Computer Systems and Languages for Audio Research

BARRY VERCOE

Massachusetts Institute of Technology, Experimental Music Studio, Cambridge, MA 02139, USA

While most of the professional audio industry is preoccupied with the reproduction
of recorded music created by natural instruments, there is a more profound application:
creation of original music with digital signal processing. The historic limitations of
natural air and string resonances can be overcome by the use of computer sound synthesis.
Although computers can generate any sound that can be specified in point-by-point
fashion, creative exploration of new timbres and new musical effects requires fabrication
of new signal-processing structures at the level of software programming. For both
musician and engineer, replacing an instrument by a terminal—or an analog pot by a
subroutine—can be very disturbing, particularly if the modes of human-machine in-
teraction are orthogonal to the task. A composer-oriented software system is described
which affords intuitive yet flexible control over the most recent methods of digital

audio processing.

1 SOFTWARE SYSTEMS

Growing interest in computer music composition and
performance has led to the development of both hard-
ware and software systems for efficient investigation
of its potential. The first program that could support
serious research in digital music synthesis was Music
4, developed in 1963 by Max Mathews at Bell Labo-
ratories. Music 4 established a modular principle for
the description of audio processing networks that has
enabled composers and researchers to communicate in
common terms despite the variety of computer systems
they use. The many later variants of Music 4 have
provided users with digital audio descriptor languages
that are musically intuitive, yet close to the hardware
of g particular machine for the sake of speed.

" The major software systems currently in use are Music
360, a variant of Music 4, which runs on large IBM
systems; Music 10, designed for the DEC PDP-10;
Music 11, which runs on any DEC PDP-11 computer;
Music 4BF, a FORTRAN version designed for portability;
and Mathews’ Music 5. Music 5, Music 360, and Music
11 are the most widely distributed, the first two in

DIGITAL AUDIO

research centers with large centralized computing.
Music 11 suits a different pocketbook, and has induced
several music departments such as Eastman and
Brooklyn College to buy their own PDP-11 computers
exclusively for music composition and research.

Cost-saving advances have included elimination of
redundancies. Observation of Music 360 composers,
for instance, reveals that up to 50% of music signal
processing is aimed at shaping loudness and pitch con-
tours —functions essentially of acoustic control that
need not be computed at audio rates. Music 11 was
therefore designed with two separate levels of pro-
cessing, control signals and audio signals. Slower sig-
nals such as vibratos can be calculated at less expensive
data rates (at 1 kHz rather than 50 kHz), providing an
overall computational saving of about 40%.

2 THE HUMAN-MACHINE INTERFACE

The effectiveness of digital audio processing can be
improved by better human—-machine communication.
For example, the M.I.T. studio has developed a powerful
and sophisticated music score editor, manipulating data

245

VERCOE

on a screen in standard music notation (Fig. 1). The
score editor is effective as a composing tool, not because
it is aimed at producing a good final layout, but because
it manages the more difficult task of maintaining the
editability of a work in progress.

Music in the past has been represented by a fluently
pictorial yet imprecise symbology. For a computer,
however, symbols such as mp or fff must be given nu-
meric values by way of translation tables. When these
values are written out in full, they create a score file
that provides very little sense of the music it represents.
Most computer music today is painstakingly encoded
in just this form. An encoding scheme that incorporates
alphabetic characters as well is sometimes used (Fig.
2). This is of some help because it minimizes the amount
of visual data required to represent a full score. The
preferred notation for much computer music is standard
notation, simply because it is so immediate. Moreover,
failure to support standard practices of music notation
will impair the speed of human-machine communi-
cation, and so reduce the artistic effectiveness of the
signal-processing system it will invoke.

In the area of digital audio processing itself, defining
a signal-processing network by the use of deft sketching
motions can be conducive to creative experiment (Fig.
3). People naturally conceive of the ‘““patched module”
networks of time-domain synthesis largely through inner
imagery—as a collection of boxes arranged spatially and
interconnected by wires. When contemplating changes,
they find it natural to make boxes appear and disappear
as needed, and to imagine plugging and unplugging
the connecting wires. The symbolic objects here are
typically time-domain signal-processing modules at the
level of oscillator, filter, envelope, and so on.

