
llultinedia '89, Apr. 20-23 1989, Ottawa, Ontario
2nd IEEE Comsoc International Multimedia Communications Workshop

The VOX Audio Server

Barry Arons, Carl Binding, Keith Lantz, Chris Schmandt*
Olivetti Research Centert
Menlo Park, California

1 Abstract

In the recent past,user interfaces have vastly improved due to the widespread availability of high-resolution
graphics displays. It is now a new challenge to incorporate other media into the user interface. We strongly
believe that voice and audio will be a key component of next-generation interfaces. Towards this end, we are
developing an audio server that supports the integration of voice and audio features into the user interface.
Application areas in which we are particularly interested include telephone management, voice annotation,
real-time teleconferencing, conversational answering machines, and, more generally, computer-based tools
to support collaborative work.

The intent of the VOX Audio Server is to accomplish for audio what current state-of-the-art window servers
(such as in the X Window System) have done for graphics. VOX provides integrated access to and control
of audio, voice, and telephony capabilities. It provides for the dynamic configuration of audio devices
and their sharing between multiple client applications. We also believe that the server architecture can be
extended to support other media, particularly video.

2 Goals

To satisfy the perceived needs of our target applications, the server architecture emphasizes:

0 Sharing: By default, the architecture supports the sharing of audio hardware by multiple applications.
Multiple clients can express interest in a resource; well behaved clients request access to the resource
for limited periods. Applications are also able to gain exclusive access to critical audio resources for
a limited amount of time. For example, a telephone may only be used by one application during an
actual telephone conversation.

e Routirzg: The architecture enables applications to create dynamic routings between audio components.
For example, in a conversational answering machine application it is desirable to rapidly and conve-
niently switch from a speech recognizing configuration to a sound recording configuration since both
activities are useful to gracef'dly handle an incoming call.

Real-time behavior: The architecture must address the issues of real-time behavior in the handling of
audio events. To that effect, VOX supports a queuing mechanism that minimizes the overhead of pro-
cessing audio requests and events at time-critical moments, thereby permitting the implementation
of the server on a time-shared operating system.

Copyright @hg. C. Olivetti and C., SPA. All rights reserved.
'Chris Schmandt consulted to Olivetti in the design of the VOX Audio Server. He is affiliated with the MIT Media Laboratory.
tThe authors may be reached at: Olivetti Research Center, 2882 Sand Hill Road, Suite 210, Menlo Park CA, 94025. They can be

contactedby electronicmailat: arons@orc.olivetti.comor at [sri-unixl olivebl ! o r c ! arons.

0 Device independence: The architecture attempts to shield the clien ts from the idiosyncrasies of particular
audio hardware.

0 Extensibility: The architecture allows for unforeseen uses of audio, new types of audio or telephony
devices, and the integration of video.

3 Basic Architecture

The basic architecture needed to achieve our goals is a network-transparent server-based configuration
similar to many contemporary window systems (figure 1). Multiple client processes are connected to a
server process that provides various audio operations such as recording and playback of sounds, speech
recognition, and text-to-speech synthesis. Requests to gain access to audio resources are mediated by a
workstation manager (WSM), analogous to the use of window managers in many window systems.

CLIENT- 1 CLJENT-2

-.-..,
i Audio Server Fl.
I F I F 1
i t

Figure 1: Audio and Window Server Architecture

4 Logical Audio Devices

To support dynamic routing between audio devices, we use the paradigm of assembling audio circuits in
a manner similar to actual electronic hardware. That is, lower-level components are grouped into higher-
level components of increased functionality. We call the lowest level building block a LAUD for Logical
Audio Device (pronounced loud). LAUDs can be combined into a composite LAUD, called a CLAUD. Each
LAUD has a set of audio ports that are connected ("soldered") together when composing a CLAUD, and each
LAUD is associated with a device that implements the actual audio activity. Examples of LAUDs include
abstractions for playback, recording, and mixing.

In essence, clients assemble LAUDS into CLAUDs to serve a specific purpose and CI,AIJDs are considered
as a single logical entity. The primitive LAUD abstractions are provided by the VOX server and accessed and
manipulated from clients distributed throughout a network. Figure 2 is an example of a simple telephone
answering machine built according to our model. Three primitive LAUDs for playback, recording, and
telephone control are grouped into one logical unit: the telephone answering CLAUD.

Each CLAUD specifies which audio resources shall be used at run-time for the execution of audio requests.
In order to limit access to critical resources-namely hardware audio devices-the client must explicitly
map a CLAUD onto the devices it needs to perform the desired audio activity. Resource sharing is thus
achieved through the concept of mapping and unmapping CLAUDs to their devices. It is only while a
CLAUD is mapped to its devices that it can actually execute audio activity. Ultimately, only a specialized
client, namely the workstation manager, will be able to perform map and unmap calls, while regular clients
may only express their desire to be mapped.

