
Beat Browser
by

Jeffrey D. Goldenson

B.A. Architecture
Princeton University, 1999

SUBMITTED TO THE PROGRAM IN MEDIA ARTS AND SCIENCES
SCHOOL OF ARCHITECTURE AND PLANNING

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JULY 2007

©2007 All rights reserved.

Author
 Program in Media Arts and Sciences
 July 6, 2007

Certified by
 Christopher Schmandt

Principal Research Scientist
M.I.T. Media Laboratory

Thesis Supervisor

Accepted by
Andrew Lippman

Chairperson
Department Committee on Graduate Students

3

BEAT BROWSER

by

JEFFREY D. GOLDENSON

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning on July 6, 2007

in partial fulfillment of the requirements for the Degree of Master of Science

ABSTRACT

Beat Browser is a music browsing environment that delivers immediate audio feedback while
browsing arbitrarily large music collections. The goal of Beat Browser is to give users a sense
of exploring “live” and continuous audio while rapidly moving between sources by mouse. It
appears their entire universe of music is playing all the time, whether they’re there listening
or not. Beat Browser’s Universal Time Base architecture keeps a central clock running that
manages the playback position of every piece of music launched, orchestrating this perceptual
illusion.

Thesis Supervisor: Christopher M. Schmandt

Title: Principal Research Scientist, M.I.T. Media Laboratory

4

Thesis Committee

Thesis Advisor:

 Christopher M. Schmandt
 Principal Research Scientist
 M.I.T Media Laboratory

Thesis Reader:

 Barry Blesser, Ph.D.

Thesis Reader:

 William Gardner, Ph.D.

7

Acknowledgements
First, I’d like to thank my advisor Chris Schmandt for pro-
viding really sharp insights and guidance throughout the
research process. I’d also like to thank him for accepting me
into the Speech and Mobility Group, I’ve had a great time
here.

Linda Peterson, for being a fantastic, and unfailingly honest,
guide through my experiences here at The Lab. Without her,
I would not have had the experience I had.

My group mates for welcoming me and making me feel at
home.

Kent Larson, for accepting me into the program.

I’d like to thank my readers, Barry Blesser and Bill Gardner.
I’ve really appreciated our conversations and both of your
input, both directly, and by example.

Robert Burkhardt, who’s coding experience was invaluable.

My parents for their support.

My brother Andy, for being an engineer who always made
time to bail me out of numerous situations. I’d also like
to thank him for donating the hardware behind the Spatial
Player research.

And finally my wife Natalie. Your perspective has been
refreshing and your support awesome. Thanks partner,
I couldn’t have done it without you.

8

Table Of Contents

 1. Introduction
a) The Problem

 b) The Concept
 c) How It Works

2. In Context

a) Music Access
b) Building Playlists

3. Development
a) Ultrasonic Sensor
b) Spatial Player
c) Beat Browser 3D

 4. Beat Browser

5. Design Principles

6. Related Work
 a) Spatial Player
 b) Beat Browser

7. Future Work

8. Conclusion

9. Bibliography

9

1. Introduction
“In the 70’s I came up with a word for this kind of music that
more and more people were starting to do which I called Ambient
Music. And that was quite a different idea [from narrative music],
that was the idea of music as a sort of steady state condition that
you entered, stayed in for a while, then left. Music as painting
[rather] than as narrative.... It’s closer to sitting by a river than
to listening to an orchestra.

Brian Eno, in conversation with Will Wright, “Playing With Time,” The
Long Now Foundation, June, 2006

The steady state nature of Ambient Music and the nature of Beat
Browser form a useful parallel. Beat Browser is a kind of steady state
music browsing environment, designed to be entered, stayed in for a
while, then left.

Like Ambient Music, Beat Browser is always happening. It isn’t stopped
or started, it just is.

a) The Problem
Software music players are designed implicitly with search in mind.
These tools are optimal when you know what you’re looking for. They
are a multi-step experience that may be broken down as follows:

1. Establish what you’d like to listen to
duration unknown

Brian Eno

10

2. Scroll, navigate or begin typing to find that artist’s name
approx. 3 seconds

3. Select the song
approx. 1 second

4. Commence playback
approx. 1 second until the audio is audible

Cumulatively, this is a ~five second delay between when you begin
search to when you actually hear something. Beat Browser argues that
these five seconds are the problem.

They quickly add up. These five seconds are full of reading, decision
making and fine-motor mouse interaction. This focused cueing takes the
fun out of any kind of music browsing or “shopping around.” It’s a lot of
work that doesn’t have anything to do with listening to music. And it’s
this work that discourages people from trying something new.

Beat Browser is explicitly designed with browsing in mind. It welcomes
you not with a linear list, but with 2D field of album art. It ushers you
into your collection with immediate musical response, letting you sift
and surf until something catches your ear.

There are distinct scenarios where browsing is preferred to search. Beat
Browser focuses on two often interrelated tasks: playlist building and
music discovery. Playlist building is the act of compiling a selected set
of songs for extended playback. Music discovery is finding new music
you enjoy or uncovering old favorites long neglected.

Beat Browser, displaying the basic welcome view

Yahoo! Music Unlimited

Apple’s iTunes with CoverFlow, the
album cover visualization, open

11

These use cases are under served by current software music tools. Beat
Browser’s design addresses these needs specifically:

1. Instantaneous audio delivery for quicker discrimination
2. Fluid sound design to limit listener fatigue
3. Intuitive controls supporting casual, 2-axis gross-motor

interaction

b.) Concept

“What would it sound like if every one of your songs,
on every one of your albums was playing all the
time?”

This was the thought that inspired Beat Browser. Beat Browser creates
the illusion that your entire universe of music is playing – beginning the
moment you start-up the application. As a listener you skip between
songs and albums as time flows forward in the universe, forming a kind
of “river of music.” Where you begin listening inside each song, album
or playlist, is completely determined by how long you’ve been running
Beat Browser.

c.) How It Works
At the outset of launching the application a central clock is started.
Mousing over album covers or song wedges, representing its tracks,
each piece of music asks this central clock, the Universal Time Base
(UTB), how long Beat Browser has been open. If you’ve launched the
application at 1:23:02 pm, and proceed to listen to an album until you
mouse over another at 1:42:22 pm, this second album will begin 19:20
into the album. If we assume we’re listening to a Pop album where every
song is 3:30 long, we’ll find ourselves approximately 1:52 seconds into
the 6th song, minus the gaps between the songs.

If you’re navigating songs, and not albums or you have been listening
continuously for longer than the length of an album, Beat Browser takes
the modulus to determine playback position. We’ll use a songs as an
example, but the same concept applies with albums.

Beat Browser takes the Universal Time Base value of 19:20 and divides
this by the duration of some song, a 4:20 Elton John tune, for example.
Beat Browser discards the integer value and takes the remainder as a
percentage of the song length. This percentage of 4:20 is calculated as a
time value, and playback begins at this point into the song.

This architecture constructs a “live” listening environment for users to
enter, listen and build playlists. This architecture perpetrates the central
illusion: that Beat Browser is steady state machine, playing the whole
universe of available music, whether you’re there to hear it or not.

This is the Halo open. The Halo
is dynamically divided for each al-
bum, each wedge represents a track
on the album.

12

2. In Context
a.) Music Access
There are two dominant paradigms in how people gain rights to listen to
the music they listen to. Buying albums or singles in the store or on-line
provides unfettered playback for personal use so long as anti-piracy and
copyright legislation is upheld.

Subscription-based models, where one joins a music “club” of sorts, is
the other paradigm. For a flat monthly fee, members gain access to the
vast collection of recorded music. It’s important to give this relatively
recent music distribution channel more focus as the vastness of its library
is perfectly suited for new music discovery.

Currently Beat Browser only runs natively, but the ultimate fruition of
the concept would be coupling Beat Browser with the true “universe” of
music these clubs contain.

As a member you have access, but not control over, this universe. After
password clearance, you gain permission to stream these files from the
club’s server to your local machine. This must occur over a live internet
connection.

While you may listen as much as you like, you cannot save these files
locally. Rhapsody, the market leader, refers to this concept colloquially
as the “Jukebox in the Sky,” as Real Networks’ CEO Rob Glasser likes
to describe it. It creates a new listening experience, inflected by a new
business model.

Experimenting with Rhapsody for three months, I passed the initial swell
This is Real Music’s Rhapsody lis-
tening service.

13

of euphoria of streaming any of “millions of songs” on a whim, and after
two months found I was hardly using it. I ran out of the songs I was
craving to hear and didn’t own. Occasionally I’d drop in to see what’s
new, rarely did I look into the archives.

Somehow, this ocean of listening options was paralyzing. There
were no visual representations of it, and it remained ungraspable and
inaccessible. Then I started to let other Rhapsody members guide me.
I quickly realized a better use for playlists than setting a mood, here
they were maps to new or forgotten islands of music. Playlists inside
Rhapsody have a different meaning. As a member, you have access to
every piece of music all the time. All the music is in there, you just have
to know where to look for it.

As Chris Schmandt has championed after more than two years as a
Rhapsody listener, with this kind of music access at your fingertips, the
currency of this environment becomes playlists.

b.) Building Playlists
Playlists are catalogs of time-based media ordered for sequential
playback. This allows one to automate extended audio experiences
consisting of two or more tracks – just hit start and forget about it.

Successful playlists are not easy to create. At best playlists score a mood
or take the listener on a compelling journey. They can be optimized for
a large number of factors, from environments to mindsets, aesthetics
to beats per minute. They may also leverage higher level factors like

To the right of the image, the Beat Browser’s playlist window is open.

14

nostalgia and cultural context; it is all a balance between our “desire for
repetition and desire for surprise”(Aucouturier, Pachet).

Automating playlist construction has drawn significant research
attention within the past several years. The problem of computationally
generating a playlist based on arbitrary criteria far exceeds the bounds of
this discussion, but a brief survey of several prominent problem-solving
strategies is useful.

