Foreword

Barry Vercoe

It is indeed a pleasure to peruse this volume, to see so many composers and authors
joined in a similar purpose of making their insights and experiences public and to
feel that the computer music community will surely benefit from such broad-based
disclosure. It is never easy to have more than one living composer present at a single
concert of their collected works, and to the extent that these contributions represent
composing time lost and thoughts and insights given away free, the richness and even-
ness of this volume suggests that these composer/authors must all have been ensemble
performers first. Of course, every ensemble has its taskmaster, and I stand in awe of
what Richard Boulanger has done to bring this one to the concert stage.

This field has always benefited most from the spirit of sharing. It was Max Ma-
thews’s willingness to give copies of Music 4 to both Princeton and Stanford in the
early 1960s that got me started. At Princeton it had fallen into the fertile hands of
Hubert Howe and the late Godfrey Winham, who as composers imbued it with con-
trollable envelope onsets (envlp) while they also worked to have it consume less
IBM 7094 time by writing large parts in a BEFAP assembler (Music4B). Looking
on was Ken Steiglitz, an engineer who had recently discovered that analog feedback
filters could be represented with digital samples. By the time I first saw Music4B
code (1966-1967) it had a reson filter—and the age of subtractive digital sound de-
sign was already underway.

During 1967-68 I wrote a large work (for double chorus, band, string orchestra,
soloists and computer-generated sounds), whose Seattle Opera House performance
convinced me that this was a medium with a future. But on my arrival back at Prince-
ton I encountered a major problem: the 7094 was to be replaced by a new machine
called a 360 and the BEFAP code would no longer run. Although Godfrey responded
by writing a Fortran version (Music4BF, slower but eternally portable), I took a
gamble that IBM would not change its assembler language again soon, and wrote
Music 360. Like Max Mathews, I then gave this away as fast as I could, and its



XXViii

Foreword

super efficiency enabled a new generation of composers with limited budgets to see
computer music as an affordable medium.

But we were still at an arm’s length from our instrument. Punched cards and batch
processing at a central campus facility were no way to interact with any device, and
on my move to the Massachusetts Institute of Technology in 1971 I set about design-
ing the first comprehensive real-time digital sound synthesizer, to bring the best of
Music 360’s audio processing into the realm of live interactive performance. After
two years and a design complete, its imminent construction was distracted by a gift
from Digital Equipment Corporation of their latest creation, a PDP-11. Now, with a
whole computer devoted exclusively to music, we could have both real-time pro-
cessing and software flexibility, and Music 11 was the result.

There were many innovations in this rewrite. First, since my earlier hardware de-
sign had introduced the concept of control-rate signals for things like vibrato pitch
motion, filter motion, amplitude motion and certain envelopes, this idea was carried
into the first 1973 version of Music 11 as k-rate signals (familiar now to Csound
users). Second, envelopes became more natural with multi-controllable exponential
decays. Indeed, in 1976 while writing my Synapse, for Viola and computer, I found
I could not match the articulation of my soloist unless I made the steady-state decay
rate of each note in a phrase be a functional inverse of the note length. (In this regard
string and wind players are different from pianists, who can articulate only by early
release. Up to this time we had all been thinking like pianists, that is, no better than
MIDI.) My envlpx opcode fixed that.

This had been my second gamble that a particular machine would be sufficiently
common and long-lived to warrant assembler coding, and Music 11’s efficiency and
availability sustained a decade of even more affordable and widespread computer
music. Moreover, although the exported code was not real-time, our in-house experi-
ments were: Stephen Haflich connected an old organ keyboard so that we could play
the computer in real-time; if you played something reasonably metric, the computer
would print out the score when you finished; if you entered your score via our graphi-
cal score editor, the machine would play it back in real-time (I made extensive use
of this while writing Synapse); if you created your orchestra graphically using Rich
Steiger’s OEDIT, Music 11 would use those instruments. Later, in 1980, student
Miller Puckette connected a light-sensing diode to one end of the PDP—11, and an
array-processing accelerator to the other, enabling one-dimensional conducting of a
real-time performance. Haflich responded with a two-dimensional conducting sen-
sor, using two sonar cells from a Polaroid camera. This was an exciting time for real-
time experiments, and the attendees at our annual MIT Summer Workshops got to
try many of these.

Meanwhile, my interest had shifted to tracking live instruments. At IRCAM in
Paris in 1982, flutist Larry Beauregard had connected his flute to DiGiugno’s 4X



XXIX

Foreword

audio processor, enabling real-time pitch-following. On a Guggenheim at the time,
I extended this concept to real-time score-following with automatic synchronized
accompaniment, and over the next two years Larry and I gave numerous demon-
strations of the computer as a chamber musician, playing Handel flute sonatas, Bou-
lez’s Sonatine for flute and piano and by 1984 my own Synapse II for flute and
computer—the first piece ever composed expressly for such a setup. A major chal-
lenge was finding the right software constructs to support highly sensitive and respon-
sive accompaniment. All of this was pre-MIDI, but the results were impressive even
though heavy doses of tempo rubato would continually surprise my Synthetic Per-
former. In 1985 we solved the tempo rubato problem by incorporating learning from
rehearsals (each time you played this way the machine would get better). We were
also now tracking violin, since our brilliant, young flutist had contracted a fatal can-
cer. Moreover, this version used a new standard called MIDI, and here I was ably
assisted by former student Miller Puckette, whose initial concepts for this task he
later expanded into a program called MAX.