Answering Machine

Figure 2: Answering Machine CLAUD

5 Input and Output

Input and output to CLAUDs is based on an event-driven scheme. The client submits output requests to a
CLAUD and may receive input events from a CLAUD? For example, the client may submit play and record
requests, and receive tokens from a speech recognizer.

Most output requests can be prepared in advance. To that effect, a CLAUD embodies a queuing abstraction,
which serves as a buffer for client requests. When enqueuing output requests, the server attempts to prepare
the request as much as possible. This may involve the opening of a sound file, prefetching an already
recorded sound, or establishing the state of a speech recognizer. All these activities can be executed before the
actual servicing of the request takes place, thereby reducing the execution latency at time-critical moments.

6 Experimental Testbed

We are currently implementing a prototype of the VOX Audio Server on an Intel 80386-based Olivetti PC
running Unix System V.3, but will be migrating the server to the Mach operating systed once it becomes
available on our host platform. An experimental audio processing card is currently supported for play,
record, and sound editing functions. The hardware supported by the server is being expanded and a wide
range of voice and audio devices, as described in this section, should be supported by the end of 1989.

Some devices controlled by VOX will have internal switching capabilities and thus may directly support
a small number of VOX "solder" calls. However, to handle the general case of device connection we will
use an external 16 x 16 audio crossbar switch to implement the interconnection calls of the server. All
inputs and outputs of the audio peripherals are routed through the crossbar switch, which provides an
extremely flexible environment for the rapid prototypingof audio applications. Figure 3 represents a typical
workstation hardware configuration with the crossbar switch acting as a general purpose "soldering" and
switching mechanism.

b n d o m access audio and a telephone interface are key components of many desired applications, so we
will soon replace our experimental audio card with a more powerful commercially available one. Most
such existing products for the AT-bus were originally designed to be used in an MS-DOS environment,
not on a Unix system, but this trend seems to be changing. We would like the audio board to support
two independent voice and telephone channels to allow for maximum flexibility in designing multimedia
applications.

Each workstation will be equipped with a computer-controlled audio mixer? The mixer will be used for
simple local adjusting of levels and equalization as well as for the automated control and mixing of signals

'Output is data sent from the client to the server; input is sent from server to client, similar to 1/0 handling in window systems.
2Mach was developed at Carnegie-Mellon University and is based on Berkeley 4.3 Unix. The Mach operating system is well suited

for distributed systems and applications.
3MIDI (h4usical Instrument Digital Interface) controlled equipment was found to be suitable for our experimentation.

Figure 3: Typical workstation audio configuration.

based on requests by the workstation manager that oversees the sharing of audio resources. Other technolo-
gies supported by the server architecture include speech recognition and text-to-speech synthesis. A full
duplex audio processor card (echo canceler) will be used to provide a high quality hands-free speakerphone
using the microphone and speakers available on each desktop.

In addition to the local hardware on each workstation, there are several tie lines to a larger centralized
crossbar switch. These facilities will provide a high-fidelity audio network for local audio conferencing
between workstations. The application software will attempt to use the local audio system before using the
lower bandwidth lines of the telephone network.

7 Future Hardware Platforms

Entirely digital audio devices with compatible digital input and output are becoming more prevalent, but
are not yet readily available on a large scale. Note, however, that the majority of the components of our
testbed workstation are digital devices internally, but appear as analog devices externally, and are intercon-
nected via conventional audio cables. Similarly, almost all non-proprietary telephone interfacing is analog,
but this will hopefully change as ISDN provides digital audio paths and signaling from the network. With
these ideas in mind, we chose to use off-the-shelf computer-controllable analog audio components because
of their relatively low cost and the wide variety of available hardware.

Virtually all of the functionality provided by the aggregation of hardware described in section 6 can be
implemented digitally, possibly with a single next-generation digital signal processing (DSP) chip. Thereare
currently no general-purpose DSP boards available for our hardware platform with appropriate software
to support all of our applications. Most current DSP boards can provide a handful of the audio functions
shown in figure 3, but cannot support all of these functions simultaneously. We envision that within a few
years the bulk of the audio support for VOX server can be implemented on a single audio board. Therefore,
we are currently focused on developing the audio server and prototype applications rather than developing
audio hardware or DSP algorithms. In a completely digital audio environment there is still a need for a
coherent software architecture for stmcture and control of audio resources as addressed by VOX.

8 Multimedia Applications

Other projects at the Olivetti Research Center are involved with software tools for computer-supported
cooperative work (CSCW), in particular real-time computer-based teleconferencing 131. One of our initial
application areas will be to provide audio support to augment this shared window system. Geographically
distributed participants will be automatically connected by the telephone or local audio network with real-
time detection of voice used as a method of "floor control" in multi-person conferences.

A window system-based audio editor has been written on top of VOX to allow the easy creation and ma-
nipulation of sound files. A graphical tool such as this can be integrated into other applications to provide
voice-annotation for a multimedia editor or for reviewing and editing messages from a conversational an-
swering machine.

