
OnTheRun: A Location-based Exercise Game

by

Matthew Donahoe

Submitted to the Program in Media Arts and Sciences
in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2011

c� Massachusetts Institute of Technology 2011. All rights reserved.

Author .
Program in Media Arts and Sciences

August 5, 2011

Certified by. .
Christopher Schmandt

Principal Research Scientist
MIT Media Lab

Thesis Supervisor

Accepted by .
Mitchel Resnick

LEGO Papert Professor in Learning Research
Academic Head, Program in Media Arts and Sciences

OnTheRun: A Location-based Exercise Game

by

Matthew Donahoe

Submitted to the Program in Media Arts and Sciences
on August 5, 2011, in partial fulfillment of the

requirements for the degree of
Master of Science in Media Arts and Sciences

Abstract

Going for a run is a great way to get exercise and feel rejuvenated, but it can also get
repetitive and boring. By contrast, digital games can be very engaging and addictive
but traditionally force players to be physically inactive. This project is a mobile
phone application that transforms a run into an immersive game by presenting a
series of story-based running tasks to motivate the player. Requiring that the game
be played while running constrains the design in terms of both input and output,
and this system demonstrates ways to manage those constraints while still providing
a compelling experience. A six person evaluation validates the concept and offers
useful design feedback.

Thesis Supervisor: Christopher Schmandt
Title: Principal Research Scientist
MIT Media Lab

Thesis reader .

Dr. Joseph Paradiso

Associate Professor in Media Art and Sciences

MIT Program in Media Arts and Sciences

Thesis reader .

Henry Holtzman

Research Scientist

Chief Knowledge Officer

MIT Media Lab

Acknowledgments

I would like to thank Chris Schmandt for his guidance over the past
two years and for giving me the opportunity to be here at the lab.
Thanks to my fellow group mates, Jaewoo Chung, Andrea Colaco,
Charlie Detar, Drew Harry and Wu-Hsi Li, for their advice. Drew
was especially invaluable as a sounding board, writing coach, and
cameraman. Charlie O’Keefe lent his voice and creativity to the char-
acter Ulysses. Eugene Kozlenko helped create the first-person-view
shots for the demo video. Patsy Bailin contributed her running in-
sight and copyediting skills. Tara Krishnan helped develop early
tools for visualizing run log data. My father, Steve Donahoe, loaned
his iPhone to use as a testing device, wrote an early version of the
storyline, and proofread versions of this document. Special thanks to
my six testers for their eagerness and patience. Lastly I would like to
thank my wife Jessica for her encouragement.

I would also like to thank the OpenStreetMap project and their
contributors for making their map data free and easily available.

Contents

1 Introduction 12

2 Background 14

3 Related Work 16

4 User Experience 22

5 Technical Challenges 29

6 Evaluation 37

7 Future Work 41

8 Conclusion 47

9 Bibliography 48

A Mission Transcripts 50

B Interview Questions 57

1
Introduction

OnTheRun is a smartphone game that is played outdoors while run-
ning. It is intended as a fun alternative to running with music. The
game uses an adaptive route planning and navigation system to
guide the player along nearby streets, putting the player at the center
of a fugitive storyline with narration, sounds and music, for motiva-
tion. Running logs are viewable on the web so that players can relive
their experiences.

1.1 Scenarios

Jack has been out of college for a few years and has settled into a
regrettably inactive lifestyle. His job requires him to sit at a computer
all day, and many of his leisure time hobbies, such as watching TV
and playing videogames, are similarly sedentary. He wants to do
more physical activities but has difficulty with solo exercise because
he isn’t sure what to do. He has gone running a few times but gives
up early since no one is pushing him. Teams sports are fun for him,
but he does not want to commit to a weekly schedule. Looking to try
a new approach, Jack downloads an interesting new application to
his smartphone called OnTheRun. It is a game that promises to make
running more fun by turning each run into an exciting mission.

Jack starts using the app and goes for a run every few days. Each
mission has a unique plot that builds on its predecessor. The mis-
sions have taken him on many different routes around his house,
and he has seen much more of his neighborhood. Jack especially
likes that the app provides feedback while he runs, because it pushes
him to go further and faster than he would otherwise go on his own.
Jack also uses the log viewer to remember past missions and is im-
pressed with the number of runs he has completed. Jack’s experience
playing the game has made him more confident in his running abil-
ities, and he feels good knowing that it is more active than his usual

ontherun 13

videogame.
Unlike Jack, Jill is already an avid runner. She runs several miles a

day, six days a week if possible. She typically runs the same handful
of routes every week and has carefully designed each route for a spe-
cific distance and difficulty. To her, running is a great stress reliever
and a source of accomplishment, especially when she sets a new per-
sonal record. However, there are some days when she wants a break
from her routine, but not necessarily from running.

Though she doesn’t play videogames regularly, Jill downloads On-
TheRun and begins to use it occasionally when she wants her exercise
to be more exciting. She likes that she can specify exactly how far the
app will take her and that it will generate a different route each time.
After each run, she looks online to see a log of where she went and
has discovered new places to include in her normal running routines.

1.2 Goals for this thesis

The goal of this thesis is to create a fun, single-player game that is
played while running. There are many active games that involve
multiple players, like most team sports, but single player games are
mostly relegated to computer screens. Creating an active game that
is engaging for a single person and playable while running will be a
challenge.

2
Background

As work in the developed world has shifted from predominantly
physical labor to more information oriented jobs, our daily lives have
become far more sedentary. Because we don’t get exercise in our
normal lifestyle, it is especially important to seek it out. In this work,
I have focused on one of the simplest exercises available: running. It
is a solo activity, requires no additional equipment, and doesn’t rely
on the memorization of particular moves. But even running can be
complicated for novice runners. How far should they run? How fast?
How often? This uncertainty makes even the most straightforward
exercise technique problematic for new and unmotivated runners.

One of the major challenges of exercise is managing the tension
between a short term discomfort and a long term reward. Successful
runners have to develop motivation to bridge this gap. There is a per-
formance difference between intrinsic and extrinsic motivation, and
Self Determination Theory, as described by Deci and Ryan (1985), has
been applied frequently to exercise and other motivational contexts.
The theory suggests that intrinsic motivation ("I like doing this") will
outperform extrinsic motivation ("I am doing this for the reward").
So if a runner’s motivation for exercise is just to lose weight and be
healthier, he is less likely to be successful. This effect is compounded
because the rewards of exercise are not quickly evident; a single run
does not result in instant weight loss and fitness. A successful run-
ner enjoys running intrinsically and will typically run a very regular
routine of many miles per week. However, since running is so simple
and repetitive, even an avid runner appreciates variety in his routine
and can lack motivation on occasion.

Exercise isn’t fun like games. Koster (2005) claims that fun is the
feeling we get when we are learning, and games are fun because
they present learning challenges in a way that is easily consumed.
Games are a form of mental exercise, and our brains constantly work
to understand the patterns that drive the game. Games also create
a safe environment for players to experiment without long-term

ontherun 15

consequences for failure. Over time, players learn from mistakes and
develop the skills and understanding necessary to accomplish goals
and win.

Games have the power to help people accomplish amazing feats
by providing the proper motivation, guidance, and feedback. This
is why games are a perfect match for exercise. In a summary paper,
Whitehead et al. (1993) suggest that low effectiveness exercisers will
be more motivated and have better adherence if they feel more com-
petent. Going out for a run and not knowing how far or what to do
prevents low effectiveness exercisers from appreciating their accom-
plishments. If instead they are given an explicit, tangible, achievable
goal by a authoritative source, they will understand exactly what
they need to do and feel great when they accomplish it. Games can
provide that structure.

Sports are the traditional blend between physical and mental ex-
ercise. Team sports are fun, healthy, social activities involving long
and short-term goals and the acquisition of skill. Unfortunately, since
team sports require all members to be physically co-located at a spe-
cific time, scheduling conflicts prevent potential players from joining
teams. Team sports also tend to require the acquisition of sport-
specific skills that make it harder for more expert players to play with
less expert players. Solo sports like running solve these problems at
the expense of losing most of the game-like qualities that create fun.
Instead, many runners add game-like mechanics into their routines
by tracking personal records and setting goals.

Games exist in many different forms, but computer1 games offer 1 I use "computer" to mean all games
that require computation, not ex-
clusively games that are played on
desktops and laptops.

a single-player experience unlike any other. Prior to the invention
of computers, most interactive games required multiple people in
order to create excitement and entertainment.2 Games are governed 2 Solitaire is probably the most notable

exception, though ironically it is mostly
played via computer now.

by rules, and it is the players who agree on and hold each other to a
common set of rules (Caillois and Barash, 2001). Players also get the
challenge of competing against each other, but by using a computer,
the game itself can hold the player accountable and create challenges.
The player can interact solely with the computer, and this allows the
player to play the game at any time. It is also less embarrassing to
fail in front of a computer than a peer, coach, or instructor, which is
why a single player game is a good way to build the confidence of a
novice exerciser.

OnTheRun is a running game. It challenges the player mentally
and physically in a way that is safe3 and easy to follow. Novice 3 Safety not guaranteed. Beware of cars!

runners will enjoy the direction and feedback it provides, and avid
runners will enjoy the new mental challenge it brings to their well-
understood routine.

3
Related Work

OnTheRun is a location-based, audio-only, alternate-reality, everyday
running game that provides turn-by-turn directions. Since it exists at
the intersection of several categories, it is related to many different
projects.