The most commercially deployed strategy includes an initial query for
“seed songs” from which a larger playlist may grow. Software identifies
similar songs based on criteria ranging from timbral similarity (Logan
Salomon), to tagging (Pandora Internet Radio and AudioScrobbler,
described later) and applying machine learning from existing playlists
(Platt, Burges). Pandora Internet Radio (www.pandora.com) asks you to
select a seed artist. It then plays songs deemed similar by their staff of
listeners – humans provide the brains in the loop.

Users create playlists quickly and simply in the Beat Browser
environment. The feature set is limited to the basics, but the unique
attributes of the music browser reveal themselves. Users can put songs
or entire albums in the playlist with the touch of a button. They may roll-
over the album art to hear the songs, and delete them with a touch of the
same button that put them there. Playlists are saved in the .m3u format
that has become standard and is recognized by all major music players.
This is a simple text file format that is written in near natural language,
legible to the untrained eye.

Building these playlists is a bit like listening, but in fast forward.
Typically, users only want quick tastes of the music, and they want to be
able to move through their library with agility. Most media players offer
a “scrub” bar to slide to access playback points within the song, but this
is an interaction-intensive, and consequently time-intensive task.

The goal with playslists is to craft the best mix possible in the least amount
of time. Creating playlists in music player environments like iTunes or
Rhapsody is work. There are many clicks involved in traversing artists,
albums and songs. These programs were simply not designed with
playlist building in mind. Consequently, it’s not particularly fun and
users don’t make nearly as many of them as they could be.

Beat Browser focuses on creating an environment to help users build
playlists. If Eno describes his approach as “music as painting” than Beat
Browser may be seen as arraying all available musical colors to create a
playlist palette, in service of composition.

This is Rhapsody’s “Mixer” window,
a staging area for songs considered
for playlist integration.

15

3. Development
The roots of Beat Browser lie in a longer audio research trajectory.
Barry Vercoe’s class Audio Perception in Humans and Machines, in Fall
‘06, provided many of the foundation concepts. That semester I realized
design focus could be brought to bear on a life-long curiosity with the
relationship between sound and space.

As a child I enjoyed “listening” to walls when the lights were out, getting
as close to where I felt I could “hear” them (experienced as an increase
of pressure in my ears), without touching them. This game provided
inspiration for the class project.

a) Ultrasonic Sensor
Objective
Using sound, create an experience where our ears
and our proprioception converge to describe our
environment.

This device employs echolocation to roughly determine the physical
character of one’s spatial environment in real-time. It uses a single
Polaroid 6500, a 50 kHz ultrasonic transceiver to calculate time-of-
flight, from which distance is determined.

These echo pulses are driven by an accompanying ranging module
that incorporates simple filtering and selective echo exclusion
capabilities. Desired echoes are translated into a distance value by
a custom application running on a designated microcontroller. The
microcontroller is then routed through my serial port and into the Max/

The completed ultrasonic sensor

16

MSP audio programming environment. A Max “patch” then modulates
the volume of a pre-recorded audio track proportionately based on the
transceiver’s proximity to walls or other large obstructions.

Once operational, the limits of affordable ultrasonic sensing became
rapidly apparent: obstacles, if detectable, need to be near-perpendicular
to the signal to ensure consistent readings; reflections can be very
confusing; and varied material absorption really throws the data. Much
of the noise could have been improved by the use of two sensors in a
binaural setup. This would have provided necessary beam narrowing
and was slated for the next design iteration, but confidence was low in
ultrasonics in general – reflections were still going to be very limiting.

Modulating volume was implemented as a simple proof of concept. The
idea stretched further into mapping sounds more directly on space. An
envisioned implementation was to couple the range-finder with a radio
tuning application, such that when your distance from an obstruction
equaled the height of the waveform, from peak to trough, the system
would tune into that band. It was an attempt to make the radio waves a
little more “visible” and comprehensible. This seemed OK for a science
museum, if it could even work, but it was hardly solving a problem.

It was this point where I began to think there may be utility in exploring
memory and how we use spatial metaphors to aid our memory recall.
My interest was what if we could associate data, or music, or any other
digital stuff with a location in our physical space.

As the first prototype showed, an entirely new approach would be
required if the device was to know much of anything about what it’s
looking at. This begged a question:

“If we couldn’t know much about the real environment
the device was sitting in, is there a way to create an
imaginary environment around the device, but have
the device running a map of this space on-board, to
make it seem real?”

Could the device be some other sensor that could describe an imaginary
environment, a “wand” that could sense where some invisible structure
around us?

Spread of the Beam Pattern for the
50 kHz Polaroid 6500.

Exploratory sketch visualizing the
acoustic concept.

17

b) Spatial Player
Speculation
A 3-dimensional, mental model may be an intuitive
alternate paradigm to interacting and organizing data
on a 2D virtual desktop? We think and dream in 3
dimensions, why not interact with digital information
in 3D?

Spatial Player emerged from these questions of how, and to what effect,
one can associate audio with spatial position. Can you convincingly
simulate the effect of shining an “audio flashlight” around some unreal
space, building a mental picture of what is where, that can later be
recalled?

This would require tracking where the “flashlight” was pointing. This
meant using some sort of accurate heading sensor to monitor continuous
orientation in real time.

It turns out that my brother is in the business of designing and building
heading sensors for the Navy. These sensors are used in very long
underwater towed arrays, long tails full of speakers that use heading
sensors to provide extremely accurate orientation of each ping for
submarine SONAR.

These sensors turn every which way, but always retain their orientation
by sensing both gravity and the earth’s magnetic field, in 3-axes. I

This was an early sketch for Spatial Player. Concentric spheres, arbi-
trarily divisible into degree regions, become event triggers, a type of
spherically arrayed buttons.

Sensing generously provided by
Clymer Technologies.

www.clymertechnologies.com

18

realized that the heading sensor could in fact be the actuator I was
looking for – that “flashlight” to illuminate a virtual dimension of our
construction.

The first step was to decide on a simplified scheme. This scheme was
creating concentric bubbles around the user (see previous sketch).
Spherical coordinates were chosen over cardinal, as these spheres would
have divisible degree regions easier to imagine as places in space. The
first application concept was to explode a simple file structure about the
user, giving each element a spherical coordinate position.

Clymer’s Terrella 6 sensor proved a good development platform, it had
extreme sensitivity via 3 axes of accelerometers and three 3 axes of
magnetometers. Using the earth’s magnetic field as its anchor, Terrella’s
drift was very low. After adding a 3 position switch to increase input/
output, the hardware backbone was in place to deliver readings hopefully
consistent enough for users to build a mental model on.

About three months in total went into building a custom Java application
to read in the data from the serial port, sufficiently smoothing it and
using that data to control the navigation through a file structure of your
music.

The first month was spent attaining consistent performance. This
demanded multiple filtering schemes, dynamic re-zeroing by the user (a
button-press to tell the device where you’re facing) and several latency
reduction strategies. Operating cooperatively, these strategies created a
workable hardware prototype. Then came the issue of tightly fitting the
hardware and software architectures to create a responsive and intuitive,
spatially triggered music player. This took the remaining two (plus)
months

Java

All of the core software development during this research was with Java.
Java’s fast, there’s a massive developer community, Sun provides good
support documentation, and it’s OS independent. The selection of the
Java Media Framework (JMF), also developed by Sun Microsystems,
seemed the appropriate choice as an audio rendering engine. While Sun
discontinued development on the JMF in 2003, by that time the Java
Media Framework was reliable and thoroughly documented.

Spatial Interface

The goal of developing on the Terrella 6 was to create a scenario that
supported the retrieval of situated “virtual objects” in real space. Over
time and study, the shift was made from conceptualizing this environment
as a sphere around you, to a wall in front of you. The reality remained
that the system still used spherical coordinate mapping internally, but it
was much more effective to communicate the wall metaphor to users.
No matter that the diagram looked like a plane, the internal model still
suffered the complexities of spherical mapping (discussed later.)

This is basically what the raw
sensors look like. To the left is the
custom addition of a three-position
switch, supporting:
Rock forward
Rock back
Press down

Here is the final, milled aluminum
casing with two brass (non-mage-
netic) screws anchoring the milled
switch-casing to the insided of the
tube casing.

Early sketch of floating applica-
tions in space.

19

A more mature interface, it now seemed more a kind of 2-axis, row/
column, tree structure represented at the top level as a wall. This “wall”
is divided into four longitudinal regions, where each region represents
a genre. This allows quick browsing along two axes. Each genre is
then divided into varying numbers of sections, depending on how many
artists in that genre your library contains. Representative songs from
artists of that genre are then arranged vertically.

Once browsing, a brief downward press of the 3 position scanner switch,
lets the user select, or “lock-on,” to an artist’s representative track,
temporarily disabling the browsing interface. Pushing forward allows
you to “step into” a particular artist’s library or album. To “step back”
to the parent directory, pull backward on the scanner switch. Repeat as
necessary to continue stepping back.

Selecting one of these albums brings you to a terminal node. Here the
interface shifts from that of an orthogonal grid to a radial clock face. All
the songs are cast around this clock face structure – 12-1 o’clock is the
beginning of the album, 6 is the halfway point and 11-12 the end.

This clock face menu structure was the most effective eyes-free interface
explored. It was easy to verbally communicate the clock metaphor, and
because of it’s ingrained familiarity, users found it easy to envision in
their mind’s eye. This level of visual familiarity allows quick, intuitive

This is a diagram of the second interface structure. It was used to com-
municate Spatial Player’s interface to users, though it belied that the
system still employed spherical mapping internally.

ITT’s three position scanner switch
mounted to the front of Spatial
Player

20

understanding and relative gestural confidence in the overall positioning
scheme of tracks within an album. This was a glimpse at attaining some
of the “eyes-free” functionality Spatial Player sought.

