To play two sounds consecutively without queues, one
plays the first one, prepares to play the second one, then sits in
a loop polling the server until the first play is finished, a t which
point the second play is continued. But even with the second file

already open and preloaded into memory, we have found that the
latency for the client to detect completion of the asynchronous
play event on the server is excessive under UnixTM. The so-

lution is to set up a series of virtual channels and use QUEUE
(ehanneLnumber) to establish an ordered series of events, which
may be combinations of plays and records (with pause detection
or maximum length completion). The DONE command is then
specific to a given channel, and can be used at any time to tell
which events have been completed. New events may be added
to the queue while in the process of performing currently loaded
events, and the queue may be flushed (in its entirety) with the
HALT command.

The combination of advance preparation and queues of server
events allows a series of audio events to occur with a minimal
initial delay and at the maximum throughput provided by a par-
ticular server configuration. Queues are simple linear sequences
with no conditionals, branching, or waits for input. Events may
be appended to the queue while queue processing takes place, but
may be removed only by flushing the entire queue. The work-
station should provide the appropriate environment for more so-
phisticated audio operations, especially as queues free it from
repetitive polling at a play-by-play level.

5 Design Considerations

We were driven to build the server described in this paper by
our need to add audio and telephony functions to workstations
for the sake of building interactive speech systems. We faced
a number of design questions: whether to add a speech board
to the workstation or whether to use a dedicated but separate
server, how to route real time audio, and where to locate the
audio file system. Our PC based server was chosen not ,because
of a theoretical analysis which indicated it was the best choice,
but because of practical constraints of cost, required flexibility,
and the possibility of gradual development and refinement over
time to suit the needs of different projects.

The reason this paper is being published is that our design
proved workable and we desired to share our experiences with
others facing similar decisions, so in this section we attempt to
justify some of our choices, including the motivation for a server
and reasons for our particular server architecture. We will also
discuss some telephony issues, as well as some important design
constraints in terms of division of functionality and data struc-
tures between the client and server. In the following section, we
will briefly mention some alternative server architectures which
should be considered in evaluating our design in one's own con-
text.

5.1 Motivation for a Server and Our Architecture

To integrate audio with the workstation, we had two main op-
tions: a signal processing board as part of the workstation or a
server which is dedicated to a single workstation, and contains a
speech board and possibly its own local disk. In this section we
present our reasons for choosing a server approach, and discuss
some of the reasons for choosing our particular PC based server
architecture.

Audio as a data medium requires either lots of real time data
compression or lots of storage. The microprocessors employed in
workstations are poorly suited for intensive digital signal pro-
cessing, which can be done much more efficiently by special-
ized microcomputers designed for executing these tasks. Diskless
networked workstations are becoming more popular as a cost-

effective solution to large operating systems, but moving large
audio files between such nodes and their disk servers with low la-
tency can be difficult, especially when other data is moving over
the network.

Audio record and playback functions are inherently real time,
with necessity to keep a constant flow of data between hardware
digital/analog converters, buffers in memory, and files stored on
disk. Pause detection for voice-driven recording requires real time
access to audio data to detect energy levels and time pause du-
rations. Unfortunately, a good real time operating system may
well be a poor software development environment. Unix with all
its tools is typically ill-suited for sustained low latency 110. A
separate server allows the best of both worlds, and leaves enough
free cycles on the workstation to support a sophisticated yet re-
sponsive user interface.

Having decided to work with servers, a PC-based, dedicated
system with a local disk allowed rapid and flexible development.
As the servers are based on off-the-shelf hardware we have saved
considerable development costs and were allowed to begin work
on our real research agenda into the use of audio at a much ear-
lier stage than if we had built our own boards to run directly
on the workstations. In fact, client and server software was (and
continues to be!) developed as new tasks require enhanced func-
tionality.

The PC-based server allows us optimal hardware and soft-
ware flexibility. On the hardware side, there are a large number
of commercial products for the PC bus supporting telephone in-
terfaces, signal processing, speech recognition, speech synthesis,
and any number of data compression algorithms. On the soft-
ware side, the ability to write code at a low level to communicate
directly with these boards allows us to get the most performance
out of the hardware while hiding its specifics in the server soft-
ware; this may well provide advantages over interfacing directly
to stand-alone speech devices [20].