On returning to MIT in 1985 it was clear that microprocessors would eventually
become the affordable machine power, that unportable assembler code would lose
its usefulness, and that ANSI C would become the lingua franca. Since many parts
of Music 11 and all of my Synthetic Performer were already in C, I was able to ex-
pand the existing constructs into a working Csound during the Fall of that year.
Once it was operating, I received additional help from students like Kevin Peterson
and Alan Delespinase and later from Bill Gardner, Dan Ellis and Paris Smaragdis.
Moreover, thanks to the internet and ftp/public, my continuing wish to share the
system even as it gained further maturity would take even less of my time.

The step to Real-time Csound was a simple one. With the right constructs already
in place owing to my long-time interest in interactive performance, and computers
now fast enough to do floating-point processing on a set schedule, I only had to use
the DAC output pointer to implement blocking I/O on a fine time-grid to achieve
tight interactive control. I took that step in 1990, and demonstrated it during the
ICMC paper Real-time Csound: Software Synthesis with Sensing and Control (Ver-
coe and Ellis 1990). For me, the only reason for real-time is controllable perfor-
mance, and Dan Ellis illustrated this by controlling a Bach synthesis by tapping
arbitrary drum patterns on the table that held the microphone. The sensing also intro-
duced Csound’s new Spectral Data Types (see my chapter in this volume). With a
sufficiently powerful machine (at the time a DECstation), both sensing and con-
trolled high-fidelity synthesis had finally become possible.

But not all of us can command such a powerful central processor and today’s inter-
est in deft graphical control and graphical audio monitoring can often soak up the
new cycles faster than technology creates them. At the 1996 ICMC in Hong Kong,
I demonstrated an alternative architecture for both software and hardware with



Foreword

Extended Csound. This is the first stage of an orderly progression towards multi-
processor fully-interactive performance. In the current version, Csound is divided
between two processors, a host PC and a DSP-based soundcard. The host does all
compiling and translation, disk I/O, and graphical-user-interface (GUI) processing,
such as Patchwork (editing) and Cakewalk (sequencing). The DSP does all the signal
processing, with sole access to the audio I/O ports; it also traps all MIDI input with
an on-chip MIDI manager, such that each MIDI note-on results in an activated instru-
ment instance in less than one control period.

The tightly-coupled multi-processor performance of Extended Csound has in-
duced a flurry of new opcodes, many of them tailored to the internal code of the
DSP I am using (a floating-point SHARC™ 21060 from Analog Devices). The new
opcodes extend the power of Csound in areas such as real-time pitch-shifting,
compressor-limiting, effects processing, mixing, sampling synthesis and MIDI pro-
cessing and control. Since this volume is not the place for details, the curious can
look at my paper in the 1996 ICMC Proceedings. I expect to be active in this area
for some time.

Meanwhile, the fully portable part of Csound is enjoying widespread use, and this
volume is a testament to the ingenuity of its users. Some are familiar names (Stephen
Beck, Richard Dobson, Brian Evans, Michael Clarke, John ffitch, Richard Karpen,
Jon Nelson, Jean Piché and Russell Pinskton) whom we have come to lean on out of
both habit and dependency; some are newer lights (Elijah Breder, Per Byrne Villez,
Michael Gogins, Andrew Horner, Alan Lee, Dave Madole, David Mclntyre, Hans
Mikelson, Michael Pocino, Marc Resibois, and Erik Spjut) we are attending to with
growing interest; others are fresh faces (Bill Alves, Mike Berry, Martin Dupras, Raj-
mil Fischman, Matt Ingalls, Eric Lyon, Gabriel Maldonado, and Paris Smaragdis)
likely to leave long-term images. The range of topics is broad, from sound design
using various synthesis and modeling methods to mathematical and signal process-
ing constructs we can learn from, and from compositional strategies using existing
Csound resources to some powerful lessons on what to do when what you need is
not already there. The whole is amply supported by CD-ROM working examples of
ports to other machines, user-interfaces, personal approaches to composing, and
most importantly, compositions that speak louder than words.

I am impressed and somewhat humbled by the range of thought and invention that
Csound has induced. Gathering all this energy into one place creates a singularity
that defies real measurement, but I am certain the effects of this volume will be
much felt over both distance and time. On behalf of the readers, my thanks to all the
contributors. Finally, my hat off to Richard Boulanger for all that composing time
lost (you should have known better), and my best wishes to Csound users as you
continue to redefine your own voice.