Audio Rendering

It took another month and multiple software architectures tried and quit,
before finally developing a sufficiently responsive and smooth listening
experience. What quickly came into focus was the nature of human
gesture and movement – it’s gracefully “analog” nature, imprecision and
whimsy. Mapping auditory events to these movements across time and
space had to be similarly organic and forgiving.

Audio latency, and the drift associated, was quickly identified as the
biggest problem users faced in building any kind of robust and trust-
worthy mental map of the interface. Gestures tended to be sweeping in
nature. If there was any latency during these sweeps, the user’s hand
would be long passed the region that triggered the audio event by the
time the appropriate music played.

Gesture and response had to be instantaneously coupled or the edges of
the regions would quickly become unidentifiable. It took the Java media
players too long to switch between songs so each song was given its own
media player. When triggered on-mouse-over, the designated player
would begin the designated song. Instantaneous start-up was achieved
the old fashioned way.

This brute force fix revealed a surprise – not all of the latency was due to
bufforing or the opening of a new player or song. The contribution of the
silent lead-in (usually on the scale of milliseconds) was not negligable.
Ears don’t blink.

The simplest patch was to launch all of the players simultaneously
when Spatial Player launched – just play everything muted and un-mute
according to pointer position. That way, all the songs would get over the
lead-in after the first couple seconds.

In “solving” this issue, the idea of the Universal Time Base, the
illusion of concurrent playback of your entire collection, emerged. The
Universal Time Base is discussed at further length later as the central
playback concept, which, appropriately began as a a percieved quick fix
that had to be addressed later. Fittingly, it took playing with the system
extensively before this patch revealed itself as a feature.

Sound Design

Testing quickly revealed that entering these songs already playing at
full volume was too jarring to the ear. To ease this, volume ramps with
dynamically tuneable time lengths, were implemented to control the
attack.

It was the success of the radial
distribution of tracks led to our
use of the donut menu in the Beat
Browser.

21

Given that this interface was not visually reinforced, the goal was to
use to manipulate sound to communicate as well, not just contour it to
make it easy on the ear. In particular, users needed an intuitive way to
determine their proximity to the edge of the currently occupied region.
It was important to know if you were in the heart of the region, or about
to fall out of it.

What was previously an invisible wall was re-imagined as a kind of
plush upholstered banquette or diner booth. The seams were the region
boundaries, the upholstered contour mirrored the gain contour. As
pointer position approached the seam, the gain dropped to zero.

Based on the number of regions (which could be dynamically set to
the users preference or file structure), a similar, dynamically calculated
ellipse filled out the gain envelope.

Testing proved it was close, but a near-miss. The MAX_VOLUME
region had too small an area, and at the edges the currentVolume()
dropped off too quickly. The first problem was that if “locked” at a lower
volume position, songs remained at this lower volume, even though they
were selected expressly for the purpose of listening at full volume. In
response, a gain “zoom” audio animation was tied to standard “lock”
button functionality.

When you “lock” on a song, the song automatically ramps, or “zooms,”
into full volume. This meant taking the current volume of wherever you
were in the region, and ramping that up to full volume. Or, if you were
leaving the locked state, you would be ramped down to the appropriate
volume of that song in your current position in the region. If you found
yourself in a different region at this point, unlocking would ramp down
the previously locked song to zero, and immediately pick you back up
in an upward ramp into the current song at its region-appropriate gain
value.

Second, the smaller MAX_VOLUME region dropped the average
loudness of the interaction experience to a sub-optimal level. The MAX_
VOLUME region had to be maximized, this made browsing around more
fun. That said, communicating region-location information through gain
was still a priority, testing had proven it intuitive and effective.

The response was to take the upholstery metaphor and stuff it. The edges
became positive and negative sine curve volume ramps calculated as a
percentage of the entire region to allow appropriate scalability. This
percentage was a variable, which can be manipulated to affect slope
grade. This flattened the top of the regions for a significantly longer
stretch, making each region more spacious and forgiving to slight arm
and wrist adjustments which had bothersome audible consequences of
jitter using the older strategy. The sine curves at the edges also gave
a nice, aural turn-of-the-lip that was more sonically interesting than a
linear ramp transitions.

22

Tuning

Experimenting further with different region cuts, to increase the density,
it became clear that the slight movements of the arm posed a significant
problem to increasing the region count. This was most observable when
moving along the vertical axis. (Recall: while mentally imagined as
mapped to a wall, the actual computation model of the interface was
mapped to a sphere.)

It is the natural decrease in region size as they approach the top of the
sphere that quickly proved the limiting factor. Though lateral sweeps
between the “Tropic of Cancer” and the “Tropic of Capricorn” could
comfortably support many more slices of the pie (birds eye view),
attempting to stay within the same column as the region areas shrink
if you move up or down the rows was far too frustrating. Averaging
approaches were tried to smooth out the path traced by the pointer, but
this still did not overcome the problem. Chris recommended employing
hysteresis, which appears to be the best strategy, but has yet to be
successfully integrated.

One of the other crucial features that improved overall performance was
integrating on-the-fly re-zeroing. Dynamically setting the primeMeridian
variable allowed users to re-orient the pointer to say that zero is where
they are currently facing. The most important reason for this is the
inconvenience in looking for something behind you. Users can’t become
a cat chasing its own tail.

Testing proved that it was much more natural to constrain the sphere
to a rectangular region in front of you, as described earlier, that did not
far exceed 45 degrees up, down, left or right orientation as this range of
motion felt comfortable to the wrist. This region was entirely adjustable,
and one could dynamically define the operable field, as well as the
individual region size, as desired.

The first way the primeMeridian was set was with the press of the
switch. The three positions on the scanner switch were highly valuable
and the button press logically fit as the LockSong trigger. The solution
was creating a scheme where if you “pushed against,” or past, the edge
of the region, the region would follow your pointing to redefine its edge
location to the point at which you turn and swing in the other direction.
That way, with a couple of swift sweeps side to side to either bounds, the
active rectangular region would end up directly in front of you.

User Feedback from Sponsor Week.
Disappointment.

The Spatial Player was operating as desired, incorporating all of the
features described above that made for a pleasant listening experience,
but this device was simply not an intuitive navigation tool for users. The
“blue sky” thinking about spatial positioning and mnemonic strategies
behind the project proposal yielded a disappointing instantiation. Spatial
Player persistently met with a luke-warm “interesting...”

23

Multiple scenarios, from navigating your cellphone numbers while
you drive to music library navigation were used to help Lab sponsors
understand the utility of sorting spatial menus with gesture. This
attracted some interest, but trying it, the Spatial Player just didn’t seem
something you could put your trust in. There was always something
missing.

The eyes-free interface paradigm, seemed just out of reach to everyone,
myself included. Rather than assisting me in remembering some polar
organizational structure of my construction, I found myself getting lost
in Spatial Player’s interface and not knowing how to find my way to
solid ground. And if I couldn’t find something, the question always
loomed, was it my mistake or the device’s?

Also tellingly, the overall direction of the project couldn’t easily be
communicated. Even today, I still can’t craft a simple and concise
description of the essence of the effort, let alone the device itself
communicate its use and reveal its operation without explanation.

In this day an age, any interface that demands instruction is a doomed
interface. You just have to get it.

Cell Phone Integration

Far and away the most successful aspect of the project was the feature that
I was most reluctant to implement. I had dreams of an intuitive, entirely
display-free interface, but Chris lobbied for some visual feedback. He
thought it’d be cool to have our device broadcasting album cover art,
album title, artist and song title to a cell phone’s display, something to
hold for confirmation.

A Nextel iDen phone, provided by Motorola, was loaded with the .jpgs
of the album covers. With the help of group-mate Jaewoo Cheung, a
new Java class was incorporated to report album change events from my
computer to Jaewoo’s over the LAN. Jaewoo’s computer dialed the cell
phone directly, and once the connection was made, relayed the album
change event over the cellular network. Via the nearest cell tower, the
album change event was received by the user’s phone along with the
name of the new album cover to display. These instructions were then
executed by a custom application, built by Jaewoo, that ran on the cell
phone.

As seen in the images, the sensor broadcasted the relevant track informa-
tion onto the cellphone, co-opting its screen.

This super-imposed “pie and
wedge” communicates what users
would have in their mind’s eye, not
what they would see literally. While
driving, they point to a wedge to
dial directly or to bring them to a
sub-menu.

Artist, album and song data, displayed on Motorola’s iDen phones.

24

In your right hand you swept the pointer in front of you, across the music
regions, while your left hand, holding the cellphone displayed album,
artist, and song names with little to no perceived latency. But during that
time, the message took an unbelievably circuitous path.

Findings

The metaphors of boundaries, when only associated with gesture and
audio feedback, without the assistance of visible boarders, proved
endlessly slippery. This demanded fewer selectable regions. As you
swept your hand from left to right, the genres would change as you past
certain degree points. But these points couldn’t be “held” in memory
by users. Degree positions were not easily “fixable” to memory. The
primary observed reasons were:

1) In using the wand, particularly because of its unencumbered
nature, users wildly swung the device every which way, like
a flashlight. With such whimsical engagement, they would
fly through multiple regions. This made memory bindings
between audio and gestural position very difficult.

The form factor of the device may in part be to blame, a heavier
wand commands slower movements (for inertial reasons if
nothing else), but this added weight would also make the
Spatial Player a less accurate simulation of future cell phone
functionality.

2) The space in front of the user, divided into a sort of regional
file structure, cannot be very dense with options because
of the natural fluctuations in the hand movements of users.
Particularly, in moving along the vertical axis, where the wedge
size naturally decreases.

Persistent unintentional column drift due to the spherical-
geometry scheme (not the sensing hardware) eroded user
confidence in what is already an inherently fragile mental map
for file retrieval. Even with hysteresis, which could “force-
swell” upper and lower regions, users would then have to
overcompensate by several degrees from the actual bounds
of the wedge if they actually wanted to move across along an
upper or lower row. These “sticky” edges further complicate
internal representation.