The goal of OEDIT, our orchestra editor, is to foster
ad hoc experimentation through the medium of high-
level symbolic programming, in such a way as to exploit
speed and directness of human—machine interaction as
in investigative utility. However, the use of graphics
is not the simplifying step it might seem to be. Rep-
resenting arbitrary signal-processing networks in this
way makes it difficult to specify both signal flow and

Fig. 1. Musical score editor: manipulating data on a screen
in standard music notation.

246

programming flow of control. The ideal that we are
seeking, of course, is something that is both a signal-
processing language and a programming language.
Unfortunately the characteristics of the two are not
identical, as we will see by examining some program-
ming concepts in more detail.

% J. 3. Bach invention #6 %
orchestra |

top oscin

bot oscin

rev reverb 1
functions {

f1 0 25 10 1

£2 0256 101 1 01

i3 0 3

]

score {
$top #fcgd t60

r16 ='e8ddni6_/
dne8 balé /
ag8f g32a/
g16 b32a b16 g32f gl6 es2d/
edfg/
abe/
d#8 elbdcb/
et,er/
r16'g8eci6_/
c e32d elbca#f /
£'fadbl6 / T
b .d32c d16 b g e_/
e 'e8c af#16_/
,a# 'g8f el6_/
e d8c bi6/
"af#16 e%2d e16 a32g al6 b32a/
b16,dc'b,c’a#/
b8 r16 bdf/
t60
b8 r16 bfd/
bfdb r8/
t50

$bot #fcgd

=,e8fg/

abe/

d# etédcd/

e8,e r/

r16 e8d dn1é_/

dn c8b al6_/

a g8f g32a/

816 b32a bl6 g32f gl6 e32d/
e8 ‘'ce/

fagc/

v,d"bd/

egb/

,,c'ce/

fga#/

b,eg/

f16'caffc,e'c/

,d8ef/

,b16 'b32a# b16 f32e f16 d32¢c/
d16 f32e f16 d32c d16 b32a#/
b4,08/

(a)

fnvenuo 6.

ﬁwf\
i

Fig. 2. Alphanumeric encoding scheme: compact yet unnat-
ural.

DIGITAL AUDIO

3 A FLEXIBLE AUDIO PROCESSING LANGUAGE

A mature software system such as Music 11 can be
seen to have two main phases of operation, input pre-
processing and run-time operation (Fig. 4). Input mo-
dalities may be enhanced by front-end graphics, or
remain limited to the standard text-editing capabilities
of the host system. Two text files must be created, an
orchestra of signal-processing instruments and a score
that invokes these instruments at specific times with
parameters of frequency, loudness, and so on. Both
files will be subject to preprocessing, and can therefore
have a syntax convenient to the user. The orchestra
language, for instance, will attempt to function in two
ways. First it will act as a signal-processing language,
invoking the time-domain audio operations (oscillators,

Fig. 3. OEDIT, an orchestra signal-processing network editor:
moving a new oscillator into position.

APPLICATIONS

filters, envelopes) and passing the signals between op-
erations (audio patching). Second it will serve as a
programming language, with threshhold detection and
conditional branching (program flow of control). A
good orchestra language will attempt to provide clear
semantic implications on both counts. It is then the
task of the orchestra translator (OTRAN in Music 11)
to convey these details to the run-time system.

The signal-processing primitives in an orchestra
language should exhibit both breadth and depth. There
should be a full complement of elementary operations
(such as delay one sample), allowing the user to perform
primitive signal-processing operations. There should
also be numerous high-level modules (filters, envelopes)
enabling the researcher to avoid the clutter of detail
when appropriate. As an additional principle, the low-
level primitives should enable the fabrication of any
high-level module (for example, phasor plus table
lookup makes an oscillator), with the result that there
are no “black boxes” in the language. The second-
order RESON filter in Music 11, for example, can al-
ternatively be fabricated from existing language prim-
itives (Fig. 5).

