
Activity Server: A Model for Everyday Office
Activities

Sanjay Manandhar

B.S., Electrical Engineering and Computer Science
Massachusetts Institute of Technology

(1989)

Submitted to the Media Arts and Sciences Section
School of Architecture and Planning

in Partial. Fulfillment of the Requirements for the Degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1991

(EJ Massachusetts Institute of Technology 1991
All Rights Reserved

Signature of Author
-

V \

Media Arts and 5ciences Section
May 10, 1991

Certified by
Christopher M. Schmandt

Principal Research Scientist,
Thesis Supervisor

Accepted by
Stephen A. Benton

Chairman, Departmental Committee on Graduate Students
MASSACWSETTS INSTITUTE

OF TECHNO1 OGy

ARCHIVES J UL 2 3 1991
LIBRARIES

Activity Server: A Model for Everyday Office Activities

by

Sanjay Manandhar

Submitted to the Media Arts and Sciences Section
School of Architecture and Planning

on May 10, 1991, in partial fulfillment of the
requirements for the Degree of

Master of Science

Abstract

The activity server is a program that produces periodic reports of people's locations
and activities. It combines three sources of information. A finger server provides
information on users' activities on computers within a local network; a phone server
tells whether phones are in use; and a location server abstracts physical location of
users who wear "active badges." Details of the design and implementation of the
finger server (the one built expressly for the activity server) will also be discussed.

The main attributes of the activity server are: 1) it maintains history of all the
participating users, 2) it coordinates among the many, possibly conflicting, pieces of
information from three sources, 3) it distinguishes interdependence of activities among
users, and 4) it provides a high-level abstraction about users' activities. This thesis
also describes two client applications that allow means of retrieving the knowledge
embedd.ed in the activity server; the clients use a graphical and a telephonic user-
interface, respectively.

Thesis Supervisor: Christopher M. Schmandt
Title: Principal Research Scientist

Contents

1 Introduction 7

. 1.1 An Example 8

. 1.2 Background 10

2 Overview of the system 11

. 2.1 The Listeners 11

. 2.1.1 The finger server 13

. 2.1.2 Thephoneserver 14

. 2.1.3 The location server 15

. 2.2 Data Representation 16

. 2.2.1 The generalized linked list 16

. 2.2.2 Why a linked list? 17

. 2.3 The Socket Manager 18

3 The Finger Server 20

. 3.1 Architecture 20

. 3.2 Mechanism 21

. 3.2.1 Configuration files 21
. 3.2.2 Host data 21

. 3.2.3 Polling 23

. 3.2.4 Callbacks 24

. Parsing Finger Information 26

. Maintaining Finger Information 28

. Updating Finger Information 29

. Alerts 30

. Protocols 31

. Client Interaction 32

. Shortcomings 33

. Optimizations 34

4 The Activity Server 36

. 4.1 Architecture 36

. 4.2 Mechanism 37

4.2.1 Startup . 37

. 4.2.2 Event handling 39

. 4.3 Data Representation 39

. 4.3.1 Server object 40

. 4.3.2 Person object 40

. 4.3.3 Place object 41

. 4.3.4 Machine object 41

. 4.3.5 Phoneobject 42

. 4.4 Updating Data Structures 42

. 4.4.1 Finger events 43

. 4.4.2 Phoneevents 43

. 4.4.3 Location events 45

. 4.5 History Mechanism 45

. 4.6 Client Interaction 46

5 Rules 48

. 5.1 Scenario 1: Coming into the Office 49

. 5.2 Scenario 2: Leaving the Office 50

. 5.3 Scenario 3: Visiting Another Office 51

. 5.4 Scenario 4: Visitor in Office 51

. 5.5 Scenario 5: On the Phone 52

. 5.6 Scenario 6: Logged in on Another Machine 53

. 5.7 Scenario 7: Dialed In 54

. 5.8 Scenario 8: Remotely Logged In 54

. 5.9 Final States 55

. 5.10 Conflict Resolution 56

6 Clients 58

. 6.1 The Directory Client 58

. 6.1.1 Implementation 58

. 6.1.2 User Interaction 59

. 6.2 The Watcher Client 60

. 6.2.1 Implementation 60

7 Discussion 62

. 7.1 Performance 62

. 7.2 Future Work 63

8 Summary 66

A Finger Server Protocol 70

. A.l Introduction 70

. A.2 Byte-stream Protocol 70

. A.3 Output Formats 71

. A.4 Asynchronous Output 71

. A.5 Messages 71

. A.6 ProgrammerInterface 73

B Activity Server Protocol 77

. B.l Introduction 77

. B.2 Byte-stream Protocol 77

. B.3 Output formats 78

. B.4 Current Activity 78

. B.5 Messages 78

. B.6 HistoryofActivity 80

C Configuration Files 81

. C.l Finger Configuration Files 81

. C . 1.1 Hosts Configuration Files 81

. C.1.2 Users Configuration Files 82

. C.2 Activity Server Configuration Files 82

. C.2.1 Places Configuration Files 82

. C.2.2 Users Configuration Files 83

Chapter 1

Introduction

The activity server is a program intended to improve interaction of co-workers,

given that richer forms of communications like meeting in person, talking over the

telephone and electronic mail, etc., are not always possible. It is intended to answer

questions likeluCan I have a meeting now with colleagues A, B and C?" or "Where

is colleague C?" or "Who came by my office while I was away?" Such everyday

questions constantly arise in an office environment and require active participation

from the solicitor of the information. It is highly desirable to have instant answers

or at least intelligent inferences to such questions. By gathering and maintaining

information from three sources that are indicative of office activity, the activity server

helps answer many routine questions of the work place.

There are some very well-defined, routine activities in the office. Logging on to

a computer to check electronic mail, placing phone calls, visiting another colleague

in another office or meeting in a conference room are some routine office activities.

If these routine office activities could be collected and characterized in some fashion,

applying some rules and heuristics, one could devise a tool that could augment coor-

dination and query of user activities. This thesis describes such a system, and some

client applications which use it.

The inputs to the activity server are reports of routine office activities. Its output

is assertions about the state of the activity. The reports of these office activities are

asynchronous and are called events. These events are gathered from input channels

by three servers: the finger server provides input from the local area network of

computers; the phone server recovers phone activity from the telephone network and

the location server monitors special badges that relay their positions relative to a

separate network of sensors.

The abstracted outputs of the activity server are made available to client ap-

plications via a well-defined set of protocols. It is hoped that the outputs and the

clients that use these outputs can benefit small trusting groups of users in the office

environment.

At this point, some recurring terms ought to be described. Their full description

will ensue in due course. For clarity, the three data gathering sources, the finger server,

the phone server and the location server, are called Listeners and unless explicit, the

"server" shall refer to the activity server whereas the "clients" shall refer to the client

applications of the activity server. An "active badgen is a badge, which periodically

emits a coded infra-red signal. It can be tracked by a network of sensors.

An Example

Let's take a, simple example from above: Where is colleague P? To answer this

question, the activity server queries its three Listeners. The following are possible

answers that it receives:

Phone server: The phone in P's office is not in use.

Location server: Badge P is in P's office; it has been there for the last 10 hours.

Finger Server: P is logged in to the machine in her office, idle time is zero minutes

(connected to terminal do).

The activity server draws conclusions about the location of colleague P from each

Listener response and assigns a confidence level to each. From the phone server

alone, it is not clear that P is in her office. From the response of the location server,

P is, in fact, in her office but has not moved for 10 hours. The latter piece of

information undermines the plausible conclusion that she might be in her office. These

are conflicting conclusions. But the finger server responds that the idle time on her

machine is nil, i.e., she is active. However, she is not active on the console (located in

her office), but rather on a pseudo-terminal do. Since all dX (X is an alpha-numeric)

pseudo-terminals are open for dialin access, P has dialed in. Hence, the activity server

concludes that P is not around, she has dialed in remotely.

The example above illustrates some of the key attributes of the activity server:

History: The server needs past as well as present data. This is important in

order to be able to infer the user's activities from his past actions.

Multiple sources: The server will draw upon its Listeners to get multiple, pos-

sibly conflicting, views on real world activities.

Multi-party: The activity server monitors many users simultaneously. Every

member of the group may affect the state of other members of the group. For

instance, a person visiting another colleague not only changes his own, but also

the state of his colleague.

0 High-level abstraction: The activity server can assemble many pieces of discrete

information, which by themselves are of little value but cumulatively allow abs-

traction of intelligent, high-level inferences of user activities.

1.2 Background

Work in traditional artificial intelligence (AI) has concentrated on plan recognition

where it is assumed that there is a precise plan that a user activity will follow [6, 121.

Many researchers working in interdisciplinary fields have proposed models varying in

scope, coniplexity, and computational formality. For instance, in a technical paper

from Xerox PARC, many dynamic models at micro and macro levels were provided

[5]. Some newer work argues against planned models since it is very difficult to allow

for unpredictable and unanticipated circumstances [I, 2, 151. Although not a user

modeling effort, the activity server uses a dynamic model that can infer the state of

users and adapt continuously. Most of the user modeling work in A1 and cognitive

science research, including dialog systems [9], expert systems and student modeling

have focused on systems that monitor user activities, and react to them. The activity

server only monitors and builds an activity model; however, clients of the activity

server that benefit from the user model can execute (react) accordingly. In addition,

unlike many user modeling efforts that attempt to enhance user-system interaction or

understanding, the activity server focuses on augmenting user-user interaction with

the help and coordination of marly discrete systems.

Many user modeling research efforts depend on a single source of data. There has

been much work that rely on a single source of information, such as user-input at a

computer, eye tracker information, etc. The activity server, however, benefits from

three different sources of information. This redundancy is used effectively to increase

reliability of the final activities assertion made by the server.

Chapter 2

Overview of the system

The activity server adopts a client-server model based on underlying TCP-IP

socket communication [3]. The activity server itself is a client to its three Listeners

(the finger server, the location server and the phone server). Events from these

Listeners are funneled through a common event handler which timestamps each event,

updates a per user database and triggers some rules (see Figure 2-1). High level

inferences made by the rules are saved and are made available to clients.

2.1 The Listeners

Listeners are the indispensable information-gathering servers that the activity

server relies on. They are independent and service their own pool of clients; the

activity server is a special client because it connects to all the Listeners simultaneously.

Each Listener is self-sufficient and is oblivious of other Listeners; only the activity

server, which collects data from all the Listeners, has the global view which allows it

to make more complex inferences. The rest of the section provides an overview of all

the Listeners.

11

timestamp b event handler log file

I b

rules internal state client state

A

v *

client library

client 1 client : 2 \ client N

Figure 2-1: Cverall system diagram of the activity server

user community

fmgerserver
database c I

client library

clients

Figure 2-2: Architecture of the finger server.

2.1.1 The finger server

The finger server gathers idle times of users on a number of machines; it is a metric

of activity of users on these machines. This server depends on the finger daemon [8]

which keeps state (idle times in minutes) of all users on a given machine. The finger

server compares information across the entire group of machines it is monitoring

(Figure 2-2). For instance, if a user is logged in on more than one machine, the

server can tell where the user is most active, whether he is logged in remotely and

from where he is logged in. In addition, the finger server can send asynchronous

events (called alerts) to clients that express interest in them. Since this server was

implemented expressly for the activity server, it will be described thoroughly in the

next chapter.