3.1 Exergaming

Exercise games (exergaming) is a rapidly growing field, and there are
several mainstream products available on the market, most notably
Dance Dance Revolution(Konami, 1999), Wii Fit(Nintendo, 2007) and
recent games for the Kinect (Microsoft, 2011). Players use their entire
bodies (instead of just their thumbs) to complete active game chal-
lenges. Wii Fit is explicitly about exercising, and a player’s progress
and accomplishments can be tracked over several weeks or months.
Other games mimic real world activities, such as dancing or fighting,
and will quickly get players sweating (even if they didn’t intend it).
Most exercise games are played indoors on a computer or TV; mobile
exercise games like OnTheRun are not as common. Getting a com-
puter game to work reliably outdoors is difficult, but running outside
is more exciting and worth the effort.

3.2 Location-Based Games

Location-based games distinguish themselves from traditional com-
puter games by leveraging the player’s real-world location as an
additional game input. Thus these games are played on portable or
mobile devices with position sensing abilities. The typical embodi-
ment of this device is a GPS equipped smartphone, which is rapidly
becoming the dominant computer platform. Games use location in-
put differently, and over the past decade many different games have
sprung up in the literature and the marketplace.

ontherun 17

Parallel Kingdoms (PerBlue, 2011) is a game that uses the player’s
current location to form a bridge between the real world and a
parallel game layer. The player creates landmarks and interacts
with other players and their creations in a persistent game world
viewable only through the device’s touch display. The player can
move his avatar in the game world by tapping on the map, but the
avatar is constrained by a 100m radius circle tied to the player’s
current physical location. Thus, if the player wants to move a long
distance in the game world, he will have to physically move closer
to that location.

Figure 3.1: A map from Parallel King-
doms.

Since most of the interaction is screen-based, it is not an effective
form of exercise, nor is it trying to be. Players don’t run around
while playing. Instead they mostly take the game out whenever
they have physically moved someplace new during the course
of their day. The purpose of OnTheRun is exercise, so running is
the dominant form of interaction. OnTheRun also does not have
a persistent world because I didn’t want starting location to be a
barrier to exercise.

CanYouSeeMeNow (Flintham et al., 2003) is a game in which online
players try to avoid capture by runners in the real world. Runners
try to surround and corner the players, but the players can listen in
to the runners’ walkie-talkie channel and move accordingly. This
is a scheduled multiplayer event and therefore would be a poor fit
for use in a daily personal exercise routine.

Bystander (Flintham et al., 2003) has the player track a mysterious
person through the city with the help of an online performer.
The online performer sees a "zoomed-in" 3D map of the world
(tied to the player’s current location) and uses this information
to guide the player to the next clue via text messages. Using an
online performer makes the navigation directions more interesting
because the runner knows the messages are being generated by a
live human. However this requires a second person and might not
work well for daily exercise.1 OnTheRun makes use of a scripted 1 An online, real running coach that

talks to a runner while they run could
be a useful service.

storyline, prerecorded dialog, and navigation algorithms to achieve
a similar experience.

PiNiZoRo (Stanley et al., 2010) is a waypoint following game designed
to encourage kids to go on walks with their parents. The parents
produce a waypoint map that their child follows using a phone,
and along the path, the child will encounter enemies that he must
fight using an onscreen interface. The concept of non-player gen-
erated travel routes is useful, and using parents to generate the
routes ensures that the child will be safe. OnTheRun attempts to
automate the route building process.

18 matt donahoe

Wanderer (Hielscher and Heitlager, 2006) is an audio+GPS game that
tells the player actions to perform while jogging. The player must
maintain a certain speed and perform the spoken actions ("Go
left!", "turn around!", etc) within a time limit in order to receive
points. OnTheRun builds on this experience by incorporating
running commands into a larger storyline. The player runs to
accomplish mission goals and drive the plot forward rather than to
acquire points.

3.3 Everyday Fitness Games

Everyday fitness games encourage players to exercise regularly by
rewarding daily effort. A game will record players’ exercise statistics
and convert exercise progress into more visible game progress. These
games all attempt to keep the player engaged across many exercise
outings, but they make little effort to improve the fun of the activity
itself. OnTheRun attempts to recreate some of the offline interaction
that these apps provide, while also making the running experience
very engaging.

NEAT-o-Race (Fujiki et al., 2008) is a PDA application that allows
players to compete in a virtual race powered by their daily activity.
Players can see their activity level affect the game in real-time if
desired, but it also works in the background, allowing the player
to compete without focusing on the game.

Fish’n’Steps (Lin et al., 2006) is a competitive game in which players
wear pedometers and use their daily accumulated step count to
feed virtual fish. This is a multi-day activity that makes players
want to walk each day so they can see their individual fish grow
and compete to have the biggest fish.

Kukini (Campbell et al., 2008) is a running game based in a virtual
world that players explore by undertaking various quests. Players
play the game on a computer, but they complete quests by accept-
ing small running challenges, which are measured using the Nike+
pedometer.

3.4 Running Accessories

The rise of smartphones has inspired developers to create numerous
running applications. Most of these applications are geared toward
existing runners who want to track their runs and capture as much
real data as possible for reflection or training. While not explicitly

ontherun 19

a game, the collection and sharing of data can provide some of the
same motivation that I seek to inspire in my work.

RunKeeper (Runkeeper, 2010) is an app that includes GPS tracking
to record the runner’s route and share it online with friends. It
can also stream live results to the internet so friends can watch
a runner’s progress, which is popular for running events like
marathons. Run route tracking applications like this one inspired
OnTheRun’s mission log viewer, which displays the route informa-
tion alongside a transcript of the mission.

Figure 3.2: The RunKeeper interface.

Nike+ (Nike, 2010) is a pedometer application that gives runners
real-time feedback on their pace and provides a music playlist.
Feedback while running is an important concept that I also incor-
porate into the music and dialog systems of OnTheRun. In recent
years, Nike+ has added social, competitive, and tracking features to
the product in a manner similar to RunKeeper.

WalkJogRun (AlmostAwesome, 2007) is one of many online route
mapping tools. It allows users to record their runs and search
for nearby runs recorded by other users. Users can see informa-
tion about a run, such as distance and elevation. Services like this
empower runners to add variety to their running routes, but On-
TheRun does this by randomly generating routes using map data.

RouteA2A (Softabar, 2011) is a route generator that uses the Google
Maps API to build a circuit of specified length. Since the APIs do
not allow for specific distances, the app chooses random way-
points in an attempt to create a route that matches the user’s
desired travel distance. The user can adjust these waypoints re-
peatedly to improve the fit and download the route data or share
it online. OnTheRun performs these route building calculations
natively on the phone while the player is running.

Figure 3.3: RouteA2A uses the Google
Maps API. Users can drag markers
and toggle settings to adjust route
generation.

3.5 Audio-Only Games

The vast majority of games rely on visuals to create the game ex-
perience, but there is a genre of games that are audio-only. These
games have been developed for the blind or for the sheer curiosity
of novel gameplay. For example, Papa Sangre (Somethin’else, 2010),
is an iPhone game that puts the player in a world of fantasy and
darkness. The player navigates a sequence of levels by tapping his
phone’s touchscreen to walk. The goal of each level is to reach the
exit beacon, while avoiding the grunting and growling enemies out
to eat him. To help the player feel more connected, the game presents

20 matt donahoe

the sound of the character’s footsteps and heavy breathing. The game
also requires stereo sound to help orient the player in the game world
so that he can move toward the exits and away from the enemies. By
contrast, OnTheRun uses audio to augment the real world, but it lacks
stereo sound because the player’s head orientation is not sensed. In-
stead it relies on narration to explicitly inform the player of the state
of the game and uses street names to orient him.

Figure 3.4: The visual interface to
Papa Sangre only tells the player which
direction he is facing.

3.6 Alternate Reality Games

Alternate reality games (ARGs) transform the player’s normal envi-
ronment into the game world. Players can receive phone calls from
game characters or meet them on the street. ARGs are elaborate and
very compelling, but they also require significant resources, prepara-
tion and the cooperation of many people. For example, in Uncle Roy
All Around You (Benford et al., 2004), players use a handheld com-
puter to follow clues and track down Uncle Roy, an elusive character.
The clues eventually lead players to Uncle Roy’s physical office fol-
lowed by a parked limousine with a hired actor who asks questions.
More recently, The Witness (13th Street Universal, 2011) sends players
around Berlin, guiding them to particular locations to watch game
videos filmed on site. The player’s phone detects its location, and
plays the video that matches the location. As the game progresses,
actors from the videos show up in real life to interact with the play-
ers. Because these games are tied to particular locations and require
actors, they are very immersive by do not lend themselves to repeata-
bility and personal exercise. OnTheRun attempts to automate much of
the alternate reality experience, but the cost of this repeatability is the
loss of some immersion and interaction.

Figure 3.5: A Witness player views a
movie in the location that it was film.3.7 Turn-By-Turn Navigation Systems

Since my project makes heavy use of a GPS and turn-by-turn di-
rections, it is worth briefly reviewing the history of voice guided
navigation systems, which are ubiquitous today. The standard setup
is a combination of voice guidance and a map visualization, and the
typical embodiment is a dedicated, dash mounted device or an app
running on a smartphone. Since my system is eyes-free, the map vi-
sualization is not included, but the voice directions are critical. Back
Seat Driver (Davis and Schmandt, 1989), a real-time spoken driving
directions system, was the first of its kind. Back Seat Driver was an
audio-only system, freeing the driver to focus his visual attention on
the road. Similarly, my system eschews screen interaction so that the

ontherun 21

runner can pay attention to all the hazards of running on the street.
Davis and Schmandt encountered and solved many of the problems
I faced in creating the running directions for OnTheRun. Back Seat
Driver used relative directions, detailed descriptions, and local land-
marks to guide the human driver to their destination. The system
was designed to feel co-present with the driver so that the driver
would trust it.