3) Averaging to the last 3 and 4 degree readings necessary to get
the smoothest data produced too much lag, whereby it took
the system a moment to catch up with pointer position. Gyro-
stabilization is a probable, though very expensive, solution. It
would approximately double the price of the hardware.

4) Multiple button capabilities were harder to learn without visual
response.

5) Mental maps were constructed as relationships between

All of the pieces of Spatial Player,
working together.

25

sounds, generally not formulated from gestural orientation or
proprioception (e.g. “This song is next to that song”). We were
asking users to create a mental model of a file structure, using
only audio and gesture. This set the cognitive load higher than
expected.

We could explore the use of broad, four-square regions where
users point to different quadrants to decrease this load, but
recognition at such a large scale could be done with much less
expensive sensing.

Spatial Player Comments

After some reflection, two threads from the Spatial Player stood out for
further research. First was integrating 3D audio spatialization. Wearing
headphones, this would allow users to situate virtual sound sources in
space. For the Spatial Player, this meant a song’s coordinate position
may then match its perceived sound source location -- a song retrievable
by pointing above-and-to-the-right, will seemingly emanate from there.
This held hope as a way to create more compelling “bindings” between
gestural interaction and auditory feedback.

The second thread was audio rendering efficiency. Audio had to
play immediately and concurrently (to minimize quiet openings to
songs) if users were to understand it as a boundary marker. Spatial
Player overcame this by playing all of the songs once the application
was launched, so that they all passed the start-up and song beginning
stages as fast as possible, and then muting and un-muting them as you
traverse regions. While playing all the songs simultaneously provided
instantaneous audio feedback, it was no solution. It was neither efficient
nor scalable. Could this criteria be met without sacrificing the interaction
experience?

c) Beat Browser3D
Objective
Develop working 3D Audio on a simple platform with
the intention of porting it to Spatial Player.

Beat Browser3d was built as a stripped down development platform to
explore question one. Could 3D audio help Spatial Player become more
intuitive.

Beat Browser3D was not originally intended for show – it was a
simplified I/O that used a mouse instead of the sensor and it wasn’t
“eyes-free.” There was an explicit visual representation of the album
field the original Spatial Player asked users to imagine themselves.

It has a simple display matrix, mapped to a flat plane, not a sphere, where
album covers represented audio that could be moused over (akin to the

26

sweeping of the arm) to activate audio playback. The nine square grid
of albums all played simultaneously, muting and un-muting according to
mouse-focus.

If you clicked an album, you committed to explore that album’s songs.
At that point all of the nine players running would close down, and one
player for each song on the album was opened and represented as one
wedge in a pie-menu, called a Halo (recall Spatial Player’s clock face),
where the wedges are dynamically divided based on track count.

The goal was no leap of faith or spike in cognitive load for this
application, you were never operating without a visual net, Beat
Browser3D was just the basics to keep focus on building a new audio
architecture. But even this early, with just the mouse-over activation,
crude concurrent playback and album-art based visual display, with no
3D audio in operation, Beat Browser3D’s simplicity began to outshine
the Spatial Player.

SLAB

Introducing spatialized 3D audio into Beat Browser3D exceeded the
capabilities of the Java Media Framework. There are several open source
3D audio rendering packages out there. After lengthy comparison with

Beat Browser3D with planar spatialization based on mouse position.

27

headphones, I chose NASA’s SLAB (Sound LAB), spearheaded by Joel
D. Miller at the Spatial Auditory Displays Lab at NASA Ames Research
Center.

What set SLAB apart from the other open-source packages was that
it was expressly constructed with psycho-acoustic experimentation in
mind. Though the breadth of parameters incorporated into the system far
exceeded needs, from constructing virtual sound spaces to manipulating
the materiality and sound absorption co-efficients within them, this
ultimate control was appealing when considering tuning or otherwise
manipulating the prototyped listening environment.

The main issue with SLAB was that it was written in C++. This
necessitated the design of custom Java Native Interface (JNI) to bridge
SLAB methods and Beat Browser3D code.

This class was designed as a neutral JNI to support the complete
functionality of SLAB’s C++ interface. Each method or function
was given a Java hook. Beat Browser3D’s native interface supports
far greater methods than are actually called, but it was ultimately the
cleanest implementation. It was generalized code that put in place all
the communication channels necessary for future expandability, and was
Java code that could be contributed back to the SLAB project.

Implementation

In time, Beat Browser3D successfully communicated with SLAB. Each
album cover was imagined as a square tile in plan (bird’s-eye) view, with
the user at its center. If the mouse veered to the left side of the tile, the
sound source would follow. If the mouse then moved to the top of the tile,
the sound source would appear to be emanating from ahead and to the
left. It was an interesting effect, particularly when traversing selections
in a lateral sweep: albums would go in one ear and out the other. Also,
if the Halo was open, each song would emanate from the wedge position
with the same logic, as though the entire album encircled you.

To achieve this effect, SLAB was converting these highly engineered
stereo music compositions into mono. It was flattening them to then
be able to position them. All 3D spatialization does this, it was just
highlighted because the original signal was so heavily engineered and
optimized for stereophonic playback conditions.

After experimentation, the conclusion was that while a source’s location
could be fairly well discerned in 3D space, the music itself sounded
particularly 1D. The music was not ensconcing. It seemed worth
further study for spatializing speech applications, particularly with the
familiarity our ears have with spatialized speech sources, but not in this
manifestation for music listening.

Besides, continuous playback, the unintentional fix, was showing itself
to be the most compelling aspect of the entire audio research trajectory.

NASA’s SLAB 3D audio spatializa-
tion suite includes a nice stand-
alone application that was useful
for experimentation before joining
the two applications with code.

Find a video showing the prototyped
version of these effects at:

http://web.media.mit.edu/~jdg/

28

4. Beat Browser
Objective
Create a playback architecture that conveys the feeling
of “live” and continuous audio, but does so with
arbitrarily large libraries and remains computationally
frugal.

What seemed an incremental step from Beat Browser3D, proved the
biggest design challenge: Get immediate mouse-over playback (no
perceivable latency), without playing everything at once?

The first strategy explored was to “wake up the neighbors.” Eight Media
Players surrounding the current mouse position launched and quit on
mouse movement. A WAKE_UP_RADIUS constant was created to easily
tune this effect. When an album was in the radius, it began playing with
gain = 0.0. Only when the mouse itself entered the album cover would
the gain ramp up to 1.0. At the least, there were eight surrounding
players running, but quickly four more were added to provide a two
album lead orthogonally, while only one diagonally. That said, twelve
players was not the efficiency desired.

And this strategy had latency too boot. The main attraction of the Beat
Browser interface is its response. As Chris put it, it’s about constructing
a “live” environment. The illusion requires absolute freedom from
latency, no matter how you play with it. But the wild, trans-library
sweeps as users inevitably test the boundaries of experience, chocked
the system. The edges of latency came much faster than the edges of
the library itself (which were set as a respite of silence). Players weren’t
waking up in time, and it was still heavily processor intensive.

Beat Browser, in comic mode

29

From Troubleshooting to the Final Design

Debugging the situation a little deeper, MediaPlayer revealed the
time line of events that were occurring during the periods of latency.
At any moment, JMF’s Controller interface can be queried to find
out what state its in. There is a life cycle to the Controller, and it
has five methods available that induce life cycle state changes: realize,
prefetch, deallocate, syncStart, and stop. To transition a Controller
to the Stopped, Prefetched, or Realized state, you use the corresponding
method: stop(), prefetch(), or realize().

Experimentation determined the latency between Prefetched to Started
was undetectable on the 1.8Ghz processor used in development. Testing
revealed there was no lag in accessing the Clock, which is called by
setMediaTime() to control playback positioning. Beat Browser
could go from Stopped (in Prefetched) to Started (at any point in the
file) without latency. This pointed to the latency occurring somewhere
in the state transition from Started to Stopped. The clog was in flushing
the songs.

Further experimentation confirmed a processing period of 200
milliseconds is necessary to stop() players. It seemed counter-
intuitive, but MediaPlayer took all the time to stop, not to start.
Sun’s choice in weighting the entirety of the processing demands
in the Stopped state transition later proved itself a well thought out
decision, but frustratingly it’s not explained in any logical place in the
documentation.

After finally learning what was happening under the hood of
MediaPlayer, and that it was in the closing that the latency occurred,
the final architecture was worked out.

Beat Browser hides this shutdown latency by creating a multi-threaded
structure, dividing work into two tasks. Opening threads are created
for the transition to the Started state and closing threads were created to
transition to Stopped state.

The closing threads are where all the heavy lifting is done. Surfing Beat
Browser at speed, there may be anywhere from five to seven closing
threads in operation with just one opening thread. MediaPlayers
are opened in one thread, and immediate playback is experienced,
but the instant the mouse leaves that active region, that individual
MediaPlayer object is passed to a closing thread which, after
approximately 200 ms of work, puts the Stopped player in a cache.

The cache manages (limits) the creation of a new MediaPlayers. It
stores all of the opened MediaPlayers resting in the Stopped state.
The cache is the first place SongPlayer() looks for MediaPlayers
to limit the resources and time allocated to creating them from scratch.

30

SongPlayer

SongPlayer.java class is the heart of Beat Browser’s playback
engine, handling the entirety of the playback responsibilities. An
instance of SongPlayer() is generated for each album and individual
song in your collection. For my audio library, over a thousand
SongPlayers() are created on start-up. SongPlayer() can be
imagined as the “jack” in an arbitrarily scalable telephone switchboard.

Just as each song has a SongPlayer() plug, each song has both album
art and a donut wedge as its visual representation. These graphical
representations bound a display region that the BeatBrowser.java
class monitors. When one of these areas is traversed, the (main) class
determines the song’s appropriate coordinates and communicates them
as index values that “light up” the appropriate SongPlayer() “jack.”
SongPlayer() queries the cache for a MediaPlayer to render the
audio. If there aren’t any, SongPlayer() will create a new player and
playback begins.