13

ISDN telenhones

SESS ISDM
switch i 1 phone server I

client library

clients
Figure 2-3: Architecture of the phone server.

2.1.2 The phone server

The phone server monitors the ISDN protocol that is exchanged between the SESS

telephone switch and telephone sets. It gets the events of all telephone sets within its

jurisdiction (see Figure 2-3). Phone state information such as idle, active, incoming

call, dialing, held, etc. can be received from the phone server. For the purposes of the

activity server, however, only idle, active and dialing events are critical. Inferences

based solely on these three events will be discussed in a separate chapter dealing with

the activity server. A crucial assumption that is made is that most users in the user

community have their personal phones in their personal offices. For a more complete

treatment of the phone server refer to [18].

locationserver
database

client library f l
Figure 2-4: Architecture of the location server

2.1.3 The location server

The location server provides data about locations of special badges which emit

infra-red signals. It has a network of infra-red sensors that are placed around the

building, in hallways, offices, lab areas and conference rooms. Pariicipating members

of the user community may choose to wear a badge, called the active badge. Since

each active badge has a unique code, this code and the owner of the badge can be

mapped in a database. When a user wearing his badge (designed and built by Olivetti

Research Laboratory in Cambridge, England), moves ,round in the building, and the

badge is sighted by sensors, the sensors register the unique ID of the badge and report

it to the location server. The location server translates the identity of the reporting

sensor to its 1oc;tion and translates the ID of the badge to its owner, thus ascertaining

the location of the user (see Figure 2-4). The sensors are polled every 5 seconds to

check badge sightings; the badges themselves fire every 15 seconds.

child

Figure 2-5: The link-node: a building block for the generalized linked list.

2.2 Data Representation

bpresentation of all dynamic data on the finger server as well as the activity

server is via objects that are appended to linked lists. One of the design decisions

was to pick a data structure that wculd act as the "common denorliinatorn or a very

general mechanism for storing any type of dynamic data. Hence, a generalized linked

list was conceived; it provides the "chain" on which any data could be appended.

This linked list is described below.

2.2.1 The generalized linked list

The fundamental building block of this generalized linked list is the link-node. It

provides facilities for a quadruply linked list with message passing capabilities. Since

it is not associated with any data object, it can be used to create linked list of any

object contributing to generality and reusability of this model (and its corresponding

code). This model represents a slightly general version of a pair of C library calls of

"insquen and "remque."

The link-node consists of the type identifier to uniquely identify the data object

that is appended to the link (see Figure 2-5). There are parent and child pointers for

vertical connectivity and previous and next pointers for lateral connectivity; thus, in

the most complex case one can have a quadruply linked list. A message handler points

to a table of handlers. Depending on the message type, the appropriate operator for

the data object at hand is triggered. Finally, the data part is a pointer to the data

object. Whenever the internals of the data object are accessed or changed, the data

field of the link must be properly type-casted; but this is a small price to pay for

flexibility that the link-node model affords. For instance, the routines that add,

delete, select and collect (select all) links (and by extension, their data objects) are

the same no matter what kind of data is "carriedn by the linked list. Note that

the link-node model is not responsible for creation of the actual data objects or the

message handler if there is one. It does, however, manare all the link-nodes and

destroys any appended any data objects when the link-node itself is destroyed.

2.2.2 Why a linked list?

There are some very compelling reasons for opting the linked list data structure

rather than other data structures. These reasons are as follows:

Isolation: The linked list operations do not access the data objects. In usual

implementations, the object itself is responsible for linked list operations (e.g.

add, delete, move a link, etc.). Under the current scheme, however, the data

objects are oblivious of other object (previous, next, parent or child) around

them; only the link list nodes need worry about other nodes.

0 Reusability: Most operations are common regardless of the data type. The

same add, delete, select, collect operations can be reused.

0 Flexibility: Linked lists in general are appropriate for managing dynamic data.

Both the activity server and the fingerserver (the two systems built for this

project) use this modified linked list.

0 Access time: Since the number of data objects, hence, the number of links,

in the linked list is small, the access time for walking down the linked list is

negligible. For larger numbers of discrete objects, data structures optimized for

larger object domains (e.g. hash tables) would be more appropriate, however.

2.3 The Socket Manager

Like the general nature of the linked list described above, the socket manager1

provides a general, powerful interface to perform TCP-IP socket communications.

This interface makes the intricacies of socket communication manageable and com-

prehensible. The socket manager provides enough features that the temptation to

create yet another flavor of socket connection that may duplicate functionalities and

effort is slim. Needless to say, the activity server and the finger server use the the

socket manager interface whenever the opportunity arises. Some of the attributes

that contribute to a powerful socket manager are worth mentioning.

0 .Abstract operations: The intricate socket-level calls have been subsumed by

more general calls that are understandable and easy to use.

0 Asynchronous: Unlike procedural routines, the socket manager provides call-

backs (for reading from sockets, carrying out housekeeping when the socket is

destroyed and reporting errors) which are fully asynchronous. Asynchronous

notification allows the server to do other duties when not servicing a request.

The client, too, need not wait for a reply; it gets notified when the reply arrives.

0 Symmetrical: Operations that exist on both the server and the client sides

(e.g. opening, closing socket, registering callbacks, etc.) are the same. Such a

symmetry makes the software semantically consistent as well.

lThe Socket Manager code was by Ayisi Makatiani and Barry Arons.

18

Reusability: As alluded to earlier, the yield of the module because of reusability

is immeasurable. In the finger server and the activity server, the socket manager

is used in two levels of server-client hierarchy.

Chapter 3

The Finger Server

Idle times provide a very simple and effective means of finding out the activities

of users within a network (also known as fingering). Many machines provide a finger

daemon that can be queried to retrieve history in idle times of all users on their

respective machines. The daemon provides this service at a well-known port (79)',

which the finger server uses to gets its data.

3.1 Architecture

The architecture of the finger server is based on two levels of client-server paradigm:

the finger server is a client to the finger daemons while it is the server to its own clients.

Communication between the finger server and the finger daemons of each of the ma-

chines, and between the finger server and its clients is via sockets. The polling module

within the finger server starts polling all the machines soon after startup. Data is

received asynchronously; then the parsing module recovers important pieces of infor-

mation such as usernames and idle times and updates internal data structures. The

internal data structure consists of three linked lists storing information about users,

hosts and clients. The interaction of these data structures among themselves, with

'The Unix program '%ngern is also implemented by querying the finger daemon of machines.

client programs and with incoming finger information is basic to the architecture of

the finger server. Upon each update, a consistency check is done, the side effect which

are asynchronous events called alerts.

3.2 Mechanism

The finger server amasses finger information from many, possibly non-homogeneous,

machines and stores the data in a manner that can be readily available upon request

from clients. This mechanism of amassing finger information is done by polling the

machines; the results of the pollings are saved for three principal entities: hosts, users

and clients. Their state is maintained in doubly linked lists; queries from clients are

serviced by accessing data from these linked lists. The following subsections present

some design choices and implementation details of the finger server.

3.2.1 Configuration files

When the server starts up it reads two configuration files that maintain the lists

of users and hosts. These text files are .finger-config.,clsers and .finger-config.hosts,

respectively. The syntax and examples of these files are given in Appendix C. While

the user configuration file lists only users (by username), the host configuration file

maintains not only the hostnames (or their aliases), but also other optional fields such

as polling frequency (in seconds), host type (Unix, Ultrix, Genera, etc.) and options

for the finger daemon. Once the server has started, users and hosts may be added

dynamically using the client protocols.

3.2.2 Host dat;a

Host configuration parameters and other dynamic host-specific data such as socket

identifier, time of last poll is stored in a Host Config data object (see Figure 3-1). The

Hostconfig data object maintains polling-specific information - it is not responsible

typedef s truct ,HostConf i g (
char real-name CMAXCHARSI ; I * o f f i c i a l name of host (nct a l i a s e s) */
char opt ions CMINCHARSI ; /* opt ions f o r the f inger daemon */
i n t type; /* type of host (for parsing purposes)*/
i n t freq; /* frequency of po l l ing (i n seconds) */
i n t sock; /* socket n u d e r during a p o l l */
long l a s t - p o l l ; /* time when l a s t p o l l data was read */

) HostConf i g , *HostConf ig-ptr;

Figure 3-1: The HostConfig data object stores polling specific data of each host.

for maintaining the results of the pollings (these are stored in a separate object to be

described later).

As shown in Figure 3-1, the first four members of the HostConfig data struc-

ture are read from the configuration file; except the hostname, the remaining three

parameters have defaults so they are optional. The hostname given in the configu-

ration file may be an alias of a host; the finger server obtains the official name from

system databases using gethostbyname call before it adds it to the realhame field in

the HostConfig structure. The options field provides special directives for the finger

daemon. Since finger data that is sent back is dependent on the option, this field

is also used as a token that differentiates the various parsing mechanisms. The type

field maintains the type of the host; this information, too, is crucial to be able to

parse finger information correctly. The freq field is for polling frequency, in seconds.

The default frequency is 90 seconds and the minimum frequency is 60 seconds; some

hosts may be polled more or less often than the default if the frequency parameter is

given in the configuration file. Some remote, slow or heavily loaded machines ought

to be polled infrequently.

The remaining two members of the HostConfig object are dynamic polling data.

Whenever a socket is opened successfully, the socket identifier is saved in the sock

field. When finger information is read, the sock field is reset to -1. Hence, this field

can be examined to determine the state of a polling session. The last-poll field holds

the system time when the last poll was read successfully; combination of this field

with the frequency field allows the polling module to determine if the host is ready

to be polled again.

3.2.3 Polling

Every machine is polled at a certain interval to collect idle time state. The default

interval is 90 seconds, whereas the minimum is 60 seconds. Although it is possible

to get finger information in fine granularity of minutes and seconds, it is not possible

to get other useful information in the same poll (e.g. where the user is logged in);

thjs is a trade-off. In addition, polling frequently enough to recover the granularity in

seconds is neither practical nor useful. Some machines may be polled less frequently

than the default value, however. For instance, machines with many users or machines

at a remote site may trade up-to-the-minute updating for better system performance.

There are two important considerations when polling in an asynchronous envi-

ronment. First of all, each poll must be contingent upon the success of the previous

poll. It is unnecessary to query for finger information from a particular host a second

time if the preceding poll has not returned. If the state of the polling session is not

maintained, machines that are slow in responding will have a flood of requests from

the finger server over a period of time. Since each, request corresponds to a socket,

there may be many sockets open to the same machine which is not only wasteful of

system resources but can reduce overall system performance.

Secondly, coordination of pollings among the machines is important. Even though

the replies arrive asynchronously, for similar machines within the same network, those

replies can arrive almost simultaneously. Therefore, if all the requests are sent out

at the same time, the finger server will be bogged down when all the replies arrive.

During this time, client requests and other internal functions (such as updating the

data structures) may be backlogged. Hence, the finger server staggers the requests

uniformly over the entire polling period. For instance, to poll 25 hosts over 90 seconds,

triggering a request every three seconds is appropriate. Any incoming client request

can be handled within the three second window; the maximum delay will be the time

it takes to update the data from a single machine. Figure 3-2 shows the entire polling

mechanism. The stagger time between polls is achieved by using a timer.

