Extended Csound
Barry Vercoe, Media Lab, M.I.T., bv@media.mit.edu

The realtime performance capacity of Csound has been
greatly extended for efficiency and ease of use.

At the ICMC in Glasgow (1990), I announced and
demonstrated a new release of Csound® that was tailored
to realtime interactive audio synthesis [Vercoe & Ellis,
1990]. Since that time it has enjoyed widespread use, and
has also been extended in various directions by
independent users who have sensed a personal need.

User-defined ‘extensions have been an important
component of the Csound philosophy; they provide
fertile ground for users who desire to grow their own
operations. However, a difficulty arises in there being no
practical way to include every individual idea for the
reliable benefit of all. While most users have exploited
the openness of Csound's table-driven language compiler
to add their own opcodes and audio-processing modules
(see "Adding your own C-modules to Csound" in
[Vercoe, 1995]), others have chosen to modify the
original source code for their own special use. And while
most changes are informed and enlightened extensions
that clearly serve specific needs, it is difficult to maintain
a "dictionary of common usage" that is also a quick and
stable ready-reference for today's hurried composer.
Moreover, while I sometimes found the time to review,
test, and adopt some of these as suitably robust and
reliable additions to the standard distribution (with
gratefully acknowledged help from John Fitch at Bath), I
have found it daunting to keep up this testing and
rewriting while trying to honor my own visions and
directions. It is no secret that I eventually stopped
reading the boards.

As some have. guessed, 1 have not been inactive. The
purpose of this paper is to outline the general direction of
Csound's recent development, to demonstrate what this
can offer the user, and to describe a format that will
hopefully increase its general usefulness and its
individual flexibility.

1. Recent Directions

Given the realtime performance additions of 1990, one of
the most compelling extensions has been to embrace
some of the current practices of MIDI (both General and
GS), and to do this without wrapping Csound in the
straightjacket of commercial synth-think. What we can
first learn from the music industry is the importance of
quickly changing the functionality of a predefined
instrument. Such parameterization has long been a
favorite province of computer music instrument design,
but its control and switching has generally been vested in
awkward score-file pfields and expensive in-line
conditionals. A recent Csound addition is a new class of
data called v-variables (v1, v2, v3,..). These are either
string-set, preset, or program set variables whose values
can be modified or invoked at times independent of note
- events. A set of v-values that determines the character of
an otherwise generic instrument is called a program, and

its variables are normally gathered together in a set-up
statement performed during Instr 0 initialization:

pgminit pgmnumber, ivall, ival2, ival3,

The values are I-time variables that have usually been set
by other actions, such as automatic loading and
numbering of disk-resident function tables:

ival2 ftload "samples/pianoF#3"
ival3 = ftlptim(ival2)

or perhaps by an M x N array representing several of
these:

ival3 ftsplit 3,2, 0,ipnol, 58,ipno2, 65,ipno3

V-variable programs are associated with instrument
templates and their instrument numbers by the sequence:

instr 1,2,3,4,5
vprogs pgmnol, pgmno2, pgmno3

which says that pgmno2 (for instance) can grab any free
instrument in the given list. A "grab" can occur at any
time during a performance; it is called a "program
change", and is also the Csound response to a command
by that name arriving on any MIDI channel from either a
file or a MIDI device (e.g. a sequencer or a keyboard).
There can be as many programs simultaneously active as
there are instruments to service them; and in the Csound
tradition there can be any number of active copies of
each program-defined instrument.

As evident above, stored function tables can now be
defined and loaded from within the orchestra. This is
typically done at orchestra init time in the header (instr
0), but can in fact be scheduled by placing them inside
instruments. The repertoire is small, but of the form:

il ftgen 0,0,1024, 10,1
i2 ftgen 0,0, 0, 1, "samples/pianoF#3"
i3 ftload "samples/pianoD#5"
ftscale i2,6
i4 fistep 0, i2, 60, i3

The first shows how any Csound GEN routine can be
invoked in this way, the second and third will perform
similar loading, the fourth will rescale one of these (for
balance), and the last will create a step function (like
GEN17) for fast mapping of things like keyboard and
drumset splits. All of these leave the table number
unspecified; this will be automatically assigned (from
101) and the symbolic references serve to free the user
from previously painful checking. Global symbols like
gil would allow direct reference from other instruments.

On another front, there have been additions to the
sensing and control repertoire. The spectral data types
have been revised and extended to include a robust pitch
tracker specptrk, which uses spectral templates to follow
lines in some polyphonic contexts. A less robust but

much more fun tracker is imbedded in a harmonizer
module harmon. This has the ability to follow your voice
and add formant-preserving copies either in parallel or
according to knowledge-based guides.