The bottleneck of the earlier efforts was trying to do all this changing
over one line – Starting and Stopping one MediaPlayer in one
thread. In this scheme, changing the songs could could only happen
after the elapsed time between when stop() is called and when the
TransitionEvent is posted by the Controller, indicating the
MediaPlayer is in the Stopped state, typically 200 milliseconds.

Multi-threading divided and conquered the latency, but still incurs a cost.
It’s resource intensive to create a seamless audio experience when users
rapidly surf, but these spikes quickly fall off after songs are listened to
for any length of time, and abandoned MediaPlayers can begin to fall
into the cache in a 200ms cascade.

UTB

It was crucial to maintain Beat Browser’s illusory concurrent playback
– it was a subtle, yet convincing twist on current media players. It was
this attribute, which Chris defined as the Universal Time Base (UTB)

SongPlayer() can be thought
of as a telephone switchboard
in its architecture. It creates the
“jack” to each piece of music that
the MediaPlayer can be plugged
into.

John for a spell before returning
to Bob Dylan and committing to a
“locked” state. This allowed her to
mouse around until she happened
to notice Boards of Canada, and
double-clicked on their album.
thereby unlocking Dylan, and
engaging in the new record without
rolling back over Elton.

The Universal Time Base is represented graphically above. In this particular image, we see the user’s listening
focus (bright) and their navagation through time articulated: first, the she tried a Bob Dylan, then went to Elton

31

which gave the interface its immediately responsive, old-media (think
radio) feel.

The Universal Time Base was integrated once latency between
jumping between players was without perceptable consequence.
The UTB is another name for the central Clock interface for the
application. SongPlayer() queries the Universal Time Base, calling
getMediaTime(). SongPlayer() then performs the modulus of
each song, taking the remainder as the distance in seconds into the track
that playback should begin from.

It is just as feasible to take the modulus of the entire album, or some
created playlist, going as far into that sequence, be it the first or 15th
track, as the elapsed time dictates. SongPlayer() then takes this
calculation and uses the “setter” method setMediaTime() to
designate playback position. volumeRamp() is called and playback
becomes audible. It is this sequence of events that conveys the central,
river of music metaphor, the illusion that your universe of music is
playing at once.

Features

Beat Browser.java also trolls through your file structure, looking for .xml
data associated with albums and songs. This is a standard meta-data
format provided by AllMusic’s All Media Guide (www.allmusic.com)
and allows the organization of albums and songs, dynamically managing
data allows MatrixDisplay() to redraw album covers in clusters of
relevancy on-the-fly.

The genre clustering in action: Jazz
32

Auto Play emulates scan on the radio. It steps into each visible album
alphabetically. If you have clustered a certain subset of albums, Auto
Play will only step through those selections in alphabetical order, as
those are the only visible choices.

Finally, songs or entire albums can be throw into the playlist with the
right mouse button. A right click with the Halo closed adds the entire
album in focus, a right click in one of the Halo’s wedges will add just that
song. Mousing over selections in the playlist plays them back for review.
Right clicking the in the side window removes them from the list.

Appearance

The most striking visual attribute of the major players in this space is
their lack of cover art. All of these environments for music listening
construct an elaborate frame through which to view your music as a text
list. Exploring music has become a highly literate affair.

The notable exception is iTunes’ CoverFlow, orignally designed by the
folks at Steel Skies (www.steelskies.com). This “breeze-through” album
art navigation window begins to cede some screen real-estate to cover
art, but it in no way competes with the Apple® look and feel.

Music players and music browsers shouldn’t be about the brands. These
managing and rendering application environments need to get out of the
way. Artists have spent a lot of energy assembling the covers. Album
art is the perfect face to your interface – a collage wholly dependent on
each unique library of music.

Let the album art “speak” for the artists, like Beat Browser let’s the
music speak for itself.

Nick Drake’s Five Leaves Left, in
its entirety, in the playlist

What percentage of this screen is
devoted to the album art?

33

5. Design Principles
Several decisions and strategies were consistently reinforced throughout
these projects. “Design Principles” catalogs these audio browsing
factors so they may find broader applicability.

Combat Fatigue
No jarring sounds; Surprises are tiring.

“Everything in Modulation”

Don’t peak normalize; Set perceived loudness levels equal across
the library.

Beat Browser uses pervasive volume ramps with adjustable slopes to
uniformly contour the attack of new sounds, and pre-processes its audio
library with the help of the MP3Gain project.
http://mp3gain.sourceforge.net/

High Exposure to Time Ratio
Visually: Tile selections to maximize screen space, provide zoom-
out for 10,000 ft views plus easy zoom-in for confirmation.

34

Aurally: Implement audio animation defaults or other “Lazy
Susan”-style interfaces.

Gesturally: maximize response for minimal physical activity.

Visually, Beat Browser employs the zoom +/- feature set; aurally, “Auto
Play” is browsing on auto-pilot; and gesturally and a single gestural
trajectory opens and closes multiple selections

No Latency
Motivation is fragile, patience fleeting: instantaneous audio start-
up is a necessity.

If this means using audio thumbnails that sacrifice quality for start-
up time, do it.

Beat Browser eliminates latency through multi-threaded player
management, looping and UTB start-up. The Universal Time Base
strategy of dropping in the middle of songs skips the silence when songs
play from the beginning.

Ramps
...volume ramps are kinda like ellipses...

 ...swelling or fading...

 ...keep all things gradual...
 ...smoothly transition between passing streams...

 ...or acoustincally communicate a “zoom” or “motion” effect...

Ramps are everywhere in Beat Browser, segueing between two gain
levels, fading in and out of graphics and for swelling them. Every hard
edge, of every kind, uses or tried to use ramps to smooth it.

Time is Elastic
Play with time in time-based media.

Are we “Live”? Or is this a pre-view or post-view?

Beat Browser’s Universal Time Base (UTB) architecture simulating
simultaneous playback is one strategy. Songs and or albums begin
playback according to the time elapsed since Beat Browser’s launch.

Lazy Susans spin on bearings,
bringing the table to you. Why
aren’t they more popular?

35

Loops are Your Friend
Loops limit silence.

Don’t consider time linear.

Looping is an integral playback property of Beat Browser. When
using visual signifiers for audio information (e.g. album covers
representing album tracks) looping individual tracks “underneath”
their representative image maintains the feeling of movement in the
interface. In the Universal Time Base’s “music as river” effect, looping
is a central ingredient.

A Good Browser is an Ecology
Design pathways for flexible, easy and independent dialog between
objects, people and things.

Create the sandbox for self-organization to occur.

Beat Browser uses metadata stored in standardized .xml file formats per
the All Music Guidelines, www.allmusic.com. This is the “personal”
information shared albums use to form clusters of similarity. While not
implemented, tagging support is needed to allow alternate naming and
organizing conventions contributable by any author.

Accommodate Serendipity
Design-in opportunities for surprise, orchestrate as many
“situations” of overlap and proximity as possible.

Sweeping across the matrix, albums shift in and out of phase, and lyrics
that begin in one album bleed into the next and the next.

A couple of clustering filters put Lionel Ritchie’s “All Night Long”
right next to KISS’ “Rock n’ Roll All Nite.” Mousing between Ritchie’s
chorus, “All night long, all night....” to KISS’ “I wanna Rock n’ Roll!
All nite!...” triggered:

KISS’ shouts of “I wanna Rock n’ Roll!..” segueing
fluidly into Ritchie’s soulful “....all night, all night;
All night long.....”

Lionel Ritchie and KISS, together
again

36

Fast and Loose + Slow and Ordered
Simultaneously; Encourage fast and loose interactivity and
accomodate slow and ordered engagement.

Casual engagement with Beat Browser could be flying through your
library with the mouse at a party, looking for a quick musical fix that’ll
make everybody happy, setting the mood just right when you’re out of
ideas.

Simultaneously, allow for more structured interaction, such as playlist
construction, where a the goal is to create a well-formed and expressive
composition of music selections.

Scale Independent, Platform
Independent Operation
Support small scale and small screen interaction.

Exploit large screens at large scales.

Software is running on a wide range of hardware. Beat Browser can
be zoomed on to fit an entire collection, with full functionality, to the
screen size available. Album titles and other text reliant displays are
not scale independent like album covers are, point sizes only go so
small. Color schemes and general features of cover images remain
recognizable at very small scales.

Fun
If it’s not fun, what’s the point?

If Beat Browser’s not fun, what’s the point?

The Power of Timbre
“Pop musicians compose with timbre. Pitch and harmony are
becoming less important.”
 Daniel Levitin,

James McGill Professor of Behavioral Neuroscience and Music
McGill University

Timbral qualities are amplified with Beat Browser’s lateral freedom
and side-by-side UTB playback.

Beat Browser’s metadata-constrainable “Auto Play” provides
perceived mood and timbre filtering, without signal processing.

Daniel Levitin, Ph.D.

37

Encourage Discovery
Lead users into the unfamiliar, the new, and the forgotten.

Set the barrier to new music discovery to null – in time and effort.

Beat Browser sorts with 2D proximity easily allowing consequence- free
roll-over taste-tests.

Tuning
Everything a variable, from constants, to volume to animation
intervals.

Every interval, level, and rate is adjustable. Audio interfaces are an
instrument, of sorts. They need to be tuneable as such.

Boundaries and Edges
The boundary between regions is fertile for aural demarcation.

Beat Browser has explored volume ramps, delay and blurring, and
panning across the Left and Right channels to communicate song
boundaries. Ultimately, contours to milliseconds of silence were
chosen.

Fluidity
Your ears don’t blink.

This applies to everything.

Consider Silence
Silence should be easy and fluid to engage, but not by accident.

Silence shouts louder than a looped song heard over and over again

(This works when the repeating segment is of a sufficient length,
broken records shout the loudest of all.)

Sweeping into background of the window triggers silence in Beat
Browser. Loops are the default, keeping everything in motion.