The overall architecture of the audio server is quite general and we believe that it can be extended to cover
other classes of audio devices as well as other media. The basic server, for example, can be extended to
control, share, and interconnect video equipment. It is still a somewhat open issue as to whether there
should be separate media servers for audio and video or if there should be a single server controlling all
aspects of the multimedia services.

9 Related Work

VOX attempts to integrate the functionality provided by systems built at IBM Research [5] and at MIT's
Media Lab [7,8,91. These include support for telephony as well as for text-to-speech synthesis and speech
recognition. The work done at the Media Lab by two of the authors pioneered the notion of request prepa-
ration in order to have low latency execution of audio requests which VOX incorporates in its design. As
extensions to these systems, however, VOX takes a more dynamic approach to audio routing, provides in-
creased flexibility and operates in an environment supporting several, possibly distributed, clients at once.

In contrast with the Etherphone system developed at Xerox PARC [10,11,12], VOX does not rely on a cen-
tralized voice storage server. Instead, sounds are stored on the workstation on which the server is running
and VOX provides features to migrate sounds over the network.

The influence of window systems and user interface software on VOX appears in several aspects. First, like
the VGTS 141, NeWS [2I, and X [6] window systems, VOX is network transparent. That is, a client can reside
on any machine in a local area network and access the audio server. Secondly, VOX inherits the concepts of
logical hierarchies from graphics systems such as VGTS and Eureka [I].

10 Summary

The "Desktop Audio" market is still in its infancy-where the computer graphics market was about 8 or
10 years ago. The VOX Audio Server tries to take the ideas developed by the graphics and window system
community and successfully merge them with practical experience gained from building interactive audio
and voice systems. We hope that the audio server architecture will skip a generation in the evolutionary de-
velopment of audio services, providing the underlying software architecture for future audio applications.

The only way that voice will successfully be integrated into the workstation environment is if there is a stan-
dard architecture that supports voice and audio applications across all hardware and software platforms.
Therefore, in the spirit of MIT's X Window System, the Olivetti Research Center is placing the VOX Audio
Server specification and a prototype implementation in the public domain. We encourage other research
and development efforts to use VOX and help make it a de facto audio server standard.

In summary, we believe that our architecture successfully deals with the routing and management of audio
resources in a networked computing environment. We have integrated various voice and audio technolo-
gies into a coherent and novel architecture enabling applications to easily incorporate speech and sound
into the man-machine interface. Extensions to video are supported by our basic architecture and allow for
an even greater support of multi-media interactions and applications.

11 Acknowledgements

Pehong Chen has recently joined the VOX team and currently is writing the interface to the crossbar switch.

References

[I] Carl Binding. The Architecture of a User Interface Toolkit. In Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software, pages 56-65, October 1988.

121 James Gosling. SunDew - a Distributed and Extensible Window System. In Hopgood, F.R.A., et al.
editor, Methodology of Window Management, pages 47-58. Springer Verlag, 1986.

131 Keith A. Lantz. An Experiment in Integrated Multimedia Conferencing. In CSCW86, pages 267-275.
MCC Software Technology Program. December 1986. Reprinted in I. Greif, editor, Computer-Supported
Cooperative Work: A Book of Readings, pages 533-552. Morgan KauEmann Publishers, 1988.

[4] Keith A. Lantz and William I. Nowicki. Structured Graphics for Distributed Systems. ACM Transactions
on Graphics, 3(1):23-51, January 1984.

[5] Antonio Ruiz. Voice and Telephony Applications for the Office Workstation. In Proceedings 1st Inter-
national Conference on Computer Workstations, pages 158-163. IEEE Computer Society, November 1985.

[6] Robert W. Scheifler and Jim Gettys. The X Window System. ACM Transactions on Graphics, 5(2):79-106,
April 1986.

[7] Chris Schmandt and Barry Arons. A Conversational Telephone Messaging System. IEEE Trans. on
Consumer Electr., CE-30(3):xxi-xxiv, 1984.

181 Chris Schmandt and Michael A. McKenna. An Audio and Telephone Server for Multi-Media Work-
stations. In Proceedings 2nd IEEE Conference on Computer Workstations, pages 150-160. IEEE Computer
Society, March 1988.

[9] Chris Schmandt, Barry Arons, and Charles Simmons. Voice Interaction in an Integrated Office and
Telesonamunications Environment. In Proceedings. American Voice Input Output Society, 1985.

1101 Daniel C. Swinehart. Telephone Management in the Etherphone System. In Proceedings of GlobeCom
87. IEEE GlobeCom, November 1987.

[Il l Daniel C. Swinehart, Larry C. Stewart, and Susan M. Ornstein. Adding Voice to an Office Computer
Network. Technical Report CSL-83-8, Xerox Pa10 Alto Research Center, February 1984.

1121 Douglas B. Terry and Daniel C. Swinehart. Managing Stored Voice in the Etherphone System. In 11th
ACM Symposium on Operating System Principles, pages 48-61. ACM SIGOPS, November 1987.