Following orchestra translation and massaging of the
score file (for tempo warping), the two resultant files
are directed to the orchestra loader and music monitor,
respectively (Fig. 4). Atrun time the loader first places
into main memory a description of each instrument in
the form of a transfer vector (sequence of processing

- operations) and a data-space descriptor. No instruments

actually exist at this time. Next the music monitor begins
reading the score file: each time a new note is encoun-
tered, it requests the loader to provide an instance of
the instrument (that is, to allocate and initialize some
data space), and to mark that instance active. Signal

| | =
I MUSIC - 11 l =
S -———— ORCH OTRAN
l FILE I DS 1
| | b5 2
| Standard | ORCH = /D5 n
Text Editors LOADER .~
_ | | ~...] LoAD | oscCIL
| | .=~ |MONIT | RESON
music-11| .*"|ADSYN | ETC
| | MONITOR [.** [SNDIN [SNDOUT
< > | ANY
% 1 Jumeric R SORTED
2 | SCORE TEMPO SCORE Ssound
:é | (ascii) I I (ascii) Files
| I
Special |
Device | Preprocessing Run Time
Inputs '

Fig. 4. Phases of Music 11: flexible signal processing on small machines.

DIGITAL AUDIO

247

VERCOE

processing and audio synthesis can now proceed, and
at a fixed pace, typically at 40 or 50 kHz. All the while
new event objects are created and old ones retired, in
response to the event list found in the score file. The
resulting stream of digital audio samples is stored on
a large disk for audition at the end of the run.

The observant reader of the above account may well
have noticed that there could exist more than one in-
stance of a particular instrument at any one time. Mul-
tiple copies of an instrument are created simply by
allocating multiple instances of the data space. The
technique of using reentrant code for all signal-pro-
cessing'modules in Music 11 has the effect of allowing
the score to call for any number or any combination of
instruments without the orchestra requiring prior
knowledge. The flexibility and the independence this
gives to both orchestra and score are important to the
creativity and investigative impulse of the composer
or researcher. This condones flirting with the likes of
seventy-six trombones at one moment, a thousand vi-
olins at the next. The instrument copies in Music 11
actually move around in data memory whenever the
profile of active instruments is changed. This permits
an efficient form of data-space management, allowing

considerable signal-processing flexibility on a relatively

small computer.

4 PROGRAMMING A RESEARCH PROBLEM

To see how Music 11 may be used for audio research,
let us consider the problem of defining and creating
acoustic ambience. Current literature indicates that we
should pay particular attention to early reflections, since
these determine echo density growth patterns and also
provide listeners with perceptual cues about the space
they believe they are in. To create this illusion, we
must model at least the following:

1) The direct signal

2) Initial and continuing recursive wall reflections

3) Initial reflections from specific objects.

Current literature is helpful on the geometry of source
imaging. It also documents the effects of wall absorp-
tion, air absorption, and so on, and we should use these
data in our simulation.

We now approach the simulation problem by sampling
the ambient space in several directions around the lis-
tener (Fig. 6). For each direction we create a model of

instr 1 ; instrument with fabricated reson:

lat init o] i ;jclear feedbacks

la2 init 0 ; at start enly

i3 = exp(-6.283185 * p6 / 10000) ; set coef 3

i2 = 4*i3%c0s(6.283185 * p5/10000)/(1+i3) ; set coef 2

it = (1-13) * gqrt(1 - 12%i2/(4%i3)) ; set ceef 1

al rand ré4 ; seource signal

la3 = la2 ; feedback 2

la2 = lat ; feedback 1

lat = it*al + i2%1a2 - i3*1a3 ; 2nd order difference’ eqn
out lat ; output to chnl-v
endin .
instr 2 ; this instr does same as above

at rand P4 ; source signal

at resen al,p5,p6,1 ; 2nd order recursive filter
out al

; output to chnl 1t
endin .

Fig. 5. Second-order recursive filtering, built from language
primitives or invoked as a higher level module.

248

the important effects. The size of objects in the room
and their acoustic shadows will result variously in low-
pass and high-pass filtering effects. Signals traveling
from one directional sample to another will incur time
delays that depend on the distance between those points.
The activity in each sample direction can be modeled
by a pipe into which each simulated reflection is added
at some distance from the output end. The idea of a
pipe with arbitrary add-ins allows us to model the re-
flections uniquely for any number of source locations
in the simulated space. The community of pipes, con-
nected so as to send audio samples to one another,
creates a signal-processing network that may be viewed
as a matrix of comb filters. The feedback coefficients
necessary to achieve a smooth and stable response can
be chosen with the help of matrix algebra.