We decided to use a local disk on the PC, as opposed to a
shared file server for the PCs or the PCs and workstations, largely
for simplicity and some fear of saturating a file server with audio
file access. The latter was especially true as we anticipated stor-
ing a variety of data in different formats, such as speech recogni-
tion template files and voice files using various data compression
schemes. We also wanted to be able to accurately account for
delays at various levels under best and worst case conditions,
and a networked file systems adds a layer of complexity to these
calculations.

For the most part, the client does not need direct access to
the audio file system. It is important to be able to obtain some
information about sound files, such as lengths and data compres-
sion modes for files and a directory listing of sound names. Audio
editing functions can be provided on the server, which can com-
pensate for whatever audio coding was employed while applying
delete and insert operations, and thus avoiding uploading large
amounts of data to the client. As we use analog telephone lines
for real time audio transmission, uploading is necessary only for
non refrl time applications like mail and document transmission,
so server-client bandwidth is not critical.

5.2 Use of Telephone Lines for Audio Transport

For some of the applications using audio on workstations, par-

ticularly conferencing and sending audio documents, speech data
must be transmitted between multiple sites. This may be done
over packet networks (2,9,23,25] or ordinary telephone lines. Our
approach uses phone lines because they are inexpensive, readily
available, and guaranteed to be real time.

Analog audio transmission over the switched telephone net-
work is easily implemented and inexpensive. The telephone sys-
tem is an efficient network for voice transport. To support the
range of applications required for integrating the workstation into
daily work life, a telephone interface is essential anyway, if only
for adding dialing ability to an on-line directory. We believe that
other telephone functions, such as voice message systems and
remote access of databases, are also desirable.

Audio document transmission may be done either as analog
over phone lines or digitally by uploading files from the server
and sending them as ordinary electronic mail over local or long-
haul computer networks, to be downloaded to the remote server
from the remote workstation. The latter may be preferable to
avoid degrading the speech by repeated conversion between dig-

ital and analog, especially as this transmission (again, like mail)
need not be real time. However, digital transmission is possible
only if both sites support the same speech compression or cod-
ing algorithms, or easy conversion is possible (such as between
ADPCM and simple PCM). In the long run we can expect an all-
digital telephone system such as the evolving ISDN (Integrated
Services Digital Network) standard, which will solve some qual-
ity problems. There is some effort a t the international standards
committee level to utilize more recent speech coding techniques
to allow higher audio bandwidth (6 kHz) phone connections, es-
pecially for conferencing.

For conferencing applications speech must be transported in
real time; transmission delays can seriously undermine the inter-
active nature of the conference, which is exactly why one would
choose to conference instead of sending a message. Packet net-
works are ill-suited for audio transmission, unless they support
specialized stream protocols [5,9]. Audio requires packet trans-
fer in a bounded amount of time (if a packet arrives late or out
of sequence it is useless), but can tolerate a certain amount of
error and still remain intelligible. Where standard Ethernet has
been used for audio transport in a workstation environment, a
separate net has usually been employed [3,23,25].

5.3 User Interface Considerations

The separation between server and client is in many ways at-
tractive for modular software development and the flexibility of
hardware substitution to support a specific application. However,
this separation impinges on the user interface in some undesir-
able ways, mostly by inserting another layer of delay between the
application and the actual audio events.

Speech is a difficult medium at the user interface; it is slow
(typically on the order of 100 baud in text equivalent) and serial
in nature (as opposed to text menus, which stay on the screen
until a selection is made). To compensate, interactive voice sys-
tems require low latency audio events and interruptablity by the
user. As an interface, sentences may need to be pieced together
from portions of pre-recorded audio, as "You have ..." "...four..."
"...new messages". If an answering machine asks a question,'it
needs to be able to start recording the response immediately,

or part of it might be lost. The overhead of opening files and
preloading hardware data buffers may prevent these sort of o p
erations.