For various reasons it may not be possible to reach the finger daemon of a machine

(e.g. the machine is down, the network connection is faulty or the finger daemon

has been disabled). In such situations, a simple backoff mechanism is applied to

subsequent polls of that machine. After two consecutive failed connections to the

daemon, the polling interval of the machine is multiplied by a programmer-defined

value (6 in this implementation). If connection still fails at this new interval for 6

times, the interval is yet again multiplied by 6. The rationale is to try connecting

every ten minutes or so in the first hour, then every hour or so in the first day, then

stabilize at once per day. Note that should the connection succeed, or should the user

"add" the machine after it is healthy again, the initial interval is reinstated.

3.2.4 Callbacks

At the time of polling, a socket to a machine is opened and a read and a destroy

callback each are registered with the Socket Manager. These callbacks, which are

the same for all the pollings, call the routine ReadCallback when the socket has

something to be read and Diecallback when the socket is closed. The polling then

moves on to the next machine; the server does not wait and block to read from a

socket. Hence, the receipt of data is fully asynchronous. When data is available

at a socket, its descriptor disambiguates among the many machines that may have

outstanding polls (note that Hostconfig structure of each machine saves the socket

descriptor upon each poll). ReadCallback then reads the data and the finger daemon

closes the socket. Although it is a streams connection, the finger daemon keeps the

socket open only as long as is necessary; that is, it is not possible to reserve a socket

for future pollings. The destroy callback is useful when some number of tasks need

Open socket
Register Callback staggertime

Read Callback

Figure 3-2: Flowchart of the polling module.

to be done whenever a socket is closed.

The asynchronous nature of the callbacks allow the finger server to start a query

on another finger daemon or even service a client request while waiting for a reply

from a machine. The client requests are serviced using callbacks (FsRequestHandler

and FsKillHandler) as well.

3.3 Parsing Finger Information

Information returned by the finger daemon is machine-specific. So far, machines

that use Unix, Ultrix or Genera (an operating system for Symbolics Lisp machines) are

supported. F'igure 3-3.A shows finger output from a Lisp machine running Genera;

Figure 3-3.B shows output from a machine running Unix and Figure 3-3.C shows

output from a machine running Ultrix. Typically the information received will have

at least the username, hostname and the idle time; most Unix systems also report the

terminal. While idle times indicate the user's activity or lack thereof, the terminal

name is useful in locating the user's physical location. If the user is connected to the

console ("co") terminal of a machine and has a small or zero idle time, it is evident

that no matter where else the user is logged on, she is physically located where the

console of that machine is. On the other hand, if the user is on "dX" (X is an

alphanumeric) terminal, it is clear that the user has dialed in.

Sometimes multiple rounds of polling is necessary when not all the information

is provided by a single poll. If a machine has many users logged in and the finger

server is interested in only a small subset of such users, it uses a fast poll that gives a

brief list with usernames; then it conducts a poll on only those users who are logged

in and are active. It is wasteful to make individual polls on users who may or may

not be logged in, especially on slow, heavily loaded or remote machines. Hence, a

fast poll (e.g. using the -i option) is used (see Figure 3-3.D). From that information,

individualized polls (see Figure 3-3.E) can recover other information such as the host

A. Finger information from a machine running Genera
[obvious]
cahn Janet Cahn OBVIOUS 39:30 Obvious: Sound Room x0316 ...

B. Finger information from two machines running SunOS
[chips]
Login Name Tm Idle When Where
barons Barry Arons pO 19: Tue 16:46 leggett
g e ~ k Chris Schmandt pi id Thu 15:32 moosilauke

[hydrox.media.mit.edu]
No one logged on

C. Finger information from a machine running Ultrix
[cecelia .media. mit . edu]
Login Name TTI Idle When Off ice
bv Barry Vercoe pO 27 Fri 18:39
tod Tod Machover pl 1 Sat 13:04 E15-411 MIT 3-0394
sanjay Sanjay Manandhar p2 Sat 13:07 E15-355 253-0312

D. Finger information with "-i" option a machine Ultrix
Login ?TY When Idle
geek ttyp8 Fri Apr 26 18:24 1 day 15 hours
sanjay ttyq6 SunHay 5 10:31

E. Finger information with the username option an Ultrix machine
Login name: sanjay In real life: Sanjay Manandhar
Office: E15-355, 253-8076 Home phone: 617-661-0432
Directory: /u2/sanjay Shell: /bin/tcsh
On since May 5 10:31:27 on ttyq6 from tol1.media.mit.e
Plan:

Figure 3-3: Examples of typical finger information.

the person is logged in from.

3.4 Maintaining Finger Informat ion

The result from the polls update the user and host data structures. After each

host reports, its corresponding host data object along with its internal linked list of

users is updated and any state transitions are immediately reported to the clients that

requested asynchronous notification. In figure 3-4, the name member corresponds to

the official name of the host and the timestamp is the time the host was last updated.

All users logged in to the host are maintained in an internal linked list, the head and

tail pointers of which are also members of the HostInfo object.

Linked list of users within the hosts consists of UserInfo data object (see Figure

3-5). The name corresponds to the username of the user, the terminal to the terminal

name on which the user is logged in and idle to the idle time of the user at the time

of the polling. The idle-old and idle members are sufficient to describe the four state

transitions (login, logout, active and dormant) of users within a host (described in

the next section). These state transitions are recorded in the alert field. The host-

name and host-old fields of the UserInfo objects are superfluous within the HostInfo

structure. Users that login to the host are added to the list of users within the host,

while users that log out are removed. Hence, the HostInh data object describes the

state of any particular host completely. Any query of host information by any client

is looked up in this data structure.

The most recent activity of users is maintained in a separate linked list of UserInfo

objects. This list provides overall state of any particular user. Hence, a user is not

removed from the list when he logs out. When the UserInfo data object is used in

this list, the hostname and host-old fields are relevant. In fact, the combination of

these two fields along with idle and idle-old can characterize another very important

asynchronous event, called moved. All the other fields are relevant and used with

typedef s t r u c t ,FS,HostInfo (
char name [MAXCHARS] ; /* hostname */
long timestamp; /* time of l a a t update */
Link *userHead; /* l i s t of u s e r s bogged on t h e hos t */
Link *userTai l ;

) FS-HostInfo, *FS,HostInfo,ptr;

Figure 3-4: Structure that saves the state of each host.

typedef s t r u c t ,FS,UserInfo (
char name CMINCHARSI ; /* username */
char hostnameCMAXCHARS1; /* hos t on which logged i n */
char host,old[MAXCHARS]; /;r l a s t hos t on whjch logged i n */
char te rmina l [MINCH-ARS] ; j* cur ren t te rmina l * /
long timestamp; /* unix-time * /
i n t i d l e ; /* cur ren t i d l e time * /
i n t id le -o ld ; /* i d l e time on previous pass */
i n t a ler t ; /* async not i f i c a t i o n : a l e r t s */

) FS-Userhf o, *FS,UserInf o-ptr ;

Figure 3-5: Structure that saves the state on users.

similar semantics as within a Host Info object.

3.5 Updating Finger Information

Whenever a host successfully returns from a poll, the corresponding host object

will be updated. At the very least, the timestamp of the host will be updated. If there

are users logged in, their idle times and timestamps are also updated. Immediately

after such updating a consistency check is done, as a result of which the data structure

may be modified and asynchronous alerts may 5e issued.

Reporting changes to the user data structure is a little more complex, however.

There is no one-to-one correspondence between polling of a host and the user object.

The user data structure reflects the rr mt recent activity across the entire gamut of

1. IF timestamp > user-timestamp
AND terminal = U ~ ~ n

AND idle - < useridle
2. I F timestamp > user-timestamp

AND idle < useridle
3. IF timestamp > user-timestamp + POLLFREQ

Figure 3-6: Precedence rule for updating UserInfo object.

hosts. Since not all hosts rsspond at the same time, and some hosts may respond

after other hosts may have been polled more than once, a precedence rule is used to

Gnsure legitimate but slightly old user data is not overwritten. The precedence rule,

going from high to low precedence is given in Figure 3-6.

In the rule above, POLLFREQ is normally the default polling frequency. However,

if a user is active on a machine which has frequency larger than the default frequency,

that larger frequency will have to be chosen. Note that if a user is remotely logged

in from machineA to machineB to machineC and is active on machinec, all three

machines will register zero idle time but only the first will have zero idle time on the

console; hence, only the information from machineA is saved in the user data struc-

ture. This is also the machine at which the user is physically located. This paradigm

is consistent with the requirements of the activity server, since it is interested in

locating the users (and determining their activities) through their machine activity.

3.6 Alerts

Alerts signify transition of user activities from one state to another. Four kinds of

asynchronous alerts are provided. These are login, logout, active and dormant. The

first three of these can be inferred directly from finger information. The fourth, dor-

mant, is an artificial transition from active to dormant state of activity. IULE-THRES-

HOLD (5 minutes in this implementation) is the ceiling of idle time above which a

State Transition conditions
LOGOUT: if userfimestarnp 2 host-timestamp
LOGIN: if useridlenld = -1

and useridle 2 -1
DORMANT: if user idle~ld > IDLE-THRESHOLD

and useridle > IDLE-THRESHOLD
ACTIVE: if useridlesld 2 IDLE-THRESHOLD

and useridle 2 IDLE-THRESHOLD
DIALIN: if tty = dX

and ttynld != dX
and idle 5 IDLE-THRESHOLD

MOVED: if hostname != host-old
and idle 5 IDLE-THRESHOLD

Figure 5-7: Algorithms for alerts.

user is considered not active at the machine. By monitoring these alerts, a client

application can construct a dynamic model of user activity. In addition to these four,

the user status uses two more, dialin and moved. Dialin is a special case of login

or active alert signifying fresh activity at a dialin port of a machine. On the other

hand, moved is a special case of active in which the user moved (physically) from one

machine to another. The algorithms that mark state transitions are given in Figure

3-7.

3.7 Protocols

There are two levels of finger server protocol. The lower level protocol is at the byte

stream level; the second, a C interface, based on the byte stream level, is also available.

Once a socket connection to the server is established, simple, case-insensitive, ASCII

commands may be sent via the connection. The server uses the same connection to

send its replies. This human-readable interface allows for understanding of commands

and responses with a minimum experience with the system. A brief mode can be set

so that non-human clients may get the important data easily. Appendix A describes

Connected to toll. Escape character is ' -1 ' .
locate barons
[PERSON barons] [HOST leggett , TTY co] [IDLE 3 min] 03: 21 : 02 PM

set -mode short
OKAY

get-host-info leggett
barons leggett co 6 03:23:21 PM

bye
Goodbye.
Connection closed by foreign host.

Figure 3-8: .4 sample interaction with the finger server.

the byte-stream and C interface in greater cietclil.

Figure 3-8 shows a sample session with the finger server using telnet. (User

commands are shown in italics).