In the Music 11 representation (Fig. 7) PIPDEF de-
fines a pipeline, PIPAD represents signal add-in, and
PIPRD reads the signal as it spills out the end. PIPADV
is a signal add-in whose distance is time-varying, in
accordance with the slower control signal k;. The pa-
rameter values, filter settings, and delay times are de-
rived from actual modeling of a source and listener
position. .

A Music 11 ambience instrument such as this is not
necessarily handwritten, but can be generated by a

- higher level program called ROOM. With its help we

are able to specify the dimensions of a rectangular
room, the positions of reflective objects inside the room,

-several different source locations, and a listener po-

sition. The source locations are excited with an acoustic
signal, and the reverberant response of the stimulated
room is then generated in four channels.

One aim of this particular model is to determine a

‘SOURCES

Fig. 6. Four-channel ambience simulator. Ac¢tivity in each
sample direction is modeled by a pipe, into which each sim-
ulated reflection is added at some distance from the output
end. The community of pipes creates a network that functions
as a matrix of comb filters.

DIGITAL AUDIO

R T

suitable acoustic ambience generator for a new media
theater, part of a new building devoted to arts and
media technology currently under construction at
M.I.T. There have been many attempts to gain control
over acoustic listening environments. The Espace de
Projection at IRCAM, Paris, actually uses moving wall
panels to change the reverberant characteristics of the
performance space. We expect that the advent of low-

.cost digital technology, coupled with methods as above,

will allow us to find a completely digital solution to
this intriguing problem.

5 FINDING THE RIGHT HARDWARE FOR AUDIO
RESEARCH

Using Music 11 for research in an audio lab envi-
ronment requires a medium-sized PDP-11. Although
the software will run on-any PDP-11, the cheaper LSI-
11 versions are too slow for active research. A typical
ambience simulation of 10 s of sound may take 5 min
to compute on a PDP-11/50. All Music 11 computation
is done in 32-bit floating point to simplify amplitude
scaling problems and to encourage experimentation.

~ Ambience simulation will tend to use all 16 bits of

memory address space so that, for 16-bit computer
systems, separate instruction and data space is advis-
able. For those who might contemplate a system today,
a PDP-11/44 computer with 300 Mbyte of disk space,
four channels of quality analog-to-digital and digital-
to-analog conversion, and the Unix time-sharing system
with- Music 11 would provide the cleanest, fastest route

instr 13 ; AMBIENCE SIMULATOR

CHNL1: pipdef .069 ; DELAY SPACE, CHNL 1

IF SOURCE INACTIVE,
SKIP SQURCE AND
EARLY REFLECTIONS

if gkt = O kgoto FEEDBACK1

outqt gatl/9.2 SEND SOURCE/DISTANCE

TO SPEAKER 1

" at reson gai*.024, 214, 200, 1
pipad at, .0017

; EARLY REFLECTIONS:
DIRECT MODELING OF
H ROOM RESPONSE,

at reson gal*.027, 435, 278, t
pipad at, .0097
H INCLUDING WALLS
al atone gal*.03, 600 ; AND OBJECTS
pipad al, .0162

at tone gal*.043, 9800
pipad at!, .026
FEEDBACK1 : ; LATE RESPONSE:
3] randi .001, 3.1, .06 H RECURSIVE MODELING
pipadv .7#(la2 + 1a3), .068+k1 ; OF AMBIENCE WITH
H RANDOM FLUCTUATION
at piprd ; READ PIPE 1
outqt al H SEND TO SPEAKER 1
CHNL2:
CHNL3: ; DITTO CHANNELS 2,3,4
CHNL4:
AIR ABSORPTION:
lat tone at, 14000 LOWPASS FILTER

ALL SIGS PRIOR TO
NEXT FEEDBACK

la2 tone a2, 13000

endin

Fig. 7. Music 11 code for the ambience simulator. Parameter
values, filter settings, and delay times are derived from actual
modeling of a source and listener position.

DIGITAL AUDIO

APPLICATIONS

to a ready-made research environment.