However, some aspects of the speech channel work in our fa-
vor. A voice mail system, for example, is mostly idle, waiting
for an expected event such as a phone ring or a DTMF signal,
so it has plenty of time to prepare for the next event or series
of events. Even while playing pieces of sounds, the very slow-
ness of speech allows an ample amount of time to prepare for
the next event while the current event (e.g., playing a greeting)
is underway. This allows us to benefit by the PREPARE-PLAY,
PREPARE-RECORD, and QUEUE functions. As long as the ac-
tual sound files are not too short, the server can keep up with an
arbitrarily long sequence of events in real time.

It is also important to note that speech output, because of
its speed, should almost always be interruptible. This implies
that while playing, recording, or synthesizing speech, the server
needs to monitor the phone line (if any) for DTMF tones and the
communications port for fresh commands from the client.

The real benefit of the server approach for the user interface is
that it frees the workstation from the demands of keeping up with
audio data moves between memory, disk, and speech hardware,
leaving cycles free for sophisticated interfaces and such amenities
as window systems. We offer several examples from our work.

The Conversational Desktop (18,191 explored speech as an in-
terface and data medium in a network of workstations. It was
built around graphical and natural language interfaces and uti-
lized speech recognition, synthesis, audio r e ~ o r d / ~ l a ~ b a c k , and
telephone management hardware. The latter two functions were
implemented in the server. Besides offering interfaces and agents
on Suns for scheduling and remote database access, the Desktop
could record event-triggered audio memoranda, place and take
calls, and record phone messages. Messages were taken using a
conversational method previously employed in Phone Slave 1171;
the necessity of a series of closely joined record and play opera-
tions caused us to implement audio queues.

Pitchtool is an audio analysis and editing tool used for re-
search into human speech prosody (rhythm and meter). Pitch-
tool uses the server for record and playback functions, employing
Linear Predictive Coding as it provides convenient access to pitch
and energy values. The user interface is implemented in the Sun-
tools window environment (see figure 3) and allows a researcher
to display pitch and energy values and modify them with a mouse.
Pitchtool also supports editing functions (developed from server
primitives) that are convenient for extracting interesting portions
of conversation from long dialogs.

Recently a modified version of the basic server has been devel-
oped as an audio-processor for work studying human "back chan-
nels" during telephone access of driving directions using text-to-
speech synthesis [14]. While the computer is reciting directions,
the listener can indicate comprehension, need for more informa-
tion, or requests for more time. We are attempting to classify
these discourse events acoustically by duration (and ultimately
pitch contour) to decode the back channel without using word
recognition. hi$ interaction requires close synchronization of
speech events between the client and the server. The server was
modified to allow the record function to return to the client.rea1
time notification of the beginning and duration of speech input

Y
ach subject.

big.pitch gresn2.s~ pitch-table ptn-6s' read each vord
demo.hand hpprint.~ pt* ptn-ss .c ss} (sea Appendix),

.energy green.ss icontool .c pt.c ept t o a minima,
or i n t e n s i t y"

Figure 3: The Pitchtool Interface

when detected by the existing pause detection and average mag-
nitude functions.

6 Alternative Server Architectures

In this section, we consider some alternative server architectures
and briefly discuss their merits. A longer paper would be required
to discuss them in adequate detail. It is our belief that with all
servers, a functional interface similar to that described above
would be useful.

6.1 Board level audio on the workstation

The entire server described above could be built as a single board
to plug directly into a given workstation, using Multibus or VME
bus or whatever one's favorite workstation supports. This board
would include a telephone line interface, digitallanalog converters
(codec), probably a digital signal processing microcomputer to
perform tasks such as speech compression, and an independent
microprocessor to implement server functions such as editing,
speech synthesis, and communications. The server disk would be
replaced by the workstation's disk or file server. The board would
include a DMA interface to the disk controller to minimize impact
on the workstation processor running the user application.

This arrangement is logically similar to our server architec-

ture, with the serial interface replaced by the workstation bus and
the PC speech/phone board replaced by the one in the worksta-
tion, with control software in the on-board microprocessor. Many
latency issues may be reduced, as would cost in a production ver-
sion. Other tradeoffs have already been discussed.