38

6. Related Work
a) Spatial Player
Stephen Brewster, et. al.

Beyond Cohen and Ludwig, it has really been the remarkable work
of Stephen Brewster and colleagues at the University of Glasgow’s
Multimodal Interaction Group, that has truly advanced the state of the
art in gestural audio interfaces. Particularly, their work “Audio Clouds,”
presented at CHI 2005, has deeply explored the spatial positioning of
different objects and applications to create intuitive, “eyes-free” computer
interfaces. Brewster’s work, outlined in broad vision in “Multi-modal
‘Eyes-Free’ Interaction Techniques for Wearable Devices,” incorporates
radial menus, spatial bindings and auditory icons in creating a robust,
“eyes-free,” (display-independent) navigation system. These are many
of the themes Spatial Player explored.

Brewster’s work also includes spatial audio processing for added effect.
Referred to as 3D audio this is the method of dynamically positioning
sound sources at specific locations with respect to the listener. With
the use of headphones, this creates the convincing illusion of event
locations all around you at a surprisingly high level of resolution along
the horizontal plane.

Determining sound source location along the median plane is much more
difficult. If a sound is emanating from a point five feet away, at a 45
degree incline, or 45 degree decline, it is far more difficult for listeners
to discern with high confidence or precision.

For any acceptable discrimination along this plane and higher resolution

A conceptual sketch of Brewster’s
work, created by his lab at the Uni-
versity of Glasgow.

39

on the horizontal, head related transfer functions (HRTFs) must be
created for each user. This means building individual profiles of the
unique body characteristics, particularly with respect to head, ears and
shoulders, as they play an essential role in sculpting the uniquely familiar
beam reflections we have learned to associate with location. And even
with professionally created HRTFs, the vertical resolution nowhere near
approaches that of the horizontal axis, let alone natural listening.

Outside of audio rendering, a similarity that sets the Spatial Player and
Brewster’s Audio Clouds from the current mass market products, is the
use of magnetometers coupled with accelerometers. An expensive route,
this creates a tool that constantly calibrates itself based on the external
anchor of the Earth’s magnetic field. Consequently, both are highly drift-
resistant.

Chris Schmandt

The other landmark paper during this research process was Schmandt’s
“Audio Hallway.” Initially Audio Hallway was intriguing in its
exploitation of familiar architectural metaphors, re-imagined in solely
acoustic aspect. Audio was processed to construct a virtual environment.
Users could walk up and down via head movement, passing open doors
out of which different sound streams spilled. These rooms, containing
news broadcasts and other audio content, could then be entered for
deeper, more intimate engagement.

It was with the subsequent design improvements to craft a more realistic
and familiar user experience that the most personally compelling aspects
of this work revealed themselves. Schmandt identified and addressed
several curious sound design and audio perception issues encountered in
designing convincing, non-visual architectural spaces. One observation
in particular had interesting implications:

“With increasing distance from the head, doors are
positioned further to the sides, to help maintain lateral
acoustic discrimination. [With this modified hallway,
people] ...understood the hallway metaphor, they were
more easily able to experience the desired spatial
audio configuration.”
 Audio Hallway, Schmandt, 1998

To create the visual illusion of a hallway, one-point perspective dictates
parallel lines convergence on a central vanishing point. To create the
auditory illusion of a hallway, Audio Hallway identified a curious
perceptual phenomena: the most effective audio transforms to achieve
an acoustic interpretation of perspective were in fact an inversion of
visual perspective. Audio converges to point at the listener’s head, not
in the distance.

In Schmandt’s scenario, the walls dynamically converge on your
position in the hallway, not a distant point approaching the horizon.
Acoustic fall-off is exacerbated, receding both ahead and behind. This
wrinkle highlights the near-range cues we expect from our ears vs. the

To the right is the audio transforma-
tion, visually articulated, necessary
to create the audible illusion of a
standard hallway, seen at left.

40

predominantly distance-oriented feedback from our eyes. In fact, to
compensate for the lack of visual accompaniment, for the sighted user to
consistently interpret and maintain this mental hallway model, the gain
on natural experience had to be turned way up.

b) Beat Browser
Inside Academia
Knees, et. al.

In 2006 Knees et. al. introduced an extraordinarily feature-rich
application (unnamed, we’ll call it the Knees Player). In the Knees
Player, you fly through your audio library, visually represented as a set of
islands at sea, via a video game control pad. It is an immersive browsing
interface atop an individually generated topographic self-organizing
map (SOM) based on your music collection.

The SOM is constructed through signal analysis to cluster similar
sounding pieces together, forming islands and mountain peaks of
acoustic terrain. As you navigate your audio collection, the closest
sounds are delivered using 5.1 surround sound. This creates an 3D audio
environment that reinforces the topography.

Response to the Knees Player

This work, I feel, may be considered the extreme in the music browser
realm. The number of effects and facets incorporated is so numerous,
the Knees Player seems more about the experience of the browser itself,
than about the discovery of music. The Knees Player takes many of the
threads introduced in previous works in the fields of music information
retrieval and audio navigation and weaves them into a unified experience.
Works I am referring to include, the SoundSpace browser (Tzanetakis,
2001) which explored multiple phenomena regarding 3D spatialization,
Pampalks concept (2003) of Islands of Music, and similarity functions
and visualizations explored with the Sonic Browser (Brazil).

While 3D Audio creates novel experiences, as we’ve discussed, it
necessitates flattening audio streams into mono output, which, in concert
with multiple sound sources streaming at you creates an unfamiliar
effect – though perceived in 3D, the music feels 1D.

We have often experienced the chatter of voices at a cocktail party,
and picked out a word or phrase, but most of us have never heard the
cacophony of competing musical streams. They muddy themselves in
ways much harder for the unfocused ear to disentangle without attention.
While the 3D experience is enhanced visually and aurallywith significant
richness, musically (assuming the sound sources are professionally
mixed compositions) it sounds thin and vacuous, where a single
stereophonic source is ensconcing.

Traditional one point visual per-
spective, seen in elevation. Image
courtesy of Jerome Agel.

The self-organizing map (SOM)
coupled with album cover art.

The Sony Playstation video game
controller the authors use to navi-
gate the Knees Player environment.

41

Goto, et. al.

The SmartMusicKIOSK, work conducted by Goto et. al., is an
interesting approach to browsing. The SmartMusicKIOSK is designed
as an in-store listening station. The author identifies that during “short
trial listening” in music stores, customers often search out the chorus or
‘hook’ of a song using the fast-forward button.

SmartMusicKIOSK visualizes more advanced song structure information
as a surprisingly intuitive “music map” to the lay eye, providing a color
coded time line to further guide exploration in an intuitive way. The
“next section” function automatically jumps to the beginning of specific
sections relevant to that song’s structure. As described above, audio
analysis also supports “next chorus” functionality, indicated by the
red fast forward button. While this is a very good project for intra-
song browsing, it does not make significant additions to higher level
browsing.

Responses to SmartMusicKIOSK

What makes SmartMusicKIOSK worth particular note, byond its
visual component, is its sound design response to the observed
inefficiencies of in-store music listening. It may be good for a certain
type of browsing, but it ultimately doesn’t attain the fun. It represents
a different perspective, a more goal-oriented (towards the chorus) than
music-oriented (recognizing the browsing experience itself as a musical
composition).

This application also brings up the a frequent question new users have
about Beat Browser: what is the value of the UTB architecture as opposed
to looped chorus’? This was experimented with early on. When songs
were queued to loop on chorus playback, there was a repetition to Beat
Browser. There wasn’t the feeling of flow. When you start listening
from the chorus every time, you’re always cresting the climax when
you arrive on the selection, and the ride it down to the verse. The
repetition of this scripted segment compromised the spontaneity and
“live” feel of the UTB playback. The experience quickly turned stale,
where the UTB Beat Browser remained fresh. There is a subtle and
unique feeling when you realize on coming back to an album, the
music has been playing right along, even though you weren’t listening.

Musicream

Musicream (Goto and Goto, 2005) is perhaps the best music browsing
environment reviewed. It incorporates a music-as-liquid metaphor and
visualizes three “taps” at the top of the screen in red, green and purple,
representing three descriptive parameters. The taps drop music “pieces”
at a rate of your control. These pieces gradually fall down the screen, in
response to some slow physics. They may also be “sticked and sorted”
in clusters to introduce looser organizational relationships.

The abstracted song structure view
of Goto’s SmartMusicKIOSK

42

By clicking on the bubbles, you expand them, activating playback. You
can easily jump, or “scrub,” to any position within a track by selecting a
point on the circular time line just inside the bubble’s boundary. These
bubbles are color coded and may be strung together like pearls, in
varying orders to create playlists. You may also create “meta playlists,”
or playlists of playlists, with similar ease. You may also activate an
“Auto Play”-like functionality by setting a bar which wakes the bubbles
into playback from the beginning as they pass over it. And finally, a wide
selection of “history” functions allows you to retrace the steps you’ve
made in a very intuitive, and visual way.

Responses to Musicream

Goto et. al. have created a very nice suite of features, setting Musicream
apart from players in the literature and in the marketplace. In particular,
they introduce a visually intuitive representation of streaming (depicted
in the origins of the name, music + stream).

As the musical pieces fall from the faucets above, your collection of
music becomes animated in such a way as to foster fresh engagements
with a tired library. This animation, organic in nature, facilitates
discovery within your own collection. It creates a unique circumstance,
a sort of eddy, within which users can drag a musical piece to snag like-
songs through Goto’s stickiness functions. Songs that are similar in
signature, stick to each other, facilitating playlist construction.

Musicream makes no effort to incorporate album art into the interface.
Consequently, the author’s aesthetic dominates the experience. This
creates a constraining effect. This is frustrating, as Musicream’s
contributions to playlist construction, with each song “a piece” that has
certain physical properties that interact with dictate interactions with
other “pieces,” is very creative. It is a fantastic example of the power of
creating an ecology of objects inside an application.