The biggest difference between Back Seat Driver and my system is
that Back Seat Driver does not include street names in its directions.
Davis and Schmandt reasoned that not all streets have visible signs
and some names can be hard to pronounce. For my system, runners
have a better chance of spotting the street sign because they move
more slowly than cars. Secondly, text-to-speech technology has im-
proved since 1989, so even if names are pronounced incorrectly, the
runner can understand what was said and get the general idea. Some
streets are not named at all however, and this was a problem for my
system.2 Lastly, I believe that using actual street names makes the 2 My solution was to remove these

streets from the database, so that the
game will never route the runner down
one. This worked but had unintended
side effects, which will be discussed in
a later section.

game feel more realistic and provides useful feedback to the player.

4
User Experience

OnTheRun is a smartphone game that creates an audio experience
for a player moving about a city. The game is played without any
visual feedback. Instead the player receives audio feedback in the
form of music, sounds, pre-recorded voices, and computer generated
speech. This audio, combined with the real-world interaction of
running and navigating, creates a narrative with the player at the
center. To augment the running experience, a run log viewer enables
the player to see the routes he has taken, read game dialog, and view
supplementary images of the characters and items.

4.1 Concept

The game is primarily an interactive narrative combined with a navi-
gation system. The game reacts to the player’s location and responds
appropriately as the player runs around the streets. The game itself
is split into a series of missions lasting 5-30 minutes depending on
the player’s desired run length. Each mission has a unique plot that
requires the player to run around, reach destinations, and outrun
virtual enemies. During missions the player is guided by a character
named Ulysses, who explains the goal of the mission and keeps the
player informed of the plot. The player also listens to a computer-
generated voice, which provides turn-by-turn directions.

This game relies on a dense map of streets in order to provide the
player with descriptions and directions on where to run. Since the
game can only output audio, it is useful to engage the player in his
surroundings. The game directs the player by using street names,
which forces the player to look for street signs. The environment
thus provides the visual feedback of the game. The downside of this
approach is that the game does not work in open fields, trails, or long
roads without side streets: there is not enough descriptive geometry
with which to guide the player.1 1 It would be interesting if the player

could map out a space first and then
play a game: "run past the stump, and
get to the park bench.. you have 60
seconds."

ontherun 23

4.2 Storyline

Figure 4.1: Each mission has a message
from Ulysses that the player can read
before running.

Much like an episodic TV show, the missions start without any in-
troduction of the characters or their situation. The general concept is
that the player has been framed and is on the run from the author-
ities. He is also trying to investigate the people who set him up, as
they likely framed in order to cover up a larger crime. He is aided
by Ulysses, a knowledgeable ally, who speaks to the player over the
phone. Neither the player’s alleged crime nor Ulysses’ motivations
are made clear. Before each mission, the player can read about the
plot surrounding the mission. The note is in the form of a message
from Ulysses.

4.3 Action Sequences

In order to prove the game concept, I made two different missions
that are meant to be played in order. Each mission has several dif-
ferent types of interaction. The first playable mission is called "The
Car". Ulysses has tracked down a car belonging to a license plate
number the player’s character previously discovered. Ulysses gives
the player the location of the car and and tells the player he only has
a few minutes to get to it before the driver comes back. This is an
example of a timed-destination objective. As the player runs to the
objective, Ulysses reminds him of how much time is left to reach the
destination. If the player does not get there in time, he will fail the
mission.2 2 The player can replay any mission at

any time.Once the player reaches the car, Ulysses instructs him to break
the car’s window and steal anything important inside. This is an
example of a non-action story sequence. The player is not actually
expected to perform this action, but it drives the plot forward. Once
the character breaks into the car, an alarm sounds, and Ulysses tells
him to head back to the "safe house".3 The player has 30 seconds to 3 The safe house is how the game refers

to the player’s desired end position.
Either the player is running back to
their starting location, or they entered
a custom destination. This could be
useful if a player wanted to run home
from work.

get far enough away from the car. This is an escape sequence, and the
next event will trigger once the player has run roughly 100m away
from the car.

Part way back to the safe house, the player is warned about an in-
coming police car. The guidance system routes the player to a hiding
spot, and Ulysses warns the player to get there before the cops spot
him. This is an example of an avoidance sequence. The player has
to stay out of sight of an enemy character. As the player runs, he is
given updates of the police car’s current location. If the player suc-
cessfully finds a place to hide, the mission continues. If not, Ulysses
will get increasingly concerned until the police car ultimately sees the

24 matt donahoe

player, and the mission ends.
Once clear, the player can continue back to the safe house at his

own pace. This is a simple no-pressure destination action. The player
can take as long as he wants to arrive, and when he does, Ulysses
congratulates him on successfully completing the mission. He also
says he will investigate the stolen documents and items and figure
out what to do next. This sets up the next mission.

The next mission is "The Key". Among the items that the player
stole from the car is a key, but the key’s purpose is unknown. Ulysses
has used the documents to uncover a few potential locations, and he
instructs the player to try to unlock them with the key. The player
runs to three different locations. After two unsuccessful attempts,
and some humorous dialog from Ulysses, the player unlocks a door
with the key.

Almost immediately, however, the player is spotted by a guard
and must run away. This is a chase sequence; the guard is a virtual
pursuer from whom the player must run away. The system guides
the player and gives updates of the guard’s location. Ulysses also
provides feedback of the distance between them, and if the player is
too slow, the guard will start yelling threats. The chase sequence ends
if the player gets far enough away to lose the guard. As the player
gets closer to the safe house, the guard starts slowing down and then
abandons the pursuit.

4.4 Run Configuration

The plot of each mission is predetermined, but the route the player
takes is not. The route depends on the player’s current location and
desired run length. Before a mission begins, the player selects the
desired run length and, optionally, a destination. The game adapts to
the player’s settings, and a different route will be created each time
the player runs (see Figure 4.2). These configurations are done via
on-screen interactions. Once the mission starts, the player is directed
to destinations. However, the player is free to run wherever he likes,
and the system will adapt by continuously updating the shortest
path to the current destination. The route planning algorithms are
explained in the next chapter.

4.5 Dialog and Sound Effects

During the mission, Ulysses provides instructions, explains the plot,
and gives feedback on the player’s progress. For example, if the
player is being chased, Ulysses will warn the player. He will also

ontherun 25

Figure 4.2: These graphs are from
different test runs of The Car mission,
each tailored to a specific location and
length. The routes are drawn at the
same scale. The action sequences in
each run have the same order, but their
relative lengths can vary, as seen by the
colored portions of each route.

stress that the player should run faster or that the player is doing a
great job in evading detection if this is true. Finally, Ulysses gives
the player feedback on how much distance or time remains for the
player to reach a destination or if the player is moving in the wrong
direction.

Ulysses’ voice is pre-recorded and thus has limitations. If the
player repeats a mission, he will hear the same recordings again.
Also, since the player can be anywhere in world, Ulysses is unable
to speak the exact street names. Instead, a computer-generated voice
is used to provide turn-by-turn directions to the player, acting as an
in-game navigation system that Ulysses has given the player. Though
Ulysses refers to it as a GPS unit, it is an advanced one, capable of
describing enemy activity as well. Below are excerpts from a sample
transcript of a mission4. The computer-generated voice is labeled 4 Full transcripts are available in the

appendix."Computer."

Computer: Harvard Street.

Ulysses: The car is parked nearby.

Computer: Your destination is Moore Street toward Broadway.

Ulysses: You don’t have much time. The driver will be back soon.

Computer: Go past Columbia street.

Computer: Go past Pine Street.

Ulysses: You have five minutes left.

Computer: Turn left on Windsor Street.

Ulysses: You are halfway there.

Computer: Windsor Street. Turn right on Broadway.

Ulysses: Hold up, I think you are moving the wrong way.

Computer: Turn left on Broadway.

Computer: Broadway, turn right on Moore Street.

The computer voice also informs the player of enemy locations.

(A faint siren can be heard)

Ulysses: Watch out, there is a cop ahead! Try to avoid him.

26 matt donahoe

Computer: Your destination is Market Street toward Union Street.

Computer: He just turned left on Columbia St.

(siren is getting louder)

Ulysses: You are gonna get caught! Get off this road!

Computer: Market Street. Continue on Market Street to your destination.

Computer: He just went past Broadway.

Ulysses: All right, you should be safe here.

Computer: He just went past Market Street.

(siren is now getting quieter)

Ulysses: That does it. The coast is clear.

The audio from the game is the player’s only interaction with the
virtual world. He cannot see the enemies and objects described to
him. The player interacts by following the directions and looking for
the correct streets on which to run.

As a designer it is tempting to use the phone’s screen to provide
images of the game objects, but I felt that looking at the screen while
running was too dangerous.5 Additionally, one of the major draw- 5 Though not yet illegal, unlike texting

while driving.back of speech systems is that unless the system is talking, the user
can forget it exists (Davis and Schmandt, 1989). If the player goes
through long periods of no audio interaction with the game, he may
get bored. For both of these reasons, the audio experience needs to be
rich.