An area I hope to encourage is that of run-time
interactive event generation. A Csound orchestra can
now be repetitively invoked from a Cscore program, and
both score-format and MIDI-format events can be thrown
at a running orchestra from timer based co-processes. I
expect to spend much additional time in this domain.

2. Playgrounds

The long-term potential of realtime music synthesis with
auditory-based sensing and control is difficult to guage
and anticipate. Although modern computers are on the
brink of providing enough horsepower to make this
really interesting, the industry has not seen fit to
automatically provide audio I/O with the sound quality
we need. While I am impressed with the power of my
new Indigo 2, I am frustrated that the audio quality has
not kept pace.

I have been fortunate to gain the cooperation of a major
DAC manufacturer who cares about these things. Analog
Devices (Norwood MA) is also the manufacturer of the
industry's currently favorite DSP, the 21060 SHARC
(rated at 120 megaflops), and I have found the
combination of high-quality audio and heavy horsepower
an appealing pair. With their dual interests nicely
matching my own needs, I have found ADI's
experimental boards to provide a supportive environment
for Csound exploration, and many of the innovations
described above had their birth and gained their maturity
on these platforms. Fortunately, the SHARC C-compiler
generates efficient and robust DSP code, so there has
been no need to hand-compile any of the Csound you
know so well. However, when really pushing the
envelope of realtime performance of some of my
experimental ideas,] have sometimes found additional
horsepower useful, with the result that my own
playground is quite strewn with assembler-coded
accelerators of flangers, chorusers, and the like. At some
future time when off-the-shelf computers provide similar
levels of power and sound quality, these Csound
experiments will migrate to fully portable C code. But in
the meantime this is my favorite playground.

Since everyone deserves a playground, 1 have given
thought to how individual innovation can be supported in
a language that also tries to provide a standard. The "add
your own C-module” concept is not wrong; it is just
impractical to maintain. I have therefore recently split
Csound into three parts, with a table-driven translation
associated with each part. Part I is the standard public
Csound, including the syntax checkers, the orchestra
translator and loader, the music monitor and MIDI
manager, and the standard opcode repertoire stored in

entryl. Part II is my experimental playground, with
modules in constant change, sometimes in DSP
assembler, and their non-stationary opcodes stored in
entry2. Part III is the experimental playground in which
anybody else can float their own opcodes in entry3. A
standard distribution will comprise all three entry
modules, with entryl complete and entry2 and 3 unfilled.
Individuals can add their own modules to entry3, can
post and exchange their ideas with others, and generally
spread their innovations around. Some individuals may
get copies of entry2 opcodes (given the required
hardware), so as to exploit my realtime developments; an
entry2 user could also participate in entry3 exchanges.
Over time there will be a natural migration of entry2 and
entry3 modules to the entry1 standard set.

Meanwhile, the speed and audio quality of custom
hardware has inspired a raft of experimental
developments. In the MIDI area, MIDI files are
preprocessed to gain forewarning of program changes
and drumset keylists, enabling Csound to preload all
wavetables that will be required before synthesis begins.
The information is conveyed to Csound via a custom
sysex imbedded in the Format 0 MIDI file. And whereas
normal MIDI is limited to 16 channels per cable, port, or
MIDI stream, Csound recognizes up to 6 virtual ports
(maximum capacity 96 channels) over a single input
device. Further, since musical affect and sensitive
performance is primarily conveyed through MIDI
controllers, their values (0 - 127) are automatically
mapped to a more appropriate range; Csound instruments
can reference them symbolically as cl, c7, c10, etc.
within the incoming channel. These and similar
innovations have proven to provide efficient
communication and control in realtime performance
situations.

The hardware supporting these experiments has been
custom boards with a SHARC DSP, high quality audio
1/0, memory and host interface. The first was an ISA
card, heavily loaded with SRAM and DRAM,; the latest
is a PCI card which leaves wavetables on host DRAM
and accesses these during performance over PCI DMA.
Because this is such an inexpensive Csound accelerator, I
am hoping that Analog Devices will make these boards
available to a wider community.

3. References

Vercoe, B. & Ellis, D. "Real-Time CSOUND: Software
Synthesis with Sensing and Control," ICMC
Proceedings, Glasgow (1990), pp. 209 - 211.

Vercoe, B. Csound: A Manual for the Audio Processing
System and Supporting Programs with Tutorials. M.1.T.
Media Lab, 1995.

Csound is a Registered Trademark of the Media Lab, M.LT.