The main disadvantage of this approach is the load it may
place on the workstation's microprocessor or file server during
record or playback, which may interfere with other processes or
workstations and detract from the user interface. Careful design
of such a board is required and without experience building audio
interfaces it would be difficult to specify correctly.

6.2 Dedicated servers using Ethernet

Another approach to audio service is identical to the one de-
scribed here with the substitution of Ethernet (or equivalent
LAN) for the serial connection between workstation and server;
the server stills stores the audio information. The attractiveness
of this is largely a matter 0 T taste. Except for uploading sound
files, the protocol between workstation and server consists of a
few bytes at a time, and packetization costs probably make up for
the somewhat slower serial interface. Ethernet may be cheaper to
install, although network interface cards are more expensive than
serial cards for PCs. Networqterfaces would support error-free
versions of our protocols more easily.

A variation on this theme would be for the servers on the
network to also use the network file system supporting the work-
stations, thus realizing economies on disk storage. It is unclear
whether a network file system would adequately support the
bursts and large amounts of audio data required for sound re-
production. On the other hand, this approach allows the work-
station to access the sound files easily, as a common disk server
is employed.

6.3 Centralized servers with packet network audio

Another approach to audio service is a centralized audio server,
with local, addressable network interfaces to convert between au-
dio and packets [2,23,25]. The central server may be optimized
to deal with audio, and addressed by workstations over the same
or another network with commands such as "play file xxxx to
address yyyy". The telephone interface may be local, next to the
workstation and addressed over the network, or also centralized
with all audio digitized and packetized.

The Xerox Etherphone project employs a dedicated Ethernet
to transport audio data to the audio-processors in offices. The
centralized server is optimized for an audio file system. Text-to-
speech synthesis is also available from a server on the network
using commercial synthesizers and a packet audio connection to
the workstation. Performance is subject to standard CSMA/CD
network considerations. It works well up to a saturation level
where failure is rapid, but it may be a problem for busy networks
where transmission time is not bounded because of collision back-
off strategies, although this limit is not reached in normal use.

The AT&T Rapport computer conferencing system [3] also
uses a separate, dedicated Ethernet to carry voice between spe-
cial audio-processing boards on the workstations. It is not clear
whether there is any audio storage in this system.

The Island project a t Cambridge uses a slotted ring architec-
ture [9], which guarantees a bounded transmission time. Multiple
media are allowed on the same network, and specialized proces-
sors ("translators") deal with media-specific issues. Telephone
services are centralized, and the PBX is accessed over the net-
work. There is currently work in progress [24] to utilize higher
bandwidth portions of the ISDN telephone system to link rings at
remote sites, with gateways between ISDN lines and local rings.

6.4 Centralized, based on switched phone lines

A similar but more centralized architecture may emphasize
switched telephone lines, in that both the local PBX and the
phone lines to local workstations are part of the server [8,13]. The
switch and any associated audio hardware are controlled over the
network by workstations. The switch can route audio from de-
vices to any office, as well as perform a full range of telephony
functions. Although the cited examples have been designed pri-
marily as sophisticated programmable telephone switches with
network interfaces to workstations, their utility is being enhanced
by the addition of speech synthesis and audio record/playback
resulting in a functionality similar to our servers.

There is a trend among commercial PBX manufacturers to
add features like voice mail to the central switch. For now, these
switches generally lack interfaces to computer networks, and their
instrument interfaces are considered proprietary, but it is possi-

ble to build a PC-based interface between the PBX one side and
the computer network on the other, to obtain a limited range
of networked functionality. At the University of Southern Cal-
ifornia Information Sciences Institute, a Rolm switch has been
so interfaced to a networked PC [4], as a quick means of adding
telephone functions to the workstation.

7 Future Work

Several areas remain to be worked out in the work described for
our dedicated audio servers. The relationship between channels
and queues should be improved upon to support multiple boards,
each of which may be considered a channel. With support for
multiple boards, we need a channel request function; ideally the
client requests a channel by specifying desired classes of functions
(e.g., telephone, audio playback, LPC analysis) and is returned
an appropriate channel number.