I decided to give the system many opportunities to share infor-
mation with the player. In addition to the turn-by-turn navigation
and storyline, Ulysses gives progress updates at periodic distance
intervals. The chosen distance intervals are both numerical or propor-
tional.

Numeric 1000 meters. 500 meters. 100 meters. 50 meters.

Proportional Halfway there. Getting close. Almost there.

Lastly, the volume6 of sound effects is used to hint at the distance 6 I considered using 3D sound, but
assumed that it would be inaccurate
and distracting because the exact
orientation of the player’s head is not
measured.

from certain objects. For example, there is a part of the first mission
when the player must avoid a police car. The police siren can be
heard, and it gets louder as the car gets closer to the player.

4.6 Music

Music plays an important part in creating the OnTheRun experience.
Music is already a popular running accessory. It can motivate the
runner and distract him from the pain and boredom of running.
Music is also a very important part of gaming. Most major role-
playing games have a significant soundtrack. Simple games have a

ontherun 27

soundtrack that plays independent of the action, but most modern
games have a reactive soundtrack that adjusts to the player’s actions
and progress. For example, Portal 2, a recent FPS puzzle/platform
game by Valve (2011), has a dynamically generated soundtrack. The
music will change just as the player is solving a part of the puzzle,
making the player feel like he solved it exactly on cue.

In OnTheRun, the music is limited to three separate track loops.
The different loops vary in intensity, and the missions switch from
loop to loop depending on the current plot point. For example, when
the player is running to a destination, the low intensity music plays,
but when he is being chased, the high intensity music plays. This
simple system gets the job done, although more would be better. A
future version of this application would benefit from musical variety.

4.7 Post-Run Reflection

After a run, the mission log is uploaded7 to a server for later anal- 7 The automatic upload feature is not
implemented at this time. I currently
have to manually copy the data from
the phone to the server.

ysis, and the player can access this data using a web browser. The
player can see a list of the runs he has completed. Selecting a run,
the player can view the route taken on a map and read a transcript
of the dialog that was spoken. This interface is designed to help the
runner reflect on his experiences. The player can also see images of
some of the plot elements with which he interacted during the run.
Since the run experience is audio only, these images are the first time
a player has actually seen these objects. This feature should help the
visualization of future missions.

Players can also use the map to read the street names from their
routes and reinforce their memory of their surrounding neighbor-
hood.

28 matt donahoe

Figure 4.3: Screenshot of the run viewer
web app. The left side is a list of dialog
and plot photos. The right side is a
map of the player’s path as measured
by the iPhone’s GPS. The player can
mouseover individual lines of dialog to
see the exact point on the map where
that line was spoken.

5
Technical Challenges

The code for this project consists of an iPhone app written in Objective-
C and a map server written in Python. There is also a web-based mis-
sion log viewer written in Javascript and HTML. A mapping system
and turn-by-turn directions algorithms were written from scratch.
Street data is from the OpenStreetMap project. The run viewer uses
the Google Maps API.

5.1 Map Representations

Figure 5.1: A map location can be
represented in many different ways.
Lat-longs are concise, but a street-
centric approach is more workable.
(Map ©Google)

The iPhone4’s GPS unit calculates its location using standard latitude
and longitude coordinates (lat-longs) and has a refresh rate of about
one second. While it would be possible to make the game work in
lat-long space, I decided to use a different representation that would
make it easier to compute directions.

To make the programming easier, I converted the lat-longs to a
street-centric representation. Instead of being a coordinate in an X-
Y space, the player is represented as a position along a network of
nodes and edges. Each node is like an intersection of streets, and
each edge is a section of a street between two intersections. This
way, instead of saying that the player is at <+42.367062, -71.09813>,
the system can say that the player is on Harvard St, past Elm St,
facing Columbia St, 20m from the intersection. Using a street centric
approach makes it easy to measure distances, compute directions,
and move virtual enemies.

Figure 5.2: The blue dashed lines rep-
resent the shortest distance from the
red lat-long coordinate to each street.
The system uses these distance mea-
surements as part of the localization
process.

The only challenge is that a GPS unit outputs location as a lat-
long, and thus a conversion process must be used to transform the
player’s measured location into a usable representation. The simplest
conversion is to snap the lat-long to the nearest street. The system
uses the lat-longs of all the street nodes (intersections) to calculate
the distance from the player’s lat-long to every street in the network.
That distance is the error between the street and the player’s position.

30 matt donahoe

The street with the lowest distance is likely to be the street that the
player is currently on.

Unfortunately, just relying on street distance can cause problems if
that distance is less than the average GPS error. If a player is running
down a street and passes through an intersection, the system could
get confused and think that the player turned at the intersection and
started running down a side street. Due to GPS uncertainty, that side
street may seem closer than the street the player is actually on. At
first I considered looking at old GPS positions to tell if the player
was turning. Unfortunately this introduces lag into the system, and I
wanted the response time to be as quick as possible.

Figure 5.3: The localization system
takes into account the instructions for
the player and responds quicker to
turns it told the player to make. The
green arrow is the intended path, the
green X is the player’s calculated posi-
tion. The red circles are GPS readings.
Even though the latest reading is closest
to Side Street, the system still believes
the player is on Current Street, as that is
where the player should be.

Instead I take into account the fact that the game is telling the
player where to turn. The algorithm assumes the player is following
directions and is more responsive to street changes that are directed
by the game’s guidance system. To accomplish this, a penalty is given
to all streets except the current street the player is on and the street
onto which the guidance system is telling him to turn. For example,
if the player is on Current Street, and the system has told the player
to take a left on Next Street, then any street other than Current Street
and Next Street gets a score penalty when the system is calculating
the player’s new location. As a result, the system is very responsive
to a player doing the right thing, but it waits 20m or so before telling
the player he turned down the wrong street.

5.2 Map Preparation

The map data is from the OpenStreetMap project. All the Cambridge,
MA, data was batch downloaded from openstreetmaps.com using
their API1. OpenStreetMap has two main data types: nodes and 1 Visit http://openstreetmaps.com/api/

for more information on how to do this
yourself.

ways. A node is a latitude-longitude pair with a unique ID, and a
way is a collection of node IDs that represent a street, trail, highway,
building, or other map feature. The original download for the Boston
area was about 400MB, but purging all the building geometry and
redundant street data reduced the download to about 10MB.

The map data contained roughly 10,000 streets, though not all of
them would be acceptable for use in a running game. First, all streets
without names were purged, because the turn-by-turn direction sys-
tem would not be able to describe them. Second, all highways were
deleted because they are too dangerous for running. After some ini-
tial play testing, all dead-end streets and private ways were removed,
because it was uncomfortable and inappropriate to run down some-
one else’s driveway. This made some game-logic algorithms easier
to program since I could assume there would never be dead-ends.

ontherun 31

These modifications were done automatically using Python scripts to
refactor the data. The resulting map data was about 5MB.

One problem with using maps is that those provided by Open-
StreetMap are made with vehicle navigation in mind. Many streets
are represented as two-lanes, and frequently only one of the lanes
will connect to a side street. Vehicle motion is more constrained than
pedestrian motion, so many routes that a runner could take are not
available to the car. This means that OnTheRun will give inefficient
running directions in some situations, like having the player continue
well past an obvious turn so that the player can make a legal turn to
get into the correct lane. I attempted to fix this by hand-editing the
map2, but it proved too time consuming. 2 It is easy to make an interface for

deleting nodes and edges, but moving
and reattaching edges requires a more
full-featured graph editor.

5.3 Map Server

When the player starts a mission, he chooses a desired running dis-
tance, and the app contacts a map server to get the map data. The
server uses the player’s parameters3 to build a custom subset of the 3 The parameters are the player’s

starting position, desired run length,
and an optional end position.

larger map, which is served to the phone.
The map server works by performing a breadth-first search rooted

at the player’s current position, acquiring all the nodes that are
within the player’s desired run length. From this collection of nodes,
all the corresponding streets are gathered. This process can create
virtual dead ends if some of the nodes in a street are too far away. As
a result, the virtual dead ends are iteratively removed from the subset
map. The system also automatically increases the run length if the
player’s desired end position is too far away.4 Once all the streets and 4 Runs are limited at 5km. Longer runs

require more map data in the phone’s
memory, and I didn’t want to risk low
memory problems.

nodes are collected, the server outputs the data as a JSON string.
This entire map subset calculation takes the server about a second

to compute, and the phone needs about 5-10 seconds to download
the data over a 3G connection. Once the phone downloads the map,
it converts the data from the compact "nodes and streets" represen-
tation to a graph structure with nodes and edges. This structure
consumes more memory, as each street gets broken up into multi-
ple edges, but it is more usable. The specific implementation5 was 5 The graph is represented using nested

dictionaries. The top level dictionary
has keys for each node in the map. The
value for any key is a smaller dictionary
with keys for each neighboring node.

inspired by Downey (2008).

5.4 Route Builder

Once the phone has the subset map, it builds a route for the current
mission the player has selected. Each mission has custom code for
choosing destinations, but they all use the player’s current position,
desired run length, and optional end point as inputs. They also make

32 matt donahoe

Figure 5.4: The map server processes
street data to match a request from the
iPhone client. Starting with a center
point, unnamed streets (dark red) and
streets that are too far away (gray) are
removed from the data set. Then all the
dead ends (red) are dropped, resulting
in a clean and fully connected subset of
streets (black).

ontherun 33

use of an algorithm that finds points halfway between two other
points, given a total distance; it can be thought of as finding the third
point of a triangle given two points and the perimeter, except that it
works in street-space.