3 3 Client Interaction

Clients can determine the form and format of outputs. The cumulative state of

all the client requirements are saved in a SockInfo structure shown in Figure 3-

9. The user may set these output modes and requirements using the server-client

procotol (Appendix A). The SockInfo structure is created for each client when

it connects to the server and is destroyed when it disconnects. The first member

of the SockInfo is the name (converted from an integer value to a character string

so that searching will be facile and consistent with that of other data objects) of

the socket on which the client is communicating. The out-mode holds the output

mode that the client requested (default is long mode); see Figure 3-8 for examples

of short and long mode of output. The sync-mode field, if asserted will withhold

tygedef struct ,FS,SockInfo <
char name [MINCHARSI ; /* socket number */
int out-mode; /* output mode (short l long) */
int sync-mode; /* flag for sync output mode */
int all,host,async; /* xmit all hosts async data */
int all,user,async; /* unit all user async data */
Link *u,asyncHead; /* list of users to track */
Link *u,asyncTail;
Link *h,asyncHead; /* list of hosts to track */
Link *h,asyncTail;

) FS-SockInf o, *FS,SockInf o-ptr ;

Figure 3-9: Structure that saves the wishes of each client.

all asynchronous reporting requests (default is asynchronous). The all-host-async, if

asserted, is an indication to the server to send all asynchronous alerts encountered by

the hosts; likewise, all-user-async indicates that all asynchronous alerts encountered

by the users should be reported. Should the client be interested in only a small subset

of users or hosts, these are saved as linked list objects within the SockInfo object.

3.9 Shortcomings

There are some shortcomings which are inherent in the finger daemon while others

were introduced by the finger server itself.

It is possible not to "seen quick logins and logouts on a machine. Since the

polling cycle executes every few minutes, a login-logout pair on a machine by a

particular user may not be reported by the finger daemon. Likewise, if a user

exceeds the IDLE-THRESHOLD for a few seconds but then hits a key, this

DORMANT state of up to 59 seconds is not reported. The granularity of the

finger daemon is in minutes up to 59 minutes, then in hours and minutes up to

9 hours and 59 minutes, then in hours up to 23 hours and then in days. On the

other hand more precise granularity may not be truly useful.

0 Activity in some programs is not noticeable to the finger daemon. For instance,

activity solely in the gnuemacs editor program will increment the idle time as

if the user was away from the terminal.

0 The finger daemon reports only the idle time, it does not report what program

may be running. There are other Unix programs and daemons that monitor

execution of programs at any particular time but their services were not used

for a number of reasons. Not all machines run these daemons (rwho, w, rusers,

etc.) but almost all machines keep the finger daemons running. (Some sites

disable even the finger daemon for security reasons). Hence, finger server can

remain very general and modest in its requirements. Many of the other daemons

run by mutual broadcasts and receives. This can put a severe burden on network

and machine performance. Idle time history alone can be fairly useful.

0 One of the shortcomings of the finger server is that there is a latency in asyn-

chronous reporting. Should there be a race condition between two hosts report-

ing back to the finger server, the updates of the second host on the queue will

be delayed by the time it takes the first host to dump all its data and for the

finger server to update all its data structures. Typically the latency is in the

order of a few seconds.

Optimizations

Some optimizations were made so that the finger server could service all its clients

with minimum latency. Querying the finger daemon to find a limited number of users'

idle times is a very costly operation. It hurts network and machine performance. The

finger daemon checks some system files such as /etc/hosts file and figures out real

names, telephone numbers, office number, etc. Most of this information is extraneous

for the purposes of the finger server. Hence, sending appropriate options to the finger

daemon will return only the desired information. Non-default options have been used

in two instances for a slow and heavily loaded machine. Unfortunately, these options

are not available on all machine types.

Less frequent polling may be used to reduce performance losses. Hence, a separate

polling frequency parameter can be set for each machine in the configuration file

itself. Infrequent polling can alleviate system latency and also reduce the burden on

the responding machines. A design feature, for future implementation could include

dynamic adjustment of polling frequency. The system could record th.e response time

and poll machines with poor response times less frequently. Similarly, it is wasteful

to poll machines with no one logged on; these too, can be polled infrequently with a

proviso that the original frequency would be reinstated once someone logs in.

Abnormal conditions on machines can cause delay in their responses. Hence,

these conditions are noted and a simple backoff mechanism has been used. In future

extensions a more complex backoff mechanism could be used.

Chapter 4

The Activity Server

The activity server, the main object of this thesis, provides a mechanism to glean

high-level abstraction of the activities of the user community. The activity server

gathers data from the Listeners and looks for corroborating, conflicting or complete

lack of data. With the help of IF/THEN rules, the activity server attempts its

best estimate of user activities; the next chapter is devoted to the rules that the

activity server employs. The activity server also saves some history on data from

all Listeners so that the rules can benefit from past data. The Listeners provide

asynchronous events; the activity server performs further filtering on these events

and cross-comparison among Listener events. Querying clients will receive replies

generated from this final state of activities. This chapter deals with the design and

implementation issues of the activity server while the subsequent chapters will deal

with the rules and clients.

4.1 Architecture

The activity server embodies an architecture similar to the one described for the

finger server for inter-process communication. There are two levels of client-server

socket communications - between the activity server and the Listeners and Between

36

the activity server and its own clients. Much of the flow of control within the activity

server is triggered by incoming asynchronous events. The events initially pass through

the event handler which does database lookups and determines if the event is valid.

A valid event proceeds to the module that updates the current state of the data

structures; invalid events are discarded. The type of the event will trigger a number

of rules in the rule-set; the output of the rule-set is saved in the final state of the

system, which is made available to the clients.

4.2 Mechanism

How do the events from the Listeners affect the state of the users? The entire

mechanism from system startup to the update of internal data structures will be pro-

vided in this section. To this end, many implementation decisions and their rationale

will be discussed.

4.2.1 Startup

A number of initializations are done when the activity server starts up. First, the

activity server must open a socket in the advertised port (4502) to add the service;

clients may then connect to the server via this port. For diagnostic purposes, a log

file saves transcripts (along with timestamps) of interactions with the Listeners as

well as with the clients.

Secondly, routine information is cached in memory. For instance, the help file,

.matihelp, that will be sent to clients upon request, is read from disk and saved. Simi-

larly, configuration files that specify the users and places to monitor, .mati-config.users

and .mati,config.places, respectively, are read and the contents are used to create

data structures (the format and examples of these files are given in Appendix C).

Frequently needed yet static information such as office phone riumbers and room

numbers, is also looked up in the database1 and added to the data structures. An

interrupt handler is registered so that when an interrupt signal is received, the server

can close sockets, update the log file and make a graceful exit.

Next, connection to each Listener is attempted. If the connection is successful,

initial state information is solicited. The finger server returns the least idle time and

hosts of all users; the location server returns the iocation of all users and the phone

server returns the current state of office phones of all users. The initial requests to

all three Listeners are all synchronous. It is assumed that the domain of users that

the activity server is interested in is a subset of the domain of users of each of the

Listeners. Should this not be true, it will be evident at startup time when the activity

server is collecting initial state information. The activity server will try to issue an

"add-personn command to the Listener if the user is not one the users monitored by

that Listener but if this operation fails, that user will be struck from the list of users

being monitored by the activity server.

Once the initial state information is received, each Listener is requested to report

asynchronous events. The activity server selects requests to the Listeners that best

fit its need. This is the first cut to managing and filtering what could potentially

be a deluge of events. For instance, the phone server allows its clients to express

interest in a subset of all its telephony events. The activity server expresses interest

in only the DIALING, ACTIVE and IDLE events. The rationale for choosing just

these three and filtering out the rest is discussed in a later section. Likewise, the

activity server requests only changes in physical iocation - not all user-host activities

- from the fingerserver. From the location server, it solicits tracking information of

only the users it is interested in, not all users that may own a badge.

Should the attempt to connect to the Listeners fail, a timer2 is set to attempt

reconnect later. Since the Socket Manager allows only one timer, if more than one

'A separate database module can be invoked to create an in-memory representation of the ASCII
database.

2This value is 3 minutes in the current implementation.

Listener needs to reconnect, they use the same timer callback.

4.2.2 Event handling

All events, synchronous and asynchronous, pass through the event handler. The

event handler is able to distinguish which Listener is reporting by inspecting the

socket the information is received on; it unbundles the data accordingly and updates

relevant data structures.

Considerable filtering of events is done by the event handler. Since the events

trigger almost dl the modules of the activity server, it is advantageous to identify

and discard spurious or unwanted events early on. First of all, it discards events for

users the activity server is not interested in and if spurious or duplicate data packets

arrive, these are also duly ignored.

Next, it ensures that each packet has a consistent username. The phone server

sends calling/called telephone numbers and the location server sends real names; these

are converted to usernames by doing database lookups.

Events that are not arrested by the filtering mechanism are considered relevant and

are timestamped even though all the Listeners return their data with a timestamp.

This is necessary because system times vary; a single point of timestamping on a single

machine will provide a standard reference point to compare temporal information of

events.

4.3 Data Representation

The activity server needs to keep the state of a number of entities including servers

(Listeners), clients, places and people. These entities are modeled as data objects

which are described below. The following section will describe how the incoming

events modify these data objects.

typedef s truct ,ServerInf o (
i n t type; /* type of server */
i n t upstate; /* health of the server */
long timestamp; /* time of l a s t event or dont ime */

) ServerInfo, *ServerInfo,ptr;

Figure 4-1: The ServerInfo object saves the state of Listeners.

4.3.1 Server object

The ServerInfo object maintains the name, the server state (up or down) and the

last time an event arrived or the time it went down (see Figure 4-1). If a server goes

down, the the assertions made by the rules are affected since most of the rules are

context-dependent; when a server is down for an appreciable length of time (more than

15 minutes in this implementation) a different set of rules are triggered to compensate

for the loss.

4.3.2 Person object

The PersonInfo object includes a person's username, which is used for addressing,

and office location, office phone, and the type and time of the last event. In addition,

events from each Listener are stored in its corresponding data structure within the

person object. Each of the object representing the Listeners maintain data that is

relevant to their corresponding Listeners. As shown in Figure 4-2, the place object

is a pointer rather than a real data object. This is because a phone number and

a usernarne are unique to a person; hence, use of the phone or the username (on

machines) will not affect the activity of any other user directly. However, many people

can share the same physical space (office, conference room, etc.). One person's entry

or exit may affect the activities of others. If all occupants point to the same place

object, dynamic information such as people's entry/exit need be updated in only one

place, the place object; all changes will then be visible to all occupants.

typedef s t r u c t ,Person (
char name CMAXCHARS] ; /* username of t h e person */
AS-PlaceInfo *place; /* cur ren t l o c a t ions */
AS-PhoneInfo phone; /* cur ren t and p a s t phone states */
AS-MachineInfo h o s t ; /* curren t and p a s t f i n g e r alerts */
char home-phone [MINCHARS] ; /* off ice phone number (s t a t i c da t a) */
char home-of f ice CMINCHARSI ; /* off ice number (s t a t i c d a t a) */
i n t place-unknown; /* f l a g if badge is not v i s i b l e */
i n t l a s t - even t ; /* source of l a s t event */
long timestamp; /* time of l a s t event */

3 AS-PersonInf o, *AS,PersonInf o-ptr ;

Figure 4-2: The PersonInfo object saves the skate of all persons.

typedef s t r u c t ,PlaceInfo (
char name [MINCHARS] ; /* name/room number of t h e p l ace */
i n t n fo lks ; /* number of people i n t h e p l ace */
char f o l k s CMAXCHARS] ; /* name of a l l cu r ren t occupants */
Link *current,uHead, *current,uTail; /* cur ren t occupants * /

3 AS-PlaceInf o , *AS,PlaceInf o-ptr ;

Figure 4-3: The PlaceInfo object saves the state of all physical spaces.