Our speech synthesis interface fu~~i t ions are not yet com-
plete. Various subsets of the remaining functions have been
implemented on several speech boards as applications required
them; no implementation is complete.

Our protocol assumes error-free byte-level transmission be-
tween client and server. In fact this has been the case for our
site. In the case of byte lossage (typically, serial buffer overflow
on the client due to delayed interrupt service), error recovery is
possible but not guaranteed. Packet transmission error detection
is limited to byte count, not corruption. Although not in fact a
problem in our installations, these should ideally be fixed.

The client a t the moment has no means to select from a num-
ber of possible recording qualities supported by most boards, or
to query the server as to the recording method used for a particu-
lar sound. Control over low level telephony signalling parameters
may be useful. These might include duration of DTMF signals,
DTMF silence intervals, and hook-flash duration. PBX-specific
call progress detection may be needed for some environments.

8 Conclusion

We have described an audio and telephony server designed to
add these media to a workstation environment. This approach
was dictated by our research agenda and resources. We needed
to get basic functionality quickly in an environment rich in good
programmers. We wanted to be able to use the server from a
variety of workstations, and over time needed to support a variety
of functionality in the server requiring several different speech
boards.

The most difficult aspect of building these servers has been
dealing with the specific limitations of each speech-processing
board and missing functionality in vendor-supplied device drivers.
This has been generally offset by the low cost of the boards and
speed of software development when porting server software to
new hardware. We have been able to manage the tradeoff be-
tween correct functionality and the time needed to design sys-
tems from scratch by the separation between client and server,
aiming for the maximum functionality for the client sound library
and implementing it as best as possible on the server.

We have built a range of fairly powerful tools and applica-
tions around the server architecture. The set of functions de-

scribed herein has grown as needed for new applications and will
probably continue to expand to meet new needs. At this point,
however, it is easy to prototype many applications on the work-
station using the existing functions.

The most obvious limitation to working with PCs is speed.
They are slow for software development and slow for real time
applications, especially using DOS for file system access. On the
other hand, faster PCs are available and getting quite inexpensive
and, once code for a server is finished, little more work is needed
on it.

There is still work to be done. Some functions are incom-
plete. Some board specific features are lost in the generality of
the interface. There are several cases where the server software
needs to be sped up. But in general this server architecture has
proven quite adequate for our fairly demanding needs.

9 Acknowledgments

Much of the motivation for writing this paper and some of the
ideas herein came from discussions with other members of the
User Interface Task Force of the Distributed Systems Activities
Board. Polle Zellweger of Xerox PARC offered numerous valuable
comments on the paper content. In addition to the authors,
David Chen, Jim Davis, Lorne Berman, Phil Sanborn, and Elsa
Chen worked on various portions of the client and server code.

This work was supported in part by DARPA, Space and Naval
Warfare Systems Command, under contract number N00039-89-
C-0406 and by NTT, the Nippon Telegraph and Telephone Public
Corporation. Hardware support was provided by Sun Microsys-
terns.

References

[I] S. Ades and D. C. Swinehart. Voice annotation and edit-
ing in a workstation environment. In Proceedings of the
AVIOS '86 Voice Input/Output Systems Applications. Conf.,
pages 13-28, Alexandria, VA, September 1986.

[2] S. Ades, R. Want, and R. Calnan. Protocols for real time
voice communication on a packet local network. In Inter-
national Conference on Communications, pages 525-530,
Toronto, Canada, June 1986.

[3] S. R. Ahuja, J. R. Ensor, and D. N. Horn. The Rapport
multimedia conferencing system. In Proceedings of the Con-
ference on Ofice Information Systems, ACM-SIGOIS, 1988.

[4] S. Casner. Personal communication, 1987. University of
Southern California, Information Sciences Institute.

[5] J. W. Forgie. ST - A Proposed Internet Stream Protocol.
Technical Report Internet Engineering Note No. 119, M. I.
T. Lincoln Laboratory, September 1979.