For example, the first mission requires the player to run to a vir-
tual parked car, break in, steal documents, and run away to the safe
house. The route builder will place the car at a random location that
is half the total run length from both the start and end points.

There are other methods for moving along paths, and these are
used for placing sub-goals in the mission. For example the second
mission has the player run to several different destinations. The al-
gorithm works by placing the halfway point, and then backtracking
along the shortest path to the start point, placing two sub-goals along
the way.

5.5 Turn-by-Turn Directions

The majority of the player’s interaction is with the game’s navigation
system, which is constantly directing the player to his next destina-
tion. These directions are calculated on the phone itself, using the
downloaded map data and custom algorithms I wrote for this project.
Though making use of the phone’s internet connection to request di-
rections from a server was considered, I decided that the game would
be more responsive if the directions were calculated on the device
itself, without have to rely on a variable-latency 3G data connection
to a server.

The direction system uses a modified Dijkstra’s algorithm for
planning paths and calculating distances between points. The sys-
tem treats the the map as a symmetric6 graph, meaning that if node 6 Most driving navigation systems use

an asymmetric graph in order to handle
one-way streets.

A connects to node B, then node B also connects to A. To find the
directions between two points, it performs a breadth-first-search
around one point with an optional maximum distance. That point
is now considered the root of the resulting "PathSearch" object. This
PathSearch can be queried to calculate distances and routes between
arbitrary points and the root node. PathSearches can be saved to
speed up later calculations involving the same root point. For turn-
by-turn directions, the destination is set as the root, and a PathSearch
is created once and reused many times. Any time the player position
is updated, the system uses the PathSearch to find the best route to
the destination and it uses this route to create verbal directions.

The direction system is very simple and merely tells the player
what he should be looking for at any given moment. The algorithm
starts at the player’s location and traverses the current street toward

34 matt donahoe

the destination until it encounters a side street. If the side street is on
the shortest path, the player is told to turn onto it. If not, the system
just tells the player to go past the side street. The result is that the
player is always told directions relative to streets that are close by.

Occasionally a player can misunderstand an instruction and run
in the opposite direction that the system intends. In these situations,
the system detects that the player has made 30m of negative progress
and tells the player he is moving the wrong way.

The system can also describe the approximate location of the
player’s destination. It does this by saying what street the destination
is on as well as the next street the player will see when he arrives.

Computer:Your destination is on Harvard Street, toward Columbia Street.

The process of speaking these directions in conjunction with other
dialog is explained in the Audio section.

5.6 Dynamic Enemy Positioning and Movement

Both missions have virtual enemies that the player must avoid. In
the first mission, the player triggers a car alarm and must avoid an
inbound police car. In the second mission, the player stumbles upon
an enemy guard and is chased back to the safe house. In these situ-
ations, the enemy’s initial position is dynamically placed to provide
the player with the best experience.

On-demand dynamic placement is a technique I adopted after
months of relying on pure random placement. My first attempt
would randomly place enemies on the map at the beginning of a
mission. As the player ran, the enemies would move randomly as
well. The player would be alerted to nearby enemies, and if he got
too close, the enemy would chase him. This resulted in an unpre-
dictable experience. Sometimes I would never encounter the enemy,
other times he would be inescapable and I would lose. This unrelia-
bility was unacceptable, because I knew that most testers would only
ever play each level once. That first play had to be perfect.

I struggled for a time, experimenting with different algorithms for
enemy starting locations and movement, but ultimately the player’s
movement and the street layout are too varied and unpredictable;
there were too many variables for me to account for and characterize.
As a result I developed algorithms that scan the environment and
place enemies on-demand in exactly the right spots as needed by the
storyline. It feels like a cheat, but it results in a consistently exciting
experience.7 7 This consistency affects replayability,

but that is a problem for all single-
player games.

The dynamic placement is used once in each mission. In the first
mission, the player must find a place to hide such that the police car

ontherun 35

does not intersect his location. This can be tricky depending on the
surrounding streets. For example, if the player is running down a
long road with no side streets, there is no place to hide and the police
car will definitely find him. I didn’t want to leave the climactic scene
up to chance, so I wrote code to make sure the sequence occurs when
the streets can support it. After the player triggers the alarm, he is
routed back to the safe house. Once the system detects a side street,
the player is alerted to the incoming cop car and is routed to the side
street. The cop car is placed far enough away that the player will
have enough time to escape given his current pace.

The second mission has the chase sequence with the guard, but
when the chase starts, the guard isn’t actually on the map yet. Once
the player has run 30m in a particular direction, the guard is placed
behind him. This way I can ensure that the player doesn’t acciden-
tally run directly toward the guard in the stressful moments at the
start of the chase. The player is unaware of this, of course, and as-
sumes the guard is behind him the entire time.

5.7 Audio Challenges

One of the challenges of creating an "audio only" game is that it can
be difficult to present players with all the information they need
without overwhelming them. Visual systems display as much infor-
mation as can fit on a screen simultaneously because the users can
focus their attention on a specific piece of information and ignore
the rest. This gets more challenging with audio because information
must be presented over time rather than space. For example, if the
user is a certain distance from a destination, a visual system can con-
tinuously display that information in the corner of the screen without
bothering the user; the next time the user looks at it, it will be correct.
But an audio system must explicitly tell the user the distance, and
that can be distracting and annoying. While it is possible to present
information in simultaneous audio streams, it can be difficult to parse
if many voices are talking at once. If the game said all the informa-
tion it could, the information would just become noise.

Instead the game is programmed to speak in response to informa-
tion events:

• The distance to the destination is at a round number.

• There are a round number of minutes remaining on the timer.

• The current turn-by-turn instruction has changed.

• The player has traveled 20m in the wrong direction.

36 matt donahoe

• The player has reached the destination.

• An enemy has turned or passed a street.

• An enemy has gotten 25% closer or farther from the player.

This event-driven approach orders the information in an easily
consumable way, but the system must remember what was spoken
and under what circumstances. For example, to speak the current
distance, the system cannot just wait until the distance is a round
number, because the distance could get skipped or repeated. In-
stead the system has to save the last distance it spoke and wait until
the current distance reaches the next useful number range. I wrote
reusable class code that makes this process easier, since this struc-
ture is used several times per mission. Similarly, the guidance system
remembers what the previously spoken direction was. Every time
it gets a position update for the player, it recalculates the directions,
and it will only speak if the new direction is different from the pre-
viously spoken one. When the player is outrunning an enemy, the
system reports the enemy’s location and then repeats the player’s
objective. This repetition under pressure adds intensity to the game’s
action sequences.

6
Evaluation

OnTheRun was evaluated by six testers who tried a combined total
of 16 missions. Five testers were able to complete at least one of
the missions, and three had time to try both missions. Tests were
conducted serially, allowing me to fix bugs discovered by one tester
in time for the next. Log data from each test was also collected and
visualized, and three testers were available to review their logs online
using the run viewer. Testers were interviewed1 in person once they 1 A list of questions used to conduct

the interviews are included in the
appendix.

had completed their trials, and this chapter is devoted to feedback
gathered from those semi-structured interviews.

Figure 6.1: This graph compares run
time and distance for the 16 different
missions. The distance slider allowed
players to specify 0.5km-5.0km runs,
but the actual distance would vary if
the player canceled the mission or ran
the wrong way.

6.1 Game Mechanics

The majority of the testers enjoyed the action sequences in the second
half of each mission.2 They enjoyed the pressure of being chased, 2 One tester never made it to the action

sequence due to route confusion, and
the other mostly ignored the chase
sequence.

or avoiding a threat. They especially liked how Ulysses would get
frantic if the player wasn’t moving fast enough.

38 matt donahoe

However, during the police car sequence, the system would an-
nounce what street the car was currently on, even when it was far
away. Since the players weren’t familiar with those streets, they
didn’t care as much about those announcements. The chase sequence
was better because the enemy was following on the same streets as
the player. For instance, the player would make a turn, and then a
few moments later the system would say that the enemy had just
made the same turn. Players recommended that the system announce
how far away the enemies were in addition to their locations.

The non-action sequences worked without many problems. Play-
ers understood that they were not actually supposed to perform the
actions Ulysses asked for (breaking windows, trying locks), but some
players weren’t sure if they should keep running or not. The play-
ers also said that when Ulysses refered to virtual game objects, like
houses or cars, they would look nearby for a real object that matched.
In one case, Ulysses told the player she had reached the car, but there
wasn’t a real car nearby, so she ran ahead in order to be next to one.

Most of the players liked the dialog from Ulysses, and two made
special note of a particular line of dialog that made them laugh.3 3 Ulysses gives the player a destination,

but once the player arrives, he realizes
he made a mistake and sends the player
somewhere else. He then admits that he
"always gets East and West confused."

Players also liked when Ulysses gave them feedback on their perfor-
mance.

Players said that plot was not as dense as it should be, but the
players also didn’t read the text messages from Ulysses that describe
the missions beforehand. For example, in the first mission when the
player runs to a parked car, the text explains who owns the car, how
he tracked it down, and why the player should go to it. Players just
skipped over it and started their missions, and they said they didn’t
want to stand around reading when they could be running. To make
matters worse, the tester who ran 5km felt his run was especially
boring, since the story events were spread so far apart. Further dis-
cussion of suggested improvements for a future version of OnTheRun
are included in the next chapter.