4.3.3 Place object

A separate linked list of all PlaceInfo objects is maintained. The place object

consists of the name, for addressing and informational purposes, and the lists of all

occupants (and their entry times) currently in the room. Hence, it is possible to

retrieve not only the number of occupants in a room, but also their names and the

duration they have been there. Figure 4-3 shows the PlaceInfo data structures.

4.3.4 Machine object

The MachineInfo object consists of all the information sent by the finger server.

4 1

typedef s t r u c t ,MachineInfo (
char name [2*MINCHARS] ; /* o f f i c i a l name of t h e machine */
char l o c [MINCHARS] ; /* phys ica l l c c a t i o n of t h e machine */
char t t y [MINCHARSI ; /* t e rmina l */
char a l e r t CMINCHARS] ; /* async event */
i n t i d l e ; /* i d l e time (i n minu+,es) */
long t imes tmp ; /* system t ime event was r e g i s t e r e d */
Link *hostHead, *hostTai l ; /* h i s t o r y of p a s t f i n g e r alerts */

3 AS-MachineInf o , *AS,MachineInf o-ptr ;

Figure 4-4: The MachineInfo object saves the user state on machines.

typedef s t r u c t ,PhoneInf o (
char name [MINCHARS] ; /* phone number a s cha rac t e r s t r i n g */
char state[MINCHARS] ; /* s t a t e of t h e phone */
long in-time; /* time event a r r i v e d */
long out-time; /* time symmetrical event a r r i v e d */
Link *phoneHead, *phoneTail;/* l inked l i s t of p a s t phone events */

) AS-PhoneInfo, *AS,PhoneInfo,ptr;

Figure 4-5: The PhoneInfo object saves the state of user phones.

In addition, the physical location of the machine is looked up in the database and

stored in the loc field, see Figure 4-4.

4.3.5 Phone object

The PhoneInfo object consists of the phone number, saved in name, the state

of the phone, the time the phone was active, in-time, and the time it became idle,

out-time.

4.4 Updating Data Structures

Since events from different Listeners affect and modify different parts of the data

structure, each type of event will be considered separately.

barons l e g g e t t co 0 Moved 05:25:27 PM
barons l e g g e t t co 0 Active 06:38:21 PM
hindus hood co 6 Dormant 06:39:58 PM
warlord toxicwaste pO 0 Login 07:16:16 PK
root toxicvaste p i 0 Logout 11:20:23 PM

Figure 4-6: Format of short form of output from the finger server.

4.4.1 Finger events

The finger server was designed with the requirements of the activity server in mind.

Hence, the six alerts that the activity server receives, together with the username and

the hostmame, can be used directly to make useful inferences. Details of the inferences

made by the finger server were given in the previous chapter. A sample of the short

form of output for "track-locationn command, similar to the request of the activity

server is provided in Figure 4-6.

4.4.2 Phone events

Although the phone server can provide a wide array of events for each of the

phone line it is monitoring, only three suffice for the purposes of collecting phone

activities. These three events are DIALING, IDLE and ACTIVE3. Other events such

as incoming call, held, pending, local hold, rejected, etc. are not only extraneovs to

the activity server, but also add to the complexity unnecessarily.

The three-state transition diagram shown in Figure 4-7 is simple yet sufficient

to characterize all the scenarios in which a user's phone may indicate presence or

absence of activity. The five scenarios that are possible are given as follows:

I. IDLE - DIALING - IDLE (no answer - outgoing call)

 he terminology here is consistent with that used by the phone server itself. DIALING is the
state of taki~lg the phone off-hook and actually keying in the numbers. If a call connects after dialing
or after taking the phone off-hook (for incoming calls), it is in an ACTIVE state. If the phone reverts
to the dormant state of polling for incoming calls or dialing instructions, it is in an IDLE state.

Figure 4-?: Five scenarios of the phone server that are of interest to the activity
server .

2. IDLE - DIALING - ACTIVE - IDLE (call complete - outgoing call)

3. IDLE - ACTIVE - IDLE (less than 2s) (transferred, e.g. voice mail)

4. IDLE - ACTIVE - IDLE (more than 2s) (call complete - incoming call)

5. IDLE - IDLE (no answer - incoming call)

In scenarios 3, phone becomes active for a fraction of a second, when it is being

transferred. Assuming that no conversation is less than 2 seconds long (it is a safe

assumption), this scenario can be discarded. Hence, only scenario 4 is a genuine call.

From scenarios 11, 2) and 4) one can safely infer that a user is in his office (assuming

that user's personal phones are not answered Ly others, out of common courtesy or

otherwise), and the remaining scenarios can be used to infer that the user is not in

his office.

From the argument above, it can be concluded that only a few of the events need

be saved to be able to recover useful activity in the past. Although the current state of

the phone is saved until the next phone event arrives, only the ACTIVE - IDLE pair

of events in scenarios 2) and 4) will be saved along with their in-time and out-time

signatures. Hence, inspecting past histories is especially apt for the phone events

since only a combination of events comprise a sensible duration of activity.

4.4.3 Location events

The location events update the data structures pertaining to the user and place

object. When a user wearing a badge wanders beyond the periphery of the sensor

network or when the user takes off the badge, the place becomes "Unknown." Instead

of discarding this event, it is saved until the next event arrives. Then the activity

server may be able to guess the location of the "Unknownn place.

Every place object maintains the current list of all occupants with their corre-

sponding time of entry. Maintenance of current occupants is important because each

occupant may affect the activity of the others. If one of the two occupants of a room

leaves, he not only affects his own state, but also the state of the person who remains

in the room. The obverse effect is true when a person joins another person who is

alone in an office. The events triggered by comings and goings when there are more

than two people are less important although the number of occupants at any point

in time or the entry time of any resident must be known should a client inquire.

History Mechanism

The activity server retains history on crucial information that suggest state changes.

For instance, times when a person enters a room or makes a call are noted so that

inquiring clients can be notified of the duration of the time in the office, conference

room, another office, or time on the phone. This information helps people make

deductions about others' activities. For instance, a person who has been in the con-

ference room for one minute will most likely he there for some time; however, if the

person has been there for over an hour, the likelihood of his leaving the room is higher.

The same argument can be made of phone conversations or time spent in the office.

In addition, timestamps of when a person comes back to the work area, the time he

leaves, the number of times he remotely logs in or dials in are relevant to his activity.

If the activity server reports that a person has not been to his office in several days,

the fact that he is dialed in or has recently logged in remotely is very significant -

inquiring members of his group can be assured that he can be reached by electronic

means.

Timestamps of events from each Listener are also saved. These timestamps are

used by the rules to deduce possible change in state. For instance, if a badge has been

seen in the same place for more than two hours, it is indicative of a badge that was

left inadvertently within the line of sight of a sensor (the usual practice is to leave the

badge turned over so that it does not transmit signals, which not only trigger false

events, but also reduce the life of batteries).

Client Interact ion

Fundamentally there are two kinds of outputs from the activity server. Clients

can get the current state of any user's activity or get the history of user activities over

a period of time up to the present. The former is the locate command while the latter

is the activity command (for more detailed information on the server-client protocols

consult Appendix B). The locate command can be synchronous or asynchronous;

in the asynchronous mode it is called track. The locate command can be in long

mode or short mode (see Figure 4-8). The long mode allows for human-readability

while the short mode is more suited fm machine-readability should a client program

attempt to parse the output from the activity server. While locate takes a username

as an argument, it is possible to get all users' current activity by using locate-all

(track-all in the asynchronous mode). As shown in Figure 4-8 the locate command,

Connected t o t o l l .

l oca te san j ay
[PERSON sanjay] [PLACE 3551 [STATE act ive on machine]
[PHONE 253-8076] [HOST t o l l] [TIME 4: 59 : 04 AM]

set-mode short
OKAY

l oca te sanjay
sanjay 355 10 253-8076 t o l l 05:03:53 AM

a c t i v i t y hindus
hindus was on machine hood, i n own o f f i c e , 352, about 2 hours ago.

bye
Goodbye.
Connection closed by foreign hos t .

Figure 4-8: A sample interaction with the activity server.

provides not only the user's current state of activity, but also the place, nearest phone,

machine-name (if it is relevant) corresponding to the state.

The act ivi ty command provides English text as output to a user's activity. An

important feature of this command is that it not only reports the current state of the

activity, but also mentions past history of user activity. The text generator used for

this command decides which of the history data is relevant, phrases it in English and

sends it to the client. There is no short or asynchronous mode for this command.

Additionally, the act ivi ty takes a username as a command; there is no facility to get

everybody's information simultaneously.

Chapter 5

Rules

The rules that are triggered by incoming events are central to the activity server.

These rules are necessary to draw higher level conclusions and to resolve conflicting

data from the various Listeners or accentuate data that is in agreement. Each event

triggers some number of rules. For some events, there are rules that check the final

state and decide if the incoming event will add any new information to what the ac-

tivity server already knows. Other events require cross-checking with other Listeners.

In essence, the rules do the arbitrations and tradeoffs, apply consistency checks and

make the final decisions for the activity server.

All the rules are based on heuristics applied to an office situation. Some of the

general heuristics can be summarized as follows:

The common activities of two or more people bears more weight than other

individual activities of any one of the people. For instance, if two people are

meeting in an &ice, the event that reports that either person's workstation is

dormant is not relevant.

A person's office is the reference point for many of his activities. Hence, events

that indicate activities (or lack thereof) in individual offices are very important.

For this reason, a person's office number, phone number and machines are closely

tied to the PersonInfo data structures. History of key events pertaining to

activities in the office is also important.

The final state of any activity must follow cansistentiy from current train of

events. If there is a conflict, it is resolved using some of the strategies described

in the last section.

These rules are implemented as conditional statements in C, but are described

here in abstract terms. They are forward-chaining [17], or they work from a current

situation to a final state. The rest of the section considers many important scenar-

ios of activities. Within each scenario, the conditions and actions (or antecedents

and consequents) will be delineated and the reasons for picking those particular an-

tecedent/consequent pairs will be considered.

Some of the variables used in the rules below are taken from actual rules. The

variable last-in-ofice is the time a person was last reported as being in his own office

by one of the Listeners, in-since is the time the person came into the office. The

counters, rlogins and dialins, denote the number of times a person remotely logged in

or dialed in while away from the office. Currenttime is the current system time. The

final states of the activities are treated in depth in the latter part of the chapter.

5.1 Scenario 1: Coming into the Office

Arriving at the office after some time is important for the activity server because

it provides a starting point from which it can start keeping history. For instance, at

the start of a day or, more generally, after a period that is can be construed to be

more than a break, some initializations are done. By choosing a time duration of 4

hours we discount absence from the office for a casual roaming through the halls, for

visiting another office cr even for lunch breaks, etc.

IF las t in~ff ice > 4 hours THEN save currenttime as insince

reset rlogins and dialins

phone is office-phone

place is officenumber

state is aloneinaffice

Note that events from any of the Listeners that show that the person has come

into the office, i.e. activity at the console of the machine in the office, activity on the

office phone or sighting of the badge by a sensor in the office, can trigger and fire this

rule. The most significant assertion from the rule above is that the current time is

the time when the person came into the office. Why is this fact important? At a later

point in time, an inquiring client can find the duration the person has been around;

this fact can help decide how long the person may be around or even what the person

may be doing. Note that the activity server does not take days of the week or times

into account. If it did it could attempt to predict in the near future as do many user

modeling research efforts; but that is beyond the scope of this work.