At some later date, emerging new hardware will favor
other solutions, including real-time processing. Since
music lends itself to processing in arrays (as is done
in software in both Music 5 and Music 11), it is possible
to implement real-time synthesis on standard array
processor hardware. In 1979 the M.L.T. studio acquired
a small but very fast array processor, an Analogic
AP400. This is a 24-bit fixed-point machine with a
computation rate approaching 10 million multiply-adds
per second. Because it was designed for fast-Fourier-
transform work, its potential for time-domain processing
might at first seem only marginal, but we have managed
to implement a substantial portion of Music 11 on this
device. It can now be invoked to do such things as
sound-test a Music 11 instrument in real time with
parameters controlled by slider pots, or add reverber-
ation to a sound file in real time during digital-to-analog
conversion. The recently announced AP500, with float-
ing point and flexible control processing, appears
even better suited. The combination of a microproces-
sor-based personal computer with an array processor
of this sort would provide a flexible, cost-effective tool
for personal real-time audio research. We are beginning
to use such a system at M.I.T.

Recent advances in the art of connecting custom mi-
croprocessors suggest other possible audio processing
structures for the future. Concepts such as the butterfly
switch arrangement, recently developed by Bolt Beranek
and Newman for manipulating voice data channels on
the ARPANET, have reduced multiprocessor intercon-
nection problems to manageable proportions. If packet
communication of audio signals can provide the gen-
erality required of a good music processor, then such
an arrangement could prove very useful to future real-
time audio processing.

Other alternatives include custom very-large-scale
integration, tailored to the specific needs of quality
audio processing and exploiting massive computational
parallelism. At least one research program is currently
under way to determine the kind of multilevel control
structure that would be necessary to coordinate and
manage such parallelism in acoustically significant and
musically meaningful ways.

6 FUTURE NEW INSTRUMENTS

Music processors of the future will likely be re-
sponsive to human control in a variety of gestural and
acoustic input modalities. There will be whole classes
of new instruments, some for studio use, some for stage
use, and others for the home market. We could even
imagine a new amateur music-making activity, not de-
pendent on the acquired dexterity of playing a two-
keyboard 64-button home organ, yet more artistically
demanding than merely selecting an LP from a shelf.
The user would “‘orchestrate’ an existing score by se-
lecting and assembling the timbral and spatial attributes
for a personalized home-audio performance.

Participating in a musical performance with such
high-level decision making would be quite desirable

249

VERCOE

to amateur music lovers. For this activity to result in
sounds that are as aesthetically effective as those of
commercial productions would require that the large
computational loads (about 200 million multiply-adds
per second) be managed at prices that appeal to the
consumer market. Representation of current signal-
processing methods in very-large-scale integration will
of course hasten that day. Equally effective will be the

discovery of new signal-processing methods that con-
centrate on the perceptually important aspects of music
synthesis. That area of research is receiving much at-
tention right now, and the skills are moving almost as
rapidly as the supporting technology. To those of us
in the field of computer audio research and computer
music composition, the potential of digital audio seems
very large indeed.

Barry Vercoe was born in New Zealand and gained
degrees in music and in mathematics from the University
of Auckland. Active as a choral conductor and com-
poser, he came to the U.S. in 1962 to study composition
with Ross Lee Finney at the University of Michigan,
where he completed a doctorate.

After teaching at Oberlin Conservatory, he was Ford/
CMP composer-in-residence in Seattle-Tacoma during
1967-68, and went on to do research at Princeton Uni-
versity in the area of digital audio synthesis. After
teaching briefly at Yale University, he joined the faculty
at M.I.T., where he founded the Experimental Music
Studio in 1973.

Dr. Vercoe is currently Associate Professor of Music

THE AUTHOR

and Technology at M.I.T., and an associate member
of the Laboratory for Computer Science. His Music
360 and Music 11 digital sound synthesis languages
are in worldwide use. He has received awards from
the National Endowment for the Arts, the Massachusetts
Council on the Arts and Humanities, and the Guggen-
heim Foundation, and has served on the National Ex-
ecutive Committee of the American Society of Uni-
versity Composers. In 1976 he organized the First
International Conference on Computer Music, in con-
junction with the ISCM World Music Days festival in
Boston, and has served as U.S. advisor to the UNEscO
Joint European Studies Commission on Technology in
the Arts.

250

DIGITAL AUDIO