6.2 Turn-by-Turn directions

The directions from the guidance system added content to the game’s
sparse dialog, and players enjoyed being told where to go. One
player said she actually enjoyed intentionally not following the ex-
act directions in certain situations.4 However, players universally said 4 "I liked disobeying the directions. I felt

like Jason Bourne having to make my
own route."

that confusing or incorrect directions were their number one frustra-
tion with the system. Discussion for improving the localization and
direction system is included in the next chapter.

My hand-coded path planning had a fair share of bugs and rec-

ontherun 39

ommendations for improvement. Deleting dead ends and unnamed
streets from the map was a mistake. In a couple of situations, play-
ers mistakenly ran down a street that had been removed from the
database, so the system of course thought they were somewhere else
and continued to give them bad directions.

When the game first starts, the system only has a few GPS read-
ings. This frequently results in the navigation system thinking the
player is facing the opposite way, resulting in wrong directions. In
one test run, a player was told to go left when she actually should
have gone right. This error, combined with the player’s own unfamil-
iarity with the street layout, caused her to run a half mile down the
correct street, but in the wrong direction. She then ran out of time to
complete the mission. As a result I modified the system to include
warnings about going the wrong way. I also added more types of
directions to the system, beyond just turns, so that the player can be
sure he is on the right path. For instance, the player will be told to
continue past sides streets that are along the path. Later testers had
less problems getting where they were supposed to go.

Figure 6.2: Severe GPS inaccuracies
caused the system to give confusing
directions. This player ran back and
forth several times before restarting the
mission.

Unfortunately, these fixes introduced new problems. Some players
were told they were going the wrong way even when they weren’t,
and others complained that the system would tell them to continue
past a street they had already passed. Frequently, it would tell the
player to continue past a street they were currently on, which was
annoying but ignorable.

Lastly the players mentioned as feedback that they frequently
didn’t hear (or couldn’t remember) what their destinations were. The
system would only say it once, and players said that it was easy to
miss the announcement due to street noise. As a result, they would
follow the directions without knowing where they were ultimately
going.

6.3 Route Planning

Figure 6.3: This 2.5km run was success-
fully completed. Notice that the GPS
traces mostly line up with the streets on
the map.

Generally the random route planning was a success. Most of the
players enjoyed taking routes they hadn’t run before, saying it was
a welcome change to their usual routine of taking the same pre-
planned path every run. All of the testers who were regular runners
said they normally run the same route every time, so having a system
that randomized the route for them was interesting. Players said they
enjoyed being told where to run. However one runner who normally
runs a peaceful route along the river did not like that the system had
him run down busy streets.

There was an embarassing bug in the route builder that affected

40 matt donahoe

runs with long lengths. Two early testers asked for 4km routes, but
the system generated significantly shorter routes.5 This bug was fixed 5 These routes were of random length

varying from 2km to 20m!in time for the last tester, who successfully ran a 5km route.

6.4 Offline Interaction

The run viewer was available in time for three different testers to try
it. All three reacted positively to seeing the map of their route, and
they said that it was fun to read the dialog again. One tester said it
made him feel more accomplished. Even the player who had GPS
problems and got confused said it was reassuring to see that the
failed mission was not entirely her mistake: the system thought she
was on a completely different street.6 Another player said that seeing 6 GPS problems are very hard to di-

agnose in the system. My algorithm
could be wrong, the GPS might have an
error, the signal may be blocked by tall
buildings, or there might not be enough
satellites in the sky at that moment.

his route on the map showed that the GPS was more accurate than
he expected. This might be more evidence that the game should do
a better job of describing its knowledge of a player’s location. The
pictures interspersed in the dialog received mix reviews. One tester
said he ignored them, while another said she enjoyed seeing them.

7
Future Work

The nature of my work thus far is exploratory: I propose a specific
design for a location-based, single-player, exercise game and demon-
strated the feasibility of my prototype. In my design process, I iden-
tified a number of ways to improve both the technical aspects of
the system and the design of experience itself and this chapter is
devoted to sharing these suggested improvements. Furthermore,
although I showed that people enjoyed using the system and the sys-
tem worked, I will also introduce some candidate hypotheses and
experimental protocols for future research.

7.1 The localization model

The current model takes into account the phone’s latest GPS reading.
While I worked hard to develop a model that was responsive given
only GPS input, a future model that leverages the phone’s existing
compass and accelerometer would greatly improve the system’s accu-
racy.1 The compass would help the system identify turns better, and 1 These additional sensors readings

could also add features to the game.knowing absolute direction would help confirm that the player is on
the correct street. The accelerometer would aid in player speed esti-
mation as the system should be able to differentiate between walking,
jogging, running and stopping. A speed estimate would help the
system predict the player’s current location instead of relying on an
estimate that might be a second or two old. Players complained that
the system would tell them to pass streets they had already passed,
or would occasionly take a few seconds to correctly identify a correct
turn; this can happen when the GPS suddenly stops updating for a
few moments because the system is unable to do any time-based lo-
cation prediction. By predicting location, GPS dropouts wouldn’t be
as problematic. Having a speed estimate is critical to that prediction.

If the phone can handle the additional processing required, it
could be useful to implement a particle filter to predict the player’s

42 matt donahoe

location. Particle filters work well with non-linear data and could
incorporate information like street distances and directions.

7.2 Music

The current music in the game is three 40-second loops of different
intensity, and ultimately the player is going to get pretty bored with
hearing the same two minutes of sound. A variety of tracks would
be good. It could also be cool to allow the player to choose his own
music, though this might clash with the mood of the game. It could
be interesting to experiment with changing the tempo of the song, or
automatically selecting songs that match the player’s pace.

7.3 Spoken directions and descriptions

Since I used exact street names, I did not delve into more descriptive
directions employed in Back Seat Driver, which would describe street
landmarks, intersection geometry, and when the driver should expect
to turn. It also included a "What Now" button that users could push
to hear what they should do right now, in case they forgot or were
uncertain. My system simply says the next street the player should
pass or turn onto, and it does not repeat itself.

A future version would benefit from more descriptive directions
and timely reminders of what the players should do. One tester
recommended that the system provide compass directions in order
for the runner to get his bearings better. For example: "Head north
on Harvard Street". Another player recommended that the system
tell you where it thinks you are, so that you know when to trust the
directions. Approximate street numbers would also help players
know where a destination is along a street. Lastly, there should be a
button to repeat the address of your destination, in case the player
does not hear it or can’t remember.

7.4 Story and Missions

This was just a feasibility demo, but a full game would obviously
need more missions and a better storyline. One player suggested
that Ulysses should speak the mission description text instead of
forcing the player to read it. This would make the beginning of each
run more interesting. Another player wanted more feedback on how
well he was running because he said it felt good to hear it. Also the
system should include more sub-goals when the player requests a
longer run, so that the story doesn’t get spread too thin.

ontherun 43

One tester suggested an interesting new game mechanic. Ulysses
could tell the players to stop running and "blend in" to their sur-
roundings in order to lose a pursuer. He might say that the player
should slow to a walk or even stop and "pretend to tie their shoe."
The system could use the phone’s accelerometer to confirm that the
player is roughly following orders. The game can be more immersive
if it has a variety of interactions.

Screen interactions were explicitly minimized for this project, but
one tester suggested that solving on-screen puzzles part way through
missions might be fun. This could be an area of exploration, though
there was a similar mechanic in the game PiNiZoRo.

7.5 Mission Designer

I struggled with OnTheRun because there are so many different as-
pects to game making, and there was significant tension between
what I wanted to create and what I was able to do given my ability
and time. In a professional video game studio, games are created by
teams, and not everyone on a team is a programmer. Most members
are actually designers who create game content: story, art, sound,
levels, puzzle logic, etc. The job of the programmer is to create tools
for the other team members to use to create game content. One of the
first things that gets made is a level design tool. The programmer cre-
ates an application that can be used by non-programmers to generate
all the levels in the game.

In OnTheRun, I custom wrote the code for two different missions.
An ideal future version of OnTheRun would have tens or hundreds
of missions, and it would be tedious to program each mission indi-
vidually. I already employ subclassing to reuse code that is common
between my two missions, but an actual mission design tool will be
an important part of a full version of this game.

Early in the development of the project, I attempted to create a
level editor and logic system for the game so that I wouldn’t have to
code everything natively in verbose Objective-C. This was a mistake
because I didn’t yet know the variety of functionality I would need to
support. My initial system supported location-based and time-based
events. There were lists of active and inactive events. Active events
would trigger dialog if their conditions were met and would also
activate or deactivate other events. I found this system to be expres-
sive, but dealing with turn-by-turn directions and virtual enemies
quickly overwhelmed it. Now that I have successfully made an exam-
ple game, I think I could develop a mission designer to support my
needs, but it would be complex.

44 matt donahoe

The tool would be similar to a traditional videogame map editor.
However, unlike most videogames, the mission might get run on
any street and thus cannot be fully specified in advance. Instead a
designer must draw a simplified version of the game world, and a
placement system will map the game world onto the player’s sur-
roundings at the start of a mission. The designer places the safe
house location, intermediate destinations and dialog points. He
creates events so that when the player reaches a specified point, it
triggers the dialog to be spoken and activates the next events.