5.2 Scenario 2: Leaving the Office

Although lack of activity on the phone is a binary value, it is not so clear-cut for

the machine or badge activity. Nevertheless, each one has a time threshold above

which the person is inactive within the Listener's own jurisdiction. Therefore, when

all the Listeners show dormancy of some sort, this rule is fired. All inquiring clients

will be notified that the person is not around; other qualifying statements such as,

when the person was last in the office, for how long, the number of times he remotely

logged in/dialed in since he left the office will be transmitted.

IF dormancy on all Listeners THEN las t in~ff ice is currenttime

in-duration is currenttime - insince

phone is UNKNOWN

place is UNKNOWN

state is NOTAROUND

5.3 Scenario 3: Visiting Another Office

Whenever a person's badge is sighted in another office or the person logs into the

console of a machine in that office, this rule fires. Two separate conclusions about

the state can be drawn by noting how many other people are around. Other people

are significant in this scenario because someone who is done in another office may be

working at a machine there temporarily, or just looking for the original occupant of

that office. However, if more than one person is in the room, we can assume that all

the participants are busy in some kind of a meeting (formal or informal). A special

case of the many-people scenario is if the place happens to be a designated conference

room. Then, the chances of people being in a meeting is very high.

In addition, this rule can spawn a side effect rule if there was only one person in

the room before the new person walked in. The side effect is that the new person not

only changed her own state, but also changed the state of the original occupant of the

office to a busy-in-a-meeting state. Similarly, when the visitor leaves, she changes the

state of the original occupant (back to alone-in-office state) as well as her own. These

side-effects manifest themselves only when there is one person in the office before or

after the visit. If a second visitor walks in, there is no side effect om the other two

because they were busy to begin with.

IF alone

ELSE

IF visiting another officeX THEN phone is officeXphone

place is officexaumber

duration is durationin-officeX

THEN state is aloneinanother-office

state is busy-visitinganother-office

visitors are personl, person2, ...

5.4 Scenario 4: Visitor in Office

The obverse effect of the previous scenario is true for the original occupant of the

office. From his perspective, the only significant changes are the state, which is "busy

with visitors in officen and the start of this new state. If more visitors join in, nothing

changes except the number of people in the room; the state of the room is updated

dynamically so should anyone inquire the correct number of visitors and their names,

it will be known.

IF visitor in office THEN phone is office-phone

place is officenumber

visitors are peruonl, person2, ...
in-duration is currenttime - insince

duration is visitor-durationin-office

state is busy-with-visitorsinaffice

5.5 Scenario 5: On the Phone

When a person makes a successful connection on the phone, the person is busy

on the phone in the office. If the person dials but cannot complete the call, we can

be assured that the person is in his office but his state is not busy (ignoring the fact

that he is really busy while hitting the keys on the phone and listening for rings,

etc.). Note that this rule can be triggered after the "visitors in office" scenario or vice

versa. Then, the state cannot be simply, busy on the phone, it will have to be busy

on the phone and with visitors in the office. If visitors walk in while the person is on

the phone, similar augmented state applies.

IF active on the phone THEN phone is office-phone

place is officenumber

duration is currenttime - phoneactive

state is busy-on-the-phone

5.6 Scenario 6: Logged in on Another Machine

The definition of "another machine" here is a machine that is within the premises

but not in the person's own office. If the person is logged in from a machine (still

remotely logged in from a network standpoint but not from a physical standpoint)

within the premises, the place and phone will be known. Given these two pieces

of information, person-to-person communication is also possible. In addition, the

duration of activity at another machine and the duration of the time away from the

office is also noted.

IF rlogged in THEN phone is placexphone

place is placeXnumber

host is hostname

duration is currenttime - rlogin-time

last in office is last in

duration-office is durationin~ffice

state is busy -onanat her machine

5.7 Scenario 7: Dialed In

An assumption made here is that dialin access is used only from outside the

premises. So by default, the person is not around and the phone and place are

unknown. Although the hostname will be known, the person is definitely not at

the console. Querying clients and people can find out when the person was last in

the office and for how long, which can be an indication to whether the person has

left for the day or might possibly come back. Nevertheless, it is evident that the

person is reachable via electronic means and in many circumstances, this form of

communication is sufficient.

IF dialed in THEN phone is UNKNOWN

place is UNKNOWN

host is hostname

increment dialins

duration is currenttime - dialin-time

last in office is lastin

state is dialedin

5.8 Scenario 8: Remotely Logged In

This scenario is similar to the previous one but there is more flexibility since he

is logged in to a machine at the remote end. As noted earlier the connotation of

"remoten is in the physical sense, not the network sense.

IF rlogged in THEN

54

phone is UNKNOWN

place is UNKNOWN

host is hostname

increment rlogins

duration is currenttime - rlogin-time

last in office is lastin

duration-office is durationinnffice

state is busy-onremotemachine

Final States

After the rules that apply to each scenario are applied, the final state of activ:ty is

determined. The following is an enumeration of activity states that were considered

relevant. For states in which the system is unable to locate the person and get the

recent activity, relevant past activity (recovered by the history mechanism) is given

to the clients.

1. Busy on the phone.

2. Busy visiting another office.

3. Busy with visitors in own office.

4. Busy in a meeting in the conference room.

5. Busy on the phone and got visitors in the office.

6. Alone in the office.

7. Alone roaming the halls.

8. Alone in another office.

9. Alone and active on the workstation.

10. Not around, remotely logged in from the outside.

11. Not around, dialed in from the outside.

12. Not around, state unknown.

Conflict Resolution

Very often events from Listeners can determine the scenario of activity unambigu-

ously. For instance, if the phone is active and the person's last state was "alone in

office," the current state would be "busy on the phone." However, if the person's

last state was "not around, dialed in," there is a conflict. The activity server, then,

chooses a state using a conflict resolution strategy. First, recency is checked; if this

fails to resolve the conflict, a precedence rule given below (from high to low) is used:

1. Dial in

2. Remote login

3. Badge sighting

4. Phone activity

5. Login at home machine

6. Activities on other machines

In the example, above if the "phone activen event followed soon after the "dialed

inn event, "not around, dialed inn state stands because the the "dialed in event'' is

very recent. However, if the "dialed inn event had arrived several hours earlier, the

"busy on the phone" state holds. This particular conflict can be resolved by the

recency strategy; however, if the conflict was not resolved, the next step would have

been to favor the event that is higher on the precedence list.

The precedence rule above was chosen on an ad hoc basis ordered by the stringency

of constraints that would apply. For instance, 'dialin accessn is used only when a

person is outside the premises. While it is normal to stay logged in to one's own

workstation, this practice is not true for dialin access. Hence, while activity on a

workstation in the office can be due to spurious mouse movements (due to vibrations,

etc. or by someone else using the machine temporarily) this is less likely for dialins.

Likewise phone activity may be triggered even if the original occupant is not in

the office if others around that office answer the phocc (zliit of common courtesy) or

make calls themselves. However, it is very unlikely that someone will wear another

person's badge. Hence, the badge sighting event is higher on the precedence list than

phone activity.

As mentioned earlier, this precedence list is arbitrary. Many factors could change

the ordering. However, this ordering has worked effectively for the site where this

system was built (the MIT Media Lab).

Chapter 6

Clients

There are two clients that rely on the activity server. These clients are described

below.

The directory client is a phone-based client that accesses the information within the

activity server. This client provides information about a particular person to any

inquiring member of the group. The reply consists of English text (spoken by a

synthesizer) which will include the activity of the person, and qualifying remarks

about that assertion. The user - client interface is the twelve-button touch tone keys

of the telephone.

6.1.1 Implement at ion

The client runs in a loop monitoring a phone line. When a call comes through,

it greets the caller and solicits username and password. It connects to the activity

server and provides a menu of services. The menu includes several choices: retrieving

1) the activity of any person, 2) the list of people the activity server knows about,

and 3) the current version of the activity server software. When the server returns

with the text, the client pipes the text through the Dectalk text-to-speech synthesizer

which, in turn, pipes it through the telephone line to the ultimate user. After the

user decides to exit, the client unlinks the connection to the server and waits for the

next call.

6.1.2 User Interaction

Once logged in, easy instructions tell the user how the system works and what the

keys do. The user is permitted to interrupt the client at any point and return to the

top level menu or exit; the top level menu also provides the keying instructions for

the client. A command can be chosen by the designated numbers, 1 for "activityn, 2

for "list-peoplen and 3 for current "versionn number. Usernames are entered by using

the letters on the keypad. The system provides username completions of incomplete

names when terminated by the "*" button.

The "activity" command returns the user's current activity; if the user is not

around, it will say when the user was last seen in the office and for how long. If an

error occurs, the text will start with the word "ERROR" (as does any error). For

"list-peoplen command, the text string containing all current users' usernames will

be returned. The "version" command returns the version of the server, e.g. 1.0. The

following is an interactiou with the client (Responses from the system are in special

fonts).

User calls up the Directory client.

[Welcome. Enter your user name from the touch-tone key pad.]

User enters username.

[Please enter your password.]

User enters password.

Client connects to the server.

[Hello, Lisa.]

[This is the phone rink to the activity server.]

[For activity, press one, t o list all users, press two, for version information press three.]

User presses three.

[Current version is 1.01

User presses one.

[Pick a user]

User presses S-A-N-J-A-Y

[sanjay is busy on the phone and has been around for 5 hours]

User presses #
[Have a nice day.]

6.2 The Watcher Client

The Watcher Client is a client with a graphical interface. It is an X Window

System application that displays bitmapped images identifying users and activity

fields such as the nearest phone, host logged on to, etc.; this client is an enhancement

of a previous effort [16]. Figure 6-1 shows how a lineup of users can be displayed

(the users get to choose their own cartoon characters or a bitmap of their own faces);

the lower window shows how the user information may be displayed. This client

updates the activities of participating members of the group. The display is updated

whenever any user changes state on the phone, in physical location or on the network

of workstations. Many tracking and messaging facilities are also available.

6.2.1 Implementation

When Watcher starts up, it makes two socket connections to the activity server

and requests full asynchronous tracking capabilities on one of them; the second is for

synchronous communication.

Whenever the status of any user changes, this information is passed on to Watcher

via the open socket set aside for asynchronous communication; Watcher in turn, will

a user9 - detail

I barons

I Alert I
I Phone

Proper Nane : barry arons

Nearest Phone : 253-2245

Status : alone i n own

Tine : 18:05
Location : El5 - 353

o f f ice

J Last Hustnane : Unknoun I

Figure 6- 1: .An example of Watcfier

modify the display to reflect the changes.

A synchronous capability that provides more dctailcd description of a p c r s o ~ ~ ' s

activity is also available. The activity informat ion is tlie same English text provid(v1

when the "activity" command for any user is is rcq~rcstcd. \Vatcher allows this t ~ s t

to be displayed in a pop-up window.

The synchronous information is solicited and provided o i w tlie socket nlrnnt fo r

synchronous outplit. Altho~igh it is possible to send 110th syncl~ronous and asyn-

chronous output over the same socket, for si~npiicity in d ~ s i g n , the two sockrt ap -

proach was taketi.

Chapter 7

Discussion

The principal contribution of a system like the activity server is the mechanism it

provides a user community to coordinate each other's office activities. This can ease

scheduling problems, reduce phone tags, and, in general, induce more productive office

work. In the short time that the server had been running when this document was

prepared, many performance and other issues were evident. The following sections,

discusses performance of the system and possible directions for future work.