Outside Academia

Attention must be given to what has emerged in the marketplace and in
the open source communities as much as that circulating in the academic
and conference realms. This is particularly so when it comes to usability
principles.

The earlier examples were selected because of their explorations into the
browsing paradigm. These music players and websites do not do so so
explicitly, but they hold lessons nonetheless.

Foo Player

The Foo Player, as the anonymity of the name may suggest, is one of
the most basic players out there. It is extremely light and fast – startup
time on my 1 Ghz machine was under a second. The GUI (Graphical
User Interface) is all text, the complete antithesis to Beat Browser’s

The basic view of Musicream,
showing the taps dripping pieces
of music, color-coded by genre,
one of which is currently selected
(enlarged) for listening.

Playlists are shown as pieces stick-
ing to each other along different
axes. The scrub bar is clearly vis-
ible lining the interior of the pieces.

The Foo Player, the complete an-
tithesis of Beat Browser visually.

43

experience. This, however, is exactly what makes Foo interesting. It is
just a player. It is lean, optimized for those times when you know exactly
what you want. It is the quintessential search-based music player. It
does include standard playlist capabilities and little else. The Foo Player
draws very little power, making it a superior choice when multi-tasking
with gaming or otherwise computationally-intensive processes.

iTunes

Apple’s iTunes software has become the market leader for audio library
management. A very attractive and intuitive application, iTunes ties
together locally stored media seamlessly with the on-line iTunes music
store. iTunes has set the standard in media management, organization
and polish. It’s easy to use and pretty format agnostic – rendering the
GPL licensed .ogg file format. It also creates playlists automatically
based on dimensions such most and least listened to, era, genre, etc.
Playlist creation follows standard drag and drop procedure, but can
be performed while listening to other music. iTunes is more than just
an application, it is a music ecosystem for purchase, management and
playback of music, extending even into portable hardware, namely the
iPod and now the new iPhone.

Songbird

Songbird, a recently deployed open-source competitor to iTunes is the
most significant open-source media player interface to emerge so far. It
mimics Apple’s look and feel, and provides the feature set one has come
to expect. But Songbird takes a unique approach to constructing its
own broader eco-system. They build their player atop the Mozilla web
browser. As Songbird describes it, their player is in fact a music player
to “Play the Web.”

What their tagline is referring to is the growing number of music blogs
that are emerging that post songs each day for your free download.
Songbird is optimized for sites such as these, once you land on one,
it immediately begins downloading all of the songs on the page and
displaying them to you as part of your collection. What was once part of
the web has fluidly found a new home in your personal library. You may
then listen to them as you would any of your other tracks.

Songbird is addressing “browsing” in as much as web browsers are.
Songbird is the frame through which to experience a limited web of
music sites, which is a unique approach. And as the web becomes
increasingly populated with media, this paradigm should prove itself
further. Hopefully Songbird’s user interface will evolve to keep up.

Last.fm

Falling in a slightly different category is Audioscrobbler. Audioscrobbler
is the software behind Last.fm’s web site (www.last.fm). Last.fm

iTunes, the most recognizable of
players, is both well designed visu-
ally and originator of the “compo-
nent of a larger music eco-system”
deployment model.

Songbird, an new open-source mu-
sic player/web browser hybrid.

44

is a statistically-oriented browsing environment and music listening
community. It is not just a music player per se, as its name suggests,
Last.fm contains webcasts associated with each artist. It fills the
playlists of all these “stations” with the primary artist of interest as
the anchor, and mixes in other highly similar selections. Last.fm does
not perform audio analysis, rather they perform very large scale data
analysis. Data is gathered by little Audioscrobbler plug-ins, basically
a satellite to the central server, that every Last.fm community member
installs locally. All Audioscrobbler does is listen right along side of you
with your permission.

Audioscrobbler is a lean plug-in versioned to work with all the major
music players. It sits innocuously in the background grabbing the meta-
data of each track you play. It keeps this log and uploads this data to
Last.fm central, which in turn updates your individual profile.

Last.fm is about sharing. It is a website devoted to creating a listening
community that can be browsed and experienced. Last.fm shows you
what you’ve been listening to, how much, and recommends music you
may like. It also points you toward the listening habits of other members
of the last.fm community, helping people share their tastes – share their
knowledge.

It creates a statistical mirror at both the individual scale, and the
community-wide scale. One of its greatest qualities is that Audioscrobbler
is symmetric. It shows you everything it takes, and it shows it to you in
a pleasant, visual way with bar graphs and personal charts. They then
repackage these profile statistics for easy posting to your blog or website,
helping you share listening habits with an even larger audience.

This transparency has built trust with users. Users, along with the
Last.fm central server, learn from their Last.fm’s profile. It creates a
very viral atmosphere for music and has become a highly trafficked
site with a cultivated listening community. The amount of data they
have “scrobbled,” and that data’s ability to make effective listener
recommendations via individual artist webcasts or data clouds,
is remarkable. If there is a lesson to be taken from last.fm and
Audioscrobbler, it is the importance and power of transparency in
community building applications.

P2P Radio

Peer to Peer Radio (P2P Radio) adheres to the letter of law, by streaming
content from one user to another. Mercora (www.mercora.com) is P2P
Radio devoted to the sharing of playlists. It is also an example of P2P
Radio. You can’t download any part of the webcast playlists, though
downloads for purchase are made very easy.

What P2P Radio websites do is create a virtual environment where
communities of users can come to DJ for each other and those visiting
the site. It is a remarkable, free resource. At its simplest, it is DJing over
a distance, each member acting like their own internet radio station, with

Last.fm’s statistically oriented na-
ture is on view above: the aggregate
listening habits of the entire com-
munity are displayed as Top-Ten
lists, among other formats, on the
home page.

45

Mercora hosting. You can kick off any of these playlists at your leisure,
or jump to individual tracks within them. The difference between these
communities and those of Rhapsody and Yahoo! Music Unlimited and
other subscription services is that Mercora is just the host, providing the
“airwaves.” Mercora is only as good as its membership.

As a listener, you don’t have complete choice. You can only access
those songs members of the community have made available in their
library. If you search for Bob Dylan, his whole catalog won’t appear,
just those songs community members are interested in including on their
“webcasts.”

Internet Radio

Musicovery (www.musicovery.com) is a nice example of a graphically
pleasing webcast interface that employs a similarity engine and
instantaneous playback. Their strategy is to stream the music at very low
quality, 32 kbs versions, offering a subscription for CD-quality streams.
Web radio companies are allowed under law to broadcast whatever
music they like without asking permission, as long as they pay copyright
owners about seven one-hundredths of a cent per song streamed. But that
open-ended invitation comes with restrictions: Internet Radio does not
let listeners choose specific songs at specific times, they do not permit
copying of broadcasts, and they have strict limitations on how many
songs by a single artist they can play back to back.

Pandora (www.pandora.com), another popular option, can be remarkable
in its ability to determine your tastes. Their propriety database of human
generated metadata, collected as part of their “Music Genome Project,”
is very impressive. Pandora initially asks you to enter a song you like.
They follow with their guess of something you will like, and from my
experience, they are frequently correct. But if not, you click thumbs
down to help the system hone its model of your taste.

This is the Stevie Wonder area of
Mercora, where the list users in
the right column is responsible for
streaming the song titles in the left
column.

Musicovery is a nicely navigable
example of internet radio, stream-
ing at lower qualities, but ensuring
near-instant playback.

One of the most heavily visited in-
ternet radio sites.

46

7. Future Work
Short Term
The Codec

If Beat Browser is to be deployable in any larger sense, abandoning the
Java Media Framework will be necessary. There are two reasons for
this:

The first, as described earlier, is that work on JMF ceased in 2003,
leaving several newer open source formats such as .ogg, and .flac
unsupported. Fraunhofer’s Mp3 format remains propriety, but also
the industry standard. Until this becomes license-free, full support of
the work of the Vorbis Foundation (the folks behind .ogg) and others is
important.

The second is that while Beat Browser is computationally intensive in
only sharp spikes, the highs are too high. These peaks need to be brought
down by using a leaner codec. The Java Media Framework is exactly
what it says, a media framework, supporting both audio and video
coding and decoding. Beat Browser doesn’t need the added weight of
MediaPlayer’s video functionality, particularly when multiple are
being opened or closed near simultaneously.

Music Sorting

While Beat Browser does acquire metadata based on a global standard,
it does not yet support tagging. Where Allmusic.com is based on the
controlled vocabulary which is the heart of their top-down taxonomy,

47

tagging is the bottom-up ability to ascribe personal attributes to each
piece of music. While it is necessary to have a default organizational
scheme like allmusic in place, it is just as important to have manual
override – the ability to organize your music based on your opinions.

There are also massive on-line data bases of tags available through
open source websites such as Music Brainz (http://musicbrainz.org/) or
commercial websites such as Audioscrobbler (www.audioscrobbler.net)
with open APIs (Application Programming Interfaces). With these
metadata reservoirs, you can organize your library based on the opinions
of hundreds of thousands – creating what’s come to be known as a
“folksonomy.” Access to this kind of information, and harnessing the
algorithms put in place by these projects, Beat Browser will be able to
organize your library along many more advanced dimensions.

Playlist Manipulation

Playlist functionality is in place, but there is a limited feature set. It is
important to add drag and drop functionality to the playlist window to
make reordering songs in a playlist intuitive. It may also be interesting
to have the album art in the browsing window indicate that a song has
been added to a playlist. Perhaps an album fades slightly when one of its
songs are taken, or totally if all of its songs are. Finally, there should be
more generous playlist view options. Users need to be able to minimize
the browsing window in favor of a more comfortable playlist viewing
and editing environment.