Dealing with virtual enemies is tricky because their behavior can
be difficult to generalize. The enemies in my game moved toward
destinations or followed the player. In the future they might also
need to avoid the player or move at a non-constant speed. The trade
off in creating custom tools is between speed and power, because
making it easy to do certain actions makes it harder to do others.

7.6 Player-specified Running Speed and Difficulty

In the current implementation, players cannot specify how fast they
would like to run. As a result, the game must support a wider range
of speeds. This means the game might be too easy for people who
run fast or too hard for people who jog slowly. It would be better to
support three different modes: walking, jogging, and running.

This would introduce a new challenge for mission designers since
the game would need to be playable and fun no matter what pace
the player runs. It may not be fun to have a chase scene in which the
pursuer can be avoided simply by walking. In these cases, it might
make sense to treat running speed as a difficulty factor, and adapt
the content of the missions to the different difficulties. In easy (walk)
mode, the player may never get chased, but in harder modes he does.
This type of difficulty-dependent plot is common in modern games.

7.7 Viewable map

Players would like to be able to see a map of the route right before
the run, and they want to be able to stop and check it during the run
in case something goes wrong with the direction system. Visually
seeing the destination and where the system thinks the player is can
help eliminate confusion.

ontherun 45

7.8 Better pedestrian maps

The current system does not handle complex geometry such as two
lane streets. In a future version, I would either write algorithms that
acknowledge what side of the street the player is on, or edit the map
to convert all two-lane streets to a single lane. One tester recom-
mended adding crosswalk data to the map. Another tester suggested
augmenting the map data with a notion of the "runnability" of a
street, so that busy streets are avoided as much as possible. Building
off work by Priedhorsky et al. (2007), OnTheRun could maintain a ge-
owiki of user maintained runnable streets. Users could rate vehicular
roads on a runnability scale and even add new paths and trails that
are not in traditional driving databases.

7.9 Local landmarks

Two players suggested that landmarks could improve the quality
of the directions and make the game seem more engaged with re-
ality. Again this was something included in Back Seat Driver, and
OnTheRun would benefit from adopting it. These landmarks could be
mined from existing data sources or provided by the player when the
game is first configured. The game can interact with the player by us-
ing phrases like "Your contact will be waiting for you at a bus stop on
Main Street" or "Turn right after the book store." The route planning
algorithm can select local landmarks that best match the plot of the
mission, and then place enemies and destinations appropriately.

7.10 Run Log Viewer

In a future version, the log viewer should receive data automati-
cally from the phone after a run. The viewer should also be part of
a stand-alone web site, where players create accounts, manage their
data, and prepare for new runs. One tester suggested including more
local pictures in the viewer so that she could refamiliarize herself
with the areas she saw on the run. It could be possible to incorporate
Google StreetView imagery, or to have the players take photos with
their phone at key plot points and show these photos to them later.

7.11 Evaluation Structure

The evaluation goal for this project was to see if the system worked
and if people enjoyed using it. With a more robust system, more run-
ners, and a longer testing period, it could be possible to investigate

46 matt donahoe

more substantive hypotheses: When using the system, do runners
run longer than usual? Do they run more often? Do they enjoy their
runs more? To answer these questions, we must compare runner
performance before, during, and after exposure to the system.

Testers should be given a smartphone with an app that tracks
their running statistics and provides minimal features beyond that
of existing exercise apps like Nike+ or Runkeeper. The app should
record the runners’ routes in real-time, capturing location and speed
information. After each run, the app should prompt the player to
quantify their enjoyment of the run and their perception of their
performance. After using that app for a month in order to gather a
baseline performance, testers will be given the complete game app to
use for another month. After the testers play the game for a month,
it will be replaced with the tracking app again for a final month
to study any lasting performance effects from playing the game.
The run data combined with the submitted ratings will quantify the
impact of the system on player performance.

8
Conclusion

This work shows that it is possible to create an engaging single-
player gaming experience beyond the confines of the living room.
Speech, music, and sound effects alone are able to create a fun game,
even if the only interaction is large scale movement in players’ sur-
roundings. OnTheRun is a game that can be played while running
because its user interface makes it possible to interact with the game
while still keeping the players’ eyes on the road. As mobile phones
become more ubiquitous and sensor-filled, games like this will be
commonplace. A project like OnTheRun provides a demonstration of
the potential for interactive, entertainment-oriented games to escape
the bounds of the videoscreen and explode into the real world.

The framework introduced by OnTheRun has the potential to pro-
vide additional motivation and performance benefits to an exercise
routine. With enough resources to develop sufficient content, fine-
tune player engagement and calibrate system performance, this po-
tential could be realized as a complete product, and the usage of that
product could be studied more formally than was possible within the
scope of this work.

9
Bibliography

13th Street Universal (2011). The witness. Website. http://www.

youtube.com/watch?v=Yis6is8v9jA.

AlmostAwesome (2007). WalkJogRun. Website. http://walkjogrun.
net.

Benford, S., Flintham, M., Drozd, A., Anastasi, R., Rowland, D.,
Tandavanitj, N., Adams, M., Row-Farr, J., Oldroyd, A., and Sutton,
J. (2004). Uncle Roy All Around You: Implicating the City in a
Location-Based Performance. In ACM Advanced Computer Entertain-
ment. ACM Press.

Caillois, R. and Barash, M. (2001). Man, play, and games. University
of Illinois Press.

Campbell, T., Ngo, B., and Fogarty, J. (2008). Game design principles
in everyday fitness applications. In CSCW ’08: Proceedings of the 2008
ACM conference on Computer supported cooperative work, pages 249–
252, New York, NY, USA. ACM.

Davis, J. and Schmandt, C. (1989). The back seat driver: Real-time
spoken driving directions.

Deci, E. and Ryan, R. (1985). Intrinsic motivation and self-
determination in human behavior. books.google.com.

Downey, A. (2008). Computational modeling and complexity sci-
ence. pages 3–6.

Flintham, M., Benford, S., Anastasi, R., Hemmings, T., Crabtree, A.,
Greenhalgh, C., Tandavanitj, N., Adams, M., and Row-Farr, J. (2003).
Where on-line meets on the streets: experiences with mobile mixed
reality games. pages 569–576.

Fujiki, Y., Kazakos, K., Puri, C., Buddharaju, P., Pavlidis, I., and
Levine, J. (2008). Neat-o-games: blending physical activity and fun
in the daily routine. Comput. Entertain., 6(2):1–22.

http://www.youtube.com/watch?v=Yis6is8v9jA
http://www.youtube.com/watch?v=Yis6is8v9jA
http://walkjogrun.net
http://walkjogrun.net

ontherun 49

Hielscher, J. and Heitlager, J. (2006). Wanderer–location independent
gps game. PerGames seminar.

Konami (1999). Dance Dance Revolution. Website. http://www.

konami.com/games/ddr.

Koster, R. (2005). A theory of fun for game design. Paraglyph Series.
Paraglyph Press.

Lin, J., Mamykina, L., Lindtner, S., Delajoux, G., and Strub, H.
(2006). Fish’n’steps: Encouraging physical activity with an in-
teractive computer game. In Dourish, P. and Friday, A., editors,
UbiComp 2006: Ubiquitous Computing, volume 4206 of Lecture Notes in
Computer Science, pages 261–278. Springer Berlin / Heidelberg.

Microsoft (2011). Fun that’s good for you - xbox.com. Website.
http://www.xbox.com/en-US/Kinect/healthyfun.

Nike (2010). Nike+. Website. http://nikeplus.com.

Nintendo (2007). Fitness game for Nintendo Wii - Wii Fit Plus.
Website. http://wiifit.com/.

PerBlue (2011). Parallel Kingdom. Website. http://www.

parallelkingdom.com/.

Priedhorsky, R., Jordan, B., and Terveen, L. (2007). How a personal-
ized geowiki can help bicyclists share information more effectively.
In Proceedings of the 2007 international symposium on Wikis, WikiSym
’07, pages 93–98, New York, NY, USA. ACM.

Runkeeper (2010). Running app and fitness community. Website.
http://runkeeper.com.

Softabar (2011). RouteA2A - When You Want To Go To Where You
Already Are. Website. http://routea2a.com.

Somethin’else (2010). Papa sangre. Website. http://www.

papasangre.com/.

Stanley, K., Livingston, I., Bandurka, A., Kapiszka, R., and Mandryk,
R. (2010). Pinizoro: A gps-based exercise game for families.

Valve (2011). Portal 2. Website. http://www.thinkwithportals.

com/.

Whitehead, J. R., on Physical Fitness, P. C., and (U.S.), S. (1993).
Physical activity and intrinsic motivation [electronic resource] / James
R. Whitehead. President’s Council on Physical Fitness and Sports,
Washington, DC.

http://www.konami.com/games/ddr
http://www.konami.com/games/ddr
http://www.xbox.com/en-US/Kinect/healthyfun
http://nikeplus.com
http://wiifit.com/
http://www.parallelkingdom.com/
http://www.parallelkingdom.com/
http://runkeeper.com
http://routea2a.com
http://www.papasangre.com/
http://www.papasangre.com/
http://www.thinkwithportals.com/
http://www.thinkwithportals.com/

A
Mission Transcripts

Included are one example transcript from each mission.

A.1 The Car Mission (0.8km)

Computer Sidney Street

Ulysses Alright, the car is parked nearby

Computer Your destination is Pearl Street toward Erie Street.

Ulysses You don’t have much time. The driver will be back soon.