7.1 Perfermance

The performance and reliability of the activity server may be undermined by many

factors. The foremost is the varying latency in receipt of events from the Listeners.

For instance, the phone server reports with minimum latency while the location server

has some latency. The finger server may have variable latency depending on net traffic

and the kinds of machines polled. Hence, for very fine-grained, up-to-t he-second

activity reports the activity server would not be suitable.

Secondly, the reliability depends, to a large extent, on external factors. For in-

stance, whether or not the users are wearing their active badges affects the inferences

made by the activity server although it will still rim without badge sightings data.

For instance, if a user is at a meeting in the conference room and is not wearing her

active badge, the finger server is the only Listener that is useful. If the mouse on the

machine that the user is logged on is moved slightly for any reason, the finger server

will report an active terminal. The inference, the wrong one in actuality, would be

that the user is active a t that machine. Barring these constraints, the activity server

can provide enough information to make reasonable activity classifications.

Thirdly, the nature of the text output is crucial in sharing the knowledge of the

activity server. Although factually correct, poorly worded or lengthy text output can

be not only confusing, but also tedious. The text generation task is a difficult one,

especially if the semantics and naturalness are to be preserved. When the activity

server was being used by many people, their greatest problem was in recovering the

exact information from the English text.

Future Work

There are several areas in which the work started by the activity server can

progress. The first area is an online calendar, which although more static over the

course of a day, is certainly very dynamic over the course of many days or weeks. A

modified Unix calendar with granularity of an hour or half hour slots rather than a

day could be used as an additional Listener. The only drawback would be that, unlike

other Listeners, the calendar server would require direct involvement from the user

(i.e., update the calendar regularly). Unless the user is conscientious about updating,

the events that the calendar Listener can provide will be too sparse for them to be

very useful. Nevertheless, for projections on user activities in the future, the activity

server might benefit from an added Listener like the calendar server.

One of the handicaps of the actual implementation of the activity server is the

static nature of the rules. Many assumptions have been made in the rules. Should

the assumptions change, the rules will be rendered useless. Hence, the ability of the

activity server to read in a new rule-set dynamically ought to magnify the versatality

of the server.

The utility of the activity server depends immensely on the history it keeps.

Should the server go down, all the history is lost. A mechanism to read the last

log file and re-create the state just before the server went down would be very useful.

The actual utility of the activity server can be gauged by a usability study. It

would be interesting to find out whether or not people use the activity server actively.

Investigating informed users' apprehensions or lack thereof towards a system that

monitors unobtrusively might shed light on the actual utility of systems like the

activity server.

A system like the activity server might uncover privacy issues. As emphasized

earlier, a tool such as the activity server can be used very effectively in small groups

of trusting individuals (e.g., project teams). However, the amount of information that

the server receives should be controllable by the user himself using a customization

directive alterable only by that individual. Therefore, if a user does not want others

to get telephone information, for instance, the activity server should be able to shift

the emphasis to other Listeners. Having the user decide the inputs into his own model

is not new; some user modeling systems have allowed the user to "edit" the model

to enhance the model [7]. This "editingn concept can be used to enhance the model

and also preserve user privacy. In addition, in future implementations, each of the

Listeners and the activity server may require a password so that the information is

provided only to trusted clients; the Directory client already requires a password.

Many potential clients can benefit from the activity server. Some earlier work has

concentrated on messaging services after locating the user on a local-area network

[14]; the Watcher Client provides some messaging service as well but this capability

can be greatly augmented.

Finally, the activity server can be said to be an idiot savant. It can report about

a limited domain of activities accurately but it cannot learn from data it collects. A

serious user modeling effort can be launched if the activity server could learn from

past inputs of the Listeners. Instead, of saying "UserA is not around, she was last

seen one hour agon it could say UserA was last seen one hour ago, she is probably

at lunch because she usually goes to lunch around this time."

Chapter 8

Summary

This thesis implements a system, the activity server, that provides information

on activities of members within small trusted groups. It uses multiple information

gathering techniques which provide redundant and possibly conflicting information.

Among the information gathering sources, the phone server reports on phone activities

while the location server reports about physical whereabouts of the user community.

Another data gathering system, the finger server, was designed and implemented to

provide the activity server with workstation activities of users.

Many important design issues and pitfalls of the activity server and its auxiliary

data gathering systems have been discussed herein. It is hoped that the activity

server can be used as a tool for the office environment that could augment and enrich

the communication within the community of participating members.

I would like to thank Barry Arons for offering invaluable suggestions and for finding
and squashing socket manager bugs. Janet Cahn, Debby Hindus and Chi Wong and
the Speech Group provided helpful hints and gave much needed moral support. Jim
Davis was a tireless reader and a well-informed critic. Chris Schmandt, my thesis
supervisor, deserves many thanks for posing the problem and giving me many useful
suggestions. Sun Microsystems, Inc. provided the support that made this project
p~ssible.

My office mates, Foof, Hakon and Nathan brought me food and gave me healthy
doses of encouragements, both of which are necessary for survival. Uday, my brother,
did my laundry several times and kept me in touch with reality. Debra gave me the
support I needed through noisy phone lines from Venezuela. Finally, my parents,
living twelve thousand miles away, had the confidence that I would complete this
document.

Bibliography

[I] P. E. Agre, The Dynamic Structure of Everyday Life Cambridge, Mass. MIT A1
Lab TR #1085. 1988.

[2] P. E. Agre and D. Chapman, What are plans for? Cambridge, Mass. MIT A1
Lab Memo #1050. 1988.

[3] A. Birrel and B. Nelson, Implementing Remote Procedure Calls, ACM Trans.
on Computer System, 2 , 1 (February, 1984), pp 39-59.

[4] T. S. Cormen, C. E. Leiserson and R. L. Rivest Introductions to Algorithms.
Cambridge, Mass. MIT Press and McGraw-Hill Book Company. 1990.

[5] C. A. Ellis, Formal and informal models of ofice activity. Xerox PARC Technical
document. 1984.

[6] H. Kautz, A circumscriptive theory of plan recognition. Intentions in Commu-
nications (Eds. Phillip R. Cohen, Jerry Morgan and Martha E. Pollack). MIT
Press, Cambridge, Mass. 1990.

[7] J. Kay, um: A toolkit for user modelling. Second International Workshop on
User Modeling. March 30-April 1, 1990.

[8] K. Harrenstien, NAME/FINGER Protocol, RFC 742. 1977.

[9] A. Kobsa and W. Wahlster (Eds.), User Models in Dialog systems. New York.
Springer Verlag. 1989.

[lo] D. B. Lenat and R. V. Guha, Building large knowledge-based Systems. Addison-
Wesley Publishing Co., Inc., Reading, Mass. 1990.

[11] D. A. Norman, The Design of Everyday Things. Doubleday Currency, New York.
1990.

(121 M. E. Pollack, Plans as complex mental attitudes. Intentions in Communica-
tions. (Eds. Phillip R. Cohen, Jerry Morgan and Martha E. Pollack). MIT Press,
Cambridge, Mass. 1990.

[13] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication.
University of Iliinois Press, Chicago. 1963.

[14] L. F. G . Soares, S. L. Martins, T. L. P. Bastos, N. R. Ribeiro and R.C.S.
Ccrdeiro, LAN Based Real Time Piudio-Data Systems. 3oceedings of ACM
SIGOIS '90 Conference on Office Information Systems. 1990. pp. 152-157.

[15] L. A. Suchman, Plans and Situated Actions New York, NY. Cambridge Univer-
sity Press. 1987.

[16] S. Tufty, Watcher. MIT Bachelor's Thesis. 1990.

[I?] P. H. Winston, Artificial Intelligence. Addison-Wesley Publishing Company,
Reading, MA, 1984.

[18] C. Wong, Persona! C~ommunications. MIT Master's Thesis. 1991.

Appendix A

Finger Server Protocol

A.1 Introduction

The service is a byte-stream Internet protocol based on TCP. The protocol sup-
ported is also called fingerserver, and is on TCP port 4500. This port is unique within
the Media-Lab and MIT Athena. In addition to the byte-stream protocoi, a clicut
library built on top of the byte-stream protocol exists for C programming language.
First, the details of the byte-stream protocol will be described - this will lay the
groundwork for the higher level C interface.

A.2 Byte-stream Protocol

A client uses finger server by opening a stream to the server, sending and reading
lines of ASCII, and closing the stream. Client messages to the server begin with a
keyword followed by arguments. Messages are divided into two classes:

e commands produce exactly one line in response

e queries produce an unlimited number of lines in response. The last line will
always be blank (only a newline character).

Commands always produce exactly one line of output. If an error occurs, the
output will begin with the string ERROR. Otherwise, if the command is a question,
the line will be the answer. If the command is executed for side effect, the line will
be the word OKAY.

Note that some commands, known as requests cause the server to produce asyn-
chronous output at future times. Some commands need no arguments, others need
arguments that specify which one from a given set.

The server is not case sensitive.

A.3 Output Formats

There are trr, output formats, long and short, for finger server replies. Acknowl-
edgements and errars do not have a short format.

e username username of the person. Lang format, [PERSON username].

e hostname name of the host. Long format, [HOST hostname].

+ terminal name of the terminal. Long farmat, [TTY terminal].

a idle-time an integer in miautes. Long format, [IDLE idle].

alert kind of asynchronous alert. Long format, [ALERT alert].

time system time. Times can be pzinted in human-readable or machine readable
format.

A.4 Asynchronous Output

In ?.ddition to responses to questions and queries, the server also produces output
asynchronously when it has been instructed to track people or hosts. This output can
arrive at almost .=y time, so the client should be checking for it. In the C library, a
handler may be registered 60 that it can processed incoming responses asynchronously.

A.5 Messages

HELP
Query Returns list of all messdges.

VERSION
Question Returns a line specifying the version of the protocol. The veision at this
time is 1.0.

?
Synonym for HELP.

qUIT
Command Breaks the server connection. This message has not been implemented;
for now, the escape sequence of the underlying communication mechanism, eg. telnet,

can be used.

BYE
Synonym for QUIT.

SYNC
Command Suppresses asynchronous output. A client uses this command if it has
issued any queries (that is, it expects asynchronous output) and it wants to send a
command or question. Since synchronous and asynchronous outputs are not tagged,
there couid be an ambiguity at the client's end if the asynchronous outputs were not
temporarily disabled. Hence, a client can send the SYNC command. It can then send
any message it wants, confident that any output from the server will be in response
to that message, m d no other. After sending messages, the client should then send
the ASYNC command to enable asynchronous output.

ASYNC
Command Allows asynchronous output.

LOCATE person
Question Returns the host, tty and idle time of the person.

LOCATE-ALL
Query Returns a series of messages for all persons currently located. Note that this
is a query, not a request.

TRACK person
Request Henceforth, whenever person's activity on any host known to the server
changes, the server will send a message.

UNTRACK person
Command Stops tracking person.

TRACK-ALL
Request Tracks all people.

UNTRACK-ALL
Command Cancels any previous tracking requests.

ADD-HOST host
Start keeping state on host.

ADD-PDSON person

Request Start keeping state on person.

GET-ALL-HOST-INFO
Query Get info on all users on all hosts.

GET-HOST-INFO host
Question Get info on all users on host.