Touch Screen

The immediacy of interaction may make Beat Browser a successful
application in a touch screen environment If initial experimentation
is encouraging a significant I/O remapping will be necessary. Touch
screens only support a limited set of inputs. There isn’t the pair of
buttons and a scroll wheel, there’s just your finger (assuming multi-touch
is still a little ways in the distance). This may mean automating some
features, such as opening the Halo with a sustained touch, and adding
new interface elements like sliders to permit zoom control.

Long Term
Web Ready

Beat Browser seems naturally suited for surfing the massive music
collections of the on-line music services such as Rhapsody. The
barrier, however, is significant: redesign Beat Browser to operate with
similar fluidity while pulling content from a remote server instead of
the local hard drive. Many issues arise, particularly with respect to
bandwidth limitations and buffering latencies.

48

Initial exploration points to using the Adobe Flash player to render
the audio. Flash players are currently installed on over %95 of the
world’s computers. This means developing Beat Browser in the
Flash development environment, or in some lower level language that
ultimately reports to Flash.

Certainly dropping the sound quality as low as possible will be crucial
to improve buffering. To approximate the UTB effect, Bill Gardner
suggested quantizing the effect, downloading parts of each song in
steps – every 15 seconds updating the buffer for “universal” playback
beginning 15 seconds further in the songs. Multiple strategies will
clearly have to be developed to convincingly reproduce Beat Browser
over the web. That said, a web-based Beat Browser would take the
concept to its logical conclusion.

49

8. Conclusion
Many decisions have been made throughout the process leading to the
current Beat Browser interface. They all, however, followed both the
design logic of the Universal Time Base playback architecture, and
code logic in the 862 lines that comprise the core SongPlayer.java class.
The other 5,000 make Beat Browser look and respond as it does.

Response overall has been positive. Beat Browser is both familiar, yet
slightly unfamiliar. It is not any particular innovation, or invention,
rather Beat Browser represents a strategy for more animated and
intuitive media representation and interaction.

We have to recognize the importance of browsing, particularly as the
amounts of information we confront increase. “You don’t know what
you don’t know” goes the old saying. We need to create better tools to
help people discover the things they don’t know and rediscover things
they’ve forgotten.

50

9. Bibliography

Aucouturier J. J., Pachet F. “Scaling Up Music Playlist Generation”
Proceedings of IEEE International Conference on Multimedia and Expo,
Lausanne 2002.

Brazil, E., Fernstrom M. “Audio Information Browsing with the
Sonic Browser” In Coordinated and Multiple Views In Exploratory
Visualization (CMV03), London, UK 2003.

Brewster, S., Lumsden, J., Bell, M., Hall, M. and Tasker, S. “Multimodal
‘Eyes-Free’ Interaction Techniques for Wearable Devices” In ACM
Transactions on Computer-Human Interaction, 2003, p. 473-480.

Bull M. “Investigating the Culture of Mobile Listening: From Walkman
to iPod” (pp. 131-151)
O’Hara K., Brown B. “Consuming Music Together: Social and
Collaborative Aspects of Music Consumption Technologies.’ Computer
Supported Cooperative Work, Volume 35.

Carey B. “Magical Thinking: Why Do People Cling to Odd Rituals?,”
The New York Times, Mental Health & Behavior Section, January 23.

Cohen, M. and Ludwig , L., Multidimensional Audio Window
Management. International Journal of Man -Machine Studies, 1991. 34:
p. 319-336.

Csikszentmihalyi M. “Flow: the psychology of optimal experience”

51

HarperCollins, New York, New York, 1990.

Cunningham S. J., Reeves N., Britland M. “An Ethnographic Study
of Music Information Seeking: Implications for the Design of a Music
Digital Library” In Proceedings of the Joint Conference on Digital
Libraries, pages 5–16, Houston, Texas, USA, May 2003.

Earl, P. and Potts, J. Latent Demand and the Browsing Shopper,
Managerial and Decision Economics 21: 111 – 122 (2000) Copyright ©
2000 John Wiley & Sons, Ltd.

Falk P., and Campbell C. Introduction, in The Shopping Experience (P.
Falk and C. Campbell, eds.), Sage Publications, New York, 1997.

Ghias, A., Logan, J., Chamberlin, D. and Smith B.C. Query by humming:
musical information retrieval in an audio database. In Proceedings of
ACM Multimedia Conference’95 (San Francisco, California, November
1995).

Gibbons, D. “Ceiling Mounted Speakers” Home Theater Tune Up, April
2007, www.dgibbons.com.

Goto M. “SmartMusicKiosk: Music Listening Station with Chorus-
Search Function” In Proceedings of the 16th Annual ACM Symposium
on User Interface Software and Technology (UIST 2003), p. 31 – 40.

Goto M., Goto T. “Musicream: New Music Playback Interface
For Streaming, Sticking, Sorting and Recalling Musical Pieces” In
Proceedings of the 6th International Conference on Music Information
Retrieval (ISMIR ‘05), London, UK 2005.

Jones M., Jones S., “The Music Is The Message,” interactions, Volume
13 Issue 4, 2006.

Kim, Ja-Young and Belkin, N. J., Categories of music description
and search terms and phrases used by non-music experts, in Michael
Fingerhut (Editor) Proceedings of the Third International Conference on
Music Information Retrieval: ISMIR (Paris, France, October 2002), pp.
209-214.

Knees P., Schedl M., Pohle T., and Widmer G. “An Innovative Three-
Dimensional User Interface for Exploring Music Collections Enriched
with Meta-Information from the Web” Proceedings of the 14th ACM
International Conference on Multimedia (MM’06), Santa Barbara,
California, USA, October 23-27, 2006.

Leong T., Vetere F., Howard S., “The Serendipity Shuffle” Proceedings
of OZCHI 2005, Australia.

Leong T., Vetere F., Howard S., “Randomness as a Resource for Design”
In Proceedings of DIS 2006, University Park, Pennsylvania.

Levitin, D. J., “This Is Your Brain on Music: The Science of a Human

52

Obsession,” Dutton, Penguin USA, New York, New York, 2006.

Levitin, D.J., Neuroscientist, profiled in The New York Times, “Music of
the Hemispheres,” Clive Thompson, December 31, 2006.

Logan B., Salomon A. “A Music Similarity function based on signal
analysis,” in Proceedings of IEEE International Conference on
Multimedia and Expo (ICME), 2001.

Mackinlay J. D., Zellweger P.T., Chignell M., Furnas G., Salton G.,
“Browing vs. Search: Can We Find a Synergy?” CHI Mosaic of
Creativity, Colorado, 1995.

Magical Thinking, http://en.wikipedia.org/wiki/Magical_thinking

Marchionini G. “Exploratory Search: From Finding to Understanding,
Communications of the ACM, April 2006/Vol 49, No. 4, pg. 41 – 46.

McLuhan M., Fiore Q. “The Medium is the Massage: An Inventory of
Effects” Bantom Books, New York, New York 1967.

Moore R., Shaw J., Chipp K., “Eight years on: An extended model
of online consumer behaviour” South African Journal of Business
Management, 36(2) 95 – 103, 2005.

Morville, P. “Ambient Findability: What We Find Changes Who We
Become” O’Reilly Media, Sebastopol, California, 2005.

Pampalk E. “Islands of Music: Analysis, Organization and Visualization
of Music Archives.” Master’s Thesis, Vienna University of Technology,
2001.

Pampalk, E., Goto, M., “MusicRainbow: A New User Interface
to Discover Artists Using Audio-based Similarity and Web-based
Labeling”, in the Proceedings of the ISMIR International Conference on
Music Information Retrieval, 2006.

Platt J. C., Burges C. J. C., Swenson S., Weare C., and Zheng A.
“Learning a gaussian process prior for automatically generating music
playlists.” Advances in Neural Information Processing, volume 14, p.
1425-1432, 2002.

Reid J., Hull R., Cater K., Flueriot C. “Magic Moments in Situated
Mediascapes” Proceedings of the 2005 ACM SIGCHI International
Conference, Portland 2005.

Sawhney, N. and Schmandt, C., “Nomadic Radio: Speech and Audio
Interaction for Contextual Messaging in Nomadic Environments” ACM
Transactions on Computer-Human Interaction, 2000. 7(3): p. 353-383.

Tzanetakis G., Cook P. “Marsyas3D: A Prototype Audio Browser-Editor
Using a Large Scale Immersive Visual Audio Display” In Proceedings
of the International Conference on Auditory Display, 2001.

53

Styles, e.g.: anti-folk, con-
temporary folk, progres-
sive country, british folk....

Labels, e.g.: Warner Bros.,
Epic, Sub Pop, Reprise,
Polygram, Impulse,
Verve...

albums covers are acquired from
the web, and resized to 75 x 75 pix-
els. This number can be increased
with further graphics optimization

Tones, e.g.: snide, inno-
cent, sparse,bright, wistful,
literate, ramshackle...

These fields are dynamically popu-
lated by reading the album.xml data,
created by AllMusic.com

Genres, e.g.: Electronic,
Folk,Jazz, Rock, Classical,
World, R&B...

Auto Play is akin to the Scan feature on radios

Auto Play steps through the selections in your
current view (all selected, genre, tone, etc.) with
a 5 second interval

Unchecking Auto Play opens the Halo view

albums covers are acquired from the web, and
resized to 75 x 75 pixels. This number can be
increased with further graphics optimization

Operable View commands:
 Fit to Window
 Select All

Important
To step out of an attri-
bute view, e.g. Genre,
Tone, etc.:
 View > Select All
 Repeat if necessary

Instructional Map

opens comic view

54

add album to playlist view

Click album cover of choice to open up
Halo View for track selection

zoom in and out

click and drag for pan

add song to playlist

lock song / unlock song:

 select wedge (visually verified)
 to automate album playback,
 disabling mouse motion events

 restart song with keyboard

 click anywhere to unlock, click
 again to exit Halo View

scroll through Halo

click and drag for pan

Standard View

Halo View

Keyboard Function
1. If in Halo View, and Locked, press the left arrow
 key (keyboard) to begin song again, from the
 beginning.

Playlist View
remove from playlist

55