Computer Go right on Erie Street

Ulysses Four minutes.

Computer Erie Street

Computer Go past Sidney Street

Computer Go past Brookline Street

Ulysses Ok, you’re halfway there.

Ulysses Three minutes.

Computer Go left on Pearl Street

Ulysses Two hundred meters

Ulysses You’re getting close.

Ulysses One hundred meters

Ulysses Just two minutes.

Computer Pearl Street

Computer Go past Erie Street

ontherun 51

Ulysses That’s the car right there. We don’t have much time, so we’ll
have to improvise: smash the window and steal anything you can
find inside.

Ulysses Great. Now you’ve got about thirty seconds to get the hell
out of there.

Computer Your destination is Sidney Street toward Emily Street.

Ulysses The police will be checking out that alarm, so be sure to get
out of there.

Computer Go right on Valentine Street.

Ulysses I’ve detected an incoming police car. It’s coming straight for
you. You have to get off its course.

Computer Police activity on Sidney Street.

Computer Your destination is Brookline Street toward Emily Street.

Computer Go right on Valentine Street.

Computer He just turned onto Erie Street.

Computer Go right on Valentine Street.

Computer Valentine Street.

Computer Go left on Brookline Street.

Computer He just went past Brookline Street.

Ulysses Ok. You should be safe here for now.

Computer He just turned onto Pearl Street.

Ulysses That does it. The coast is clear.

Computer Your destination is Sidney Street toward Emily Street.

Computer Go left on Brookline Street.

Computer Brookline Street

Computer Go right on Emily Street.

Computer Emily Street.

Computer Brookline Street.

Computer Go left on Emily Street.

Ulysses Two hundred meters.

52 matt donahoe

Computer Emily Street.

Computer Go right on Sidney Street.

Ulysses Ok, you’re halfway there.

Ulysses One hundred meters.

Ulysses You’re getting close.

Ulysses Fifty meters.

Ulysses Alright, I think we can call this a successful mission. Send
me some photos of the stuff you stole and I will contact you again
when I know what to do next. Stay safe.

A.2 The Key Mission (1.3km)

Computer Elm Street

Ulysses From what I can tell from the files they own a bunch of prop-
erties in the area, and I have a hunch that this key will work with
one of them. The first house is nearby.

Computer Harvard Street.

Computer Your destination is Elm Street toward Market Street.

Ulysses I sent the location of a house to your GPS. You should go
check it out now. Remember to bring that key.

Computer Go right on Elm Street.

Computer Go left on Elm Street.

Computer Elm Street.

Computer Go past Richardson Street.

Computer Go past Norfolk Court.

Computer Go past Broadway.

Ulysses One hundred meters.

Computer Go past Elm Street.

Ulysses Fifty meters.

Ulysses Ok, this is the first location. Try the key.

Ulysses Did that work?

ontherun 53

Ulysses Alright. This place is no good.

Ulysses Hmm. Ok let’s try another place.

Computer Your destination is Elm Street toward Hampshire Street.

Computer Go past Market Street.

Computer Go past Hampshire Street.

Ulysses One hundred meters.

Ulysses Fifty meters.

Ulysses There should be a storage unit around here somewhere. I
think? Oh... my mistake. Keep moving.

Computer Your destination is Hampshire Street toward Murdock
Street.

Ulysses I always get East and West confused... keep moving.

Ulysses Two hundred meters.

Computer Go left on Hampshire Street.

Computer Hampshire Street.

Computer Go past Norfolk Street.

Ulysses Ok, you’re halfway there.

Computer Norfolk Street.

Computer Go left on Hampshire Street.

Ulysses One hundred meters.

Computer Hampshire Street.

Computer Go past Tremont Street.

Ulysses Fifty meters.

Ulysses You’re getting close.

Ulysses Ok this is it. Try the key.

Ulysses Huh, that’s interesting... Do you see anything inside?

Ulysses Oh shit... I’m picking up a security guard’s radio signal.
RUN! Get to the safehouse.

Ulysses Hold up. I think you’re moving the wrong way.

Computer Go past Murdock Street.

54 matt donahoe

Enemy Guard Hey you! Get out of there!

Ulysses He’s still behind you...

Ulysses Hold up. I think you’re moving the wrong way.

Computer Go past Murdock Street.

Ulysses Step up the pace. He’s gaining on you.

Computer He just went past Murdock Street.

Computer Prospect Street.

Ulysses He’s still there.

Computer Go past Gardner Road.

Computer He just turned onto Prospect Street.

Computer Go past Gardner Road.

Ulysses He’s closing in on you!

Computer Go past Saint Mary Road.

Computer Go left on Broadway.

Computer He just went past Gardner Road.

Ulysses He’s getting close.

Computer Go left on Broadway.

Computer He just went past Saint Mary Road.

Ulysses Five hundred meters.

Computer Go left on Broadway.

Ulysses You realize that he’s not going to stop, right? You have to
outrun him.

Enemy Guard You can’t outrun ME!

Ulysses Keep going, he’s still behind you.

Computer Broadway.

Computer Go past Scouting Way.

Computer He just turned onto Broadway.

Computer Scouting Way.

Computer Go left on Harvard Street.

ontherun 55

Computer Broadway.

Computer Go past Tremont Street.

Computer He just went past Scouting Way.

Ulysses He’s gaining on you.

Ulysses He is RIGHT behind you!

Computer Go past Tremont Street.

Ulysses Ok, you’re halfway there.

Ulysses You’re losing him.

Computer Go past Norfolk Street.

Ulysses He’s getting close!

Computer He just went past Tremont Street.

Computer Go past Norfolk Street.

Ulysses Two hundred meters.

Computer Go right on Elm Street.

Computer He just went past Norfolk Street.

Computer Go right on Elm Street.

Ulysses He’s getting close!

Ulysses You’re getting close.

Ulysses Don’t stop now, you’re gonna get us both caught!!

Computer Elm Street

Ulysses One hundred meters.

Computer Go past Norfolk Court.

Computer Go past Richardson Street.

Ulysses You’re losing him.

Computer He just turned onto Elm Street.

Ulysses He’s slowing down, but this ain’t over yet!

Ulysses You’re almost there.

Ulysses Fifty meters.

56 matt donahoe

Computer Go past Richardson Street.

Ulysses He’s still behind you...

Ulysses Well that didn’t go as planned. They are likely going to get
rid of any evidence in that house, but I can do some research and
see what’s so special about that place. I’ll talk to you soon.

B
Interview Questions

To allow for variations in tester feedback and communications style,
each interview was unique, but I typically pulled from a common set
of questions.

Background

• What games do you play (video games, board games, team sports)?

• Do you own a smartphone?

• Have you used turn-by-turn GPS navigation before (like in a car)?

Exercise and Running Habits

• Do you plan a route when you go running? Do you run the same
route every time?

• Do you listen to music while running? Do you change your
playlist? Ever listen to an audiobook while running?

• What type of other exercise to you do (running, gym, weightlift-
ing)?

• Do you ever get bored while you run?

Game Mechanics

• Did you feel like a fugitive?

• Did the app make you work harder in order to avoid capture?

• When you were being chased, did you ever look back to see how
far away the bad guy was?

• Did you ever look at objects in the real world (cars, houses, peo-
ple) and imagine they were part of the game?

58 matt donahoe

• What parts were fun?

• What parts were bad or frustrating?

• Did you ever repeat a mission? Did it bother you that it was ex-
actly the same?

• Did it bother you that the things described in the mission (cars,
houses etc) didn’t actually exist? Would you prefer to run to
real locations? For example, "head to the CVS on the corner of
Church Street and Mass Ave", or "meet your contact at the bus
stop nearby"?

• Did you notice that locations would change depending on where
you started the mission? Did you care?

• Were the missions interesting? Was there enough action? Would
you have preferred more dialog from Ulysses?

Route Planning and Directions

• Did you like having turn-by-turn directions?

• Did you like not knowing exactly where you were going?

• Would you prefer to look at a map of your route on the phone at
the beginning of a mission?

• Would you liked to see your route ahead of time on a computer?
Even if that meant you had to start the mission from a particular
location?

• Were you ever lost and wished you could just look at a map?

• Did the game ever tell you to turn, forcing you to cross a busy
street?

• Were you ever waiting at a stoplight while the game was telling
you to keep going?

• Were you ever annoyed with directions because you knew how to
get there?

• Did you try to set a destination? Did it send you to the wrong
place? Did the inefficient route bother you?

ontherun 59

Run Log Viewer

• Is this useful at all?

• Does it help you remember the experience?

• Do the "story" photos do anything for you?

• Can you see a difference between where the system thought you
went and where you actually ran?

• What else would you like to see in the run viewer?

• What exactly did you try? Did you do mouseovers? Did you view
other runs?

Improvements

• Would you like a freeform app that didn’t care what streets you
ran on, only how far and how fast?

• What if instead of tailoring the mission to your current location,
you had to go to a particular location in order to start a mission?
This would enable the game world to be static and consistent.

• Describe any problems you had. Configuring missions, following
directions, wearing the device, etc.

• What stats would you like to see at the end of a mission (time,
speed, route taken)?

• Would like to be able to pause the game to wait for stoplights or
catch your breath?

• Would you like to be contacted by Ulysses between runs, such as
during the day?

• Would the game be better with a more in-depth story?

• Would you prefer a game that focused on scoring points and pro-
viding quantitative assessment of your runs? This would allow
you to compare performance between runs.