[6] H. C. Forsdick. Explorations into real-time multimedia con-
ferencing. In Proceedings Second International Symposium
on Computer Message Systems, IFIP Technical Commit-
tee on Data Communications, Washington, D.C., September
1985.

[7] J. GarciaiLuna, A. Poggio, and D. Elliot. Research into

Multimedia Message System Architecture. Technical Re-
port 5363, SRI, February 1984.

181 G. Herman, M. Ordun, C. Riley, and L. Woodbury. The
Modular Integrated Communications Environment (MICE):
a system for prototyping and evaluating communications
services. In Proceedings of the 1987 International Switch-
ing Symposium, pages 442-447,1987.

[9] A. Hopper and R. M. Needham. The Cambridge Fast Ring
Network System (CFR). Technical Report Technical Re-
port No. 90, University of Cambridge Computer Laboratory,
June 1986.

[lo] K. A. Lantz. An experiment in integrated multime-
dia conferencing. In Proceedings CSC W '86: Confer-
ence on Computer-Supported Cooperative Work ACM and

the Microelectronics and Computer Technology Corporation,
pages 267-275, December 1986.

[ll] N. Maxemchuk. An experimental speech storage and editing
facility. Bell System Technical Journal, 1383-1395, October
1980.

(121 R. B. Ochsman and A. Chapanis. The effects of ten commu-
nication modes on the behavior of teams during co-operative
problem solving. Int. J. Man-Machine Studies, 6:579-619,
1974.

[It] B. E. Redman. A User Programmable Telephone Switch.
Technical Report TM-ARH-009118, Bellcore, 1987.

[14] C. Schmandt. Employing voice' back channels to facilitate
audio document retrieval. In Proceedings of the Conference
on Ofice Information Systems, ACM-SIGOIS, 1988.

(151 C. Schmandt. The Intelligent Ear: a graphical interface to
digital audio. In Proceedings IEEE Conference on Cybernet-
ics and Society, pages 393-397, October 1981.

[16] C. Schmandt. Speech synthesis gives voiced access to an
electronic mail system. Speech Technology, 66-68, Au-
gust/September 1984.

[17] C. Schmandt and B. Arons. A conversational telephone
messaging system. IEEE Trans. on Consumer Electr., C E
30(3):xxi-xxiv, 1984.

[18] C. Schmandt and B. Arons. A robust parser and dialog
generator for a conversational office system. In Proceedings
of the AVIOS '86 Voice Input/Output Systems Applications.
Conf., 1986.

[19] C. Schmandt, B. Arons, and C. Simmons. Voice interac-
tion in an integrated office and telecommunications environ-
ment. In Proceedings of the AVIOS '85 Voice Input/Output
Systems Applications. Conf., 1985.

[20] C. Schmandt and W. Bender. A programmable virtual
vocabulary speech processing peripheral. In Proceedings
Voice Data Entry Systems Applications Conference, Ameri-
can Voice Input/Output Society, 1983.

[21] M. Stefik, D. Bobrow, S. Lanning, and D. Tatar. Wysi-
wis revised: early experiences with multi-user interfaces. In
Proceedings CSC W '86: Conference on Computer-Supported

<

Cooperative Work, ACM and the Microelectronics and Com-
puter Technology Corporation, December 1986.

[22] M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, S. Lanning,
and L. Suchman. Beyond the chalkboard: computer support
for collaboration and problem solving in meetings. Commu-
nications of the ACM, 30(1), January 1987.

[23] D. Swinehart, L. Stewart, and S. Ornstein. Adding voice
to an office computer network. In Proceedings of Globecorn
'83, IEEE Communications Society Conference, pages 392-
402, November 1983.

[24] D. L. Tennenhouse, I. M. Leslie, R. M. Needham, J. W. Bur-
ren, C. J. Adams, and C. S. Cooper. Exploiting wideband
ISDN: the UNISON exchange. In International Conference
on Communications, San Franciso, CA, April 1987.

[25] P. Zellweger, D. Terry, and D. Swinehart. An overview of the
Etherphone system and its applications. In Proceedings of
the 2nd IEEE Conference on Computer Workstations, Santa
Clara, CA, March 1988.