LIST-HOSTS
Query Get the names of all hosts the server knows about.

LIST-PEOPLE
Query Get the names of all users the server knows about.

RESET
Command Revert to default state (reset modes and requests).

SET-MODE mode
Command Set output mode. Allowable modes are SHORT and LONG.

STATUS
Query Print out your personal requests and modes. Lists three fields: output mode
(short or long), asynchronous mode (true or false) and people being tracked (all, none
or usernames).

USER-ON-HOST user host
Question Find out if user is on host.

TRACK-LOCATION
Request Report change in all user location.

A.6 Programmer Interface

A programmer interface, built on top of the byte-stream, exists for C language.
Client programs in C can use this interface and appreciably reduce the complexity
and detail for interacting with the server.

The Fingerinfo structure given below will be filled by the routines whenever
applicable. This structurt: and other definitions are given in the header file fin-
ger-clientati1s.h.

typed(af struct ,FingerInf o
C

char user [MAXCHARS] ;
char host [MAXCHARS] ;
char terminal [MINCHARS] ;
int idle;
char alert [MINCHARS] ;
struct ,FingerInfo *next;
struct ,FingerInfo *prev;

) FingerInf o , *FingerInf o-ptr ;

int f s-init ()

Connect to the fingerserver. Returns a socket identifier (greater than 0) if successful,
-1 otherwise.

FingerInf o * f s,locate(fd, user)
int fd;
char *user;

Get the most recent activity of user. If not logged on, host field in Fingerhfo will
contain string "UNKNOWNn in it. Returns a pointer to the FingerInfo structure if
successful, NULL otherwise.

int fs,locate,all(fd, result) int fd; FingerInfo **result;

Get most recent activities of all users the server knows about. Returns the number
(0 or greater) signifying the number of users found, -1 for error. The actual finger
information is given in result which must be freed after calling this routine.

int f s,get,host,info(fd, host, result)
int fd;
char *host ;
FingerInfo **result;

Get idle information on all users on host. Returns the number (0 or greater) signifying
the number of users found, -1 for error. The actual finger information is given in result
which must be freed after calling this routine.

int fs,user,on,host(fd, user, host)
int fd;
char *user;
char *host;

Returns 1 if user is logged in on host, 0 if not and -1 if error.

int fs,list,hosts(fd, hostlist-ptr)
int fd;
char **hostlist,ptr;

List the hosts the server knows about. Returns 0 if okay, -1 otherwise. Fills
hostlist-ptr with host names. Whitespace is the delimiter. Must free hostlist-ptr after
use.

int fs,list,people(fd, userlist-ptr)
int fd;
char **userlist,ptr;

List the people the server knows about. Returns 0 if okay, -1 otherwise. Fills
userlist-ptr with host names. Whitespace is the delimiter. Must free userlist-pir
after use.

int f s-track-all (fd, handler)
int fd;
int (*handler) () ;

Request changes in machine activities of all users. Returns 0 if all okay, -1 if an error
occurred.

int handler (inf o)
FingerInfo *info;

<
/* do whatever you want with info */
free (inf o) ;

All routines requesting asynchronous events need to register an event handler of the
form given above.

int f s-untrack-all (f d)
int fd;

Disable receiving asynchronous events about all users. Returns 0 if all okay, -1 if an
error occurred.

int f s,track(fd, user, handler)
int fd;
char *user ;
int (*handler) () ;

Kequest changes in machine activities of user. Returns 0 if all okay, -1 if an error
occurred.

int f s,untrack(f d, user)
int fd;
char *user;

Disable asynchronous events about user. Returns 0 if all okay, -1 if an error occurred.

int fs,set,mode(fd, mode, val)
int fd, mode, val;

Set or reset async reporting or output format modes. In mode=l, will start short
output format if val=l, long format if val=O. In mode=2, will start synchronous
reporting if val=l, asynchronous if val=O.

int f s,get,status(f d, sync-ptr, outmode-ptr, tracklist-ptr, users)
int fd;
int *sync,ptr, *outmode,ptr, *tracklist,ptr;
char *users ;

Get the status of various setting for the client. If sync-ptr points to 1, the client
is requesting synchronous output, if outmode-ptr points to 1, the client is requesting
short output format and if tracklist-ptr points to 1, the client is requesting trackall
otherwise users might contain the list of users (delimited by whitespace) that the
client is tracking.

int fs,reset,status(fd)
int fd;

Reset settings to default values: async, long mode and track none.

int f s-f ree (ptr)
char *ptr;

Used to free data pointed to by ptr.

Appendix B

Activity Server Protocol

B.1 Introduction

The service is a byte-stream Internet protocol based on TCP. The protocol sup-
ported is also called matiserver, and is on TCP port 4500. This port is unique within
the Media-Lab and MIT Athena. By desing, some of the protocol implementations
are compatible with that of the finger server protocol; however, they are repeated for
completeness.

B.2 Byte-stream Protocol

A client uses activity server by opening a stream to the server, sending and reading
lines of ASCII, and closing the stream. Client messages to the server begin with a
keyword followed by arguments. Messages are divided into two classes:

a commands produce exactly one line in response

queries produce an unlimited number of lines in response. The last line will
always be blank (only a newline character).

Commands always produce exactly one line of output. If an error occurs, the
output will begin with the string ERROR. Otherwise, if the command is a question,
the line will be the answer. If the command is executed for side effect, the line will
be the word OKAY.

Note that some commands, known as requests cause the server to produce asyn-
chronous output at future times. Some commands need no arguments, others need
arguments that specify which one from a given set.

The server is not case sensitive.
There are two main classes of responses. One provides the state of current activity,

the other provides the history of activity leading up to the current time.

B.3 Output formats
There are two output formats, long and short, for activity server replies. Acknowl-

edgements and errors do not have a short format. The history of activity does not
have a short format either.

B.4 Current Activity
The c u r r ~ n t activity response can have short or long format, synchronous of asyn-

chronous output mode. The following is a description of the fields in the output of
current activity.

username username of the person. Long format, [PERSON username].

place room number of the place. Long format, [PLACE place].

state current state of activity. Long format, [STATE state].

a phone phone number of nearest phone. T,ong format, [PHONE phone-number].

r hostname name of the host. Long format, [HOST hostname].

r time system time. Times can be printed in human-readable or machine readable
format.

In addition to responses to questions and queries, the server also produces output
asynchronoilsly when it has been instructed to track people. This output can arrive
at almost any time, so the client should be checking for it.

B.5 Messages

HELP
Query Returns list of all messages.

VERSION
Question Returns a line specifying the version of the protocol. The version at this
time is 1.0.

?
Synonym for HELP.

QUIT
Command Breaks the server connection. This message has not been implemented;

for now, the escape sequence of the underlying communication mechanism, eg. telnet,
can be used.

BYE
Synonym for QUIT.

SYNC
Command Suppresses asynchronous output. A client uses this command if it has
issued any queries (that is, it expects asynchronous output) and it wants to send a
command or question. Since synchrorous and asynchronous outputs are not tagged,
there could be an ambiguity at the client's end if the asynchronous outputs were not
temporarily disabled. Hence, a client can send the SYNC command. It can then send
any message it wants, confident that any output from the server will be in response
to that message, and no other. After sending messages, the client should then send
the ASYNC command to enable asynchronous output.

ASYNC
Command Allows asynchronous output.

LOCATE person
Question Returns the place, activity state, phone and host of the person.

LOCATE-ALL
Query Returns a series of messages for all persons. Note that this is a query, not a
request.

'TRACK person
Request Henceforth, whenever person's state of activity change, the server will send
a message.

UNTRACK person
Command Stops tracking person.

TRACK-ALL
Request Tracks all people.

DiTFLACK- ALL
Command Cancels any previous tracking requests.

ADD-PERSON person
Request Start keeping state on person.

LIST-PEOPLE
Question Get the names of all users the server knows about.

RESET
Command Revert to default state (reset modes and requests).

SET-MODE mode
Request Set output mode. Allowable modes are SHORT and LONG.

STATUS
Request Print out your personal requests and modes. Lists three fields: output mode
(short or long), asynchronous mode (true or false) and people being tracked (all, none
or usernames).

B.6 History of Activity
The sole message for hidtory of activity is given below. Short or asynchronous

modes are not allowed (they would not be meaningful). The output is not in discrete
fields but in English text. Although the output changes depending on the state of the
activity, the usual format provides the state of the current activity followed by the
duration of that activity. If the person is not in his office, the time when he was last
in his office, the time he dialed in and other qualifying statements will be provided.
ACTIVITY person
Question Returns the activity state and its history in English text.

Appendix C

Configuration Files

Both the finger server and the activity server read a few configuration files at
startup time. Without the configuration files the servers will not know what entities
they ought to save information on. In fact, without these files, the server will stop
execution.

The finger server needs two files, .finger,config. hosts and .finger-config.users which
list the hostnames and usernames, respectively. Likewise, the activity server will need
.mati_config.places and .matixonfig.users. All the files take the pound sign # to mean
the beginning of a comment till the end-of-line.

C.l Finger Configuration Files

C . 1.1 Hosts Configur;;t ion Files

The mandatory field of .finger-config.hosts is the hostname. Other optional fields
must follows in the sequence of hosttype, polling frequency and options (to the finger
daemon).

The default value for hosttype is 0, meaning a regular Unix machine; 1 signifies
it is a machine running Ultrix and 2 means the machine is running a Lisp operating
system (e.g. Genera). Polling frequency is in seconds and the default is 90 seconds.
The minimum is 60 seconds (anything lower than the minimum will be set to 60). By
default there are no options to the finger daemon. Not any option will be supported,
however. The parsers within the server may not support all output formats since each
option will produce a different output from the machines (finger daemon).

.finger,config.hosts
Configuration file of hosts for the finger server.
Pound sign (#) signifies the start of a coment till the end-of-line
Host types are:
#define FS-HOST-SUN 0

#define FS-HOST-DEC 1
#define FS-HOST-LISPM 2

ghostname hosttype

media-lab 1
toll 0
kilimanj aro 0
#obvious 2

pollfrequency options

240 -i

C.1.2 Users C1 onfigur ation Files
There is only one field that will be read in the Users configuration file, .fin-

ger-config.users. This field is the username of the person. The pound sign can be
used to put comments.

geek # Chris Schmandt
jrd # Jim Davis
ccwcng # Chi
hindus # Debby

C.2 Activity Server Configuration Files

C.2.1 Places Configuration Files
The only mandatory field is room number or name of the place (whatever appears

in the DB). An optional field, that will make assertion clearer, is the type field; offices
are 1, iab area 2, conference rooms 3 and corridors are 4. If no type is given, it is
assumed to be an office except for corridors which are always known as corridors due
to their second character being a 'c'.

#places type

?# geek's office
cubicles outside geekJs office
sound studio

garden
sound room
lisals off ice
chi&debbyJs office
barry ' s off ice
sanjayJs office
conference room
3rd floor corridor, Boston side
3rd floor corridor, Garden side
3rd floor corridor, Fenvay side

C .2.2 Users Configuration Files
This file is similar to its finger server counterpart. There is only one field that will

be read in the from the users configuration file, .mati_config.users. This field is the
username of the person. The pound sign can be used to put comments.

geek # Chris Schmandt
jrd # Jim Davis
ccwong # Chi
hindus # Debby
varlord # Badger guy

