A Network for Customizable + Reconfigurable Housing

Kent Larson
Principal Research Scientist
House_n
Director, Changing Places
MIT Department of
Architecture and Planning
MIT Media Laboratory
kll@media.mit.edu

Thomas J. McLeish
Research Assistant
House_n
MIT Media Laboratory
tmcleish@media.mit.edu

Tyson Lawrence
Research Assistant
House_n
MIT Department of
Mechanical Engineering
tyson_lQmit.edu

Deva Seetharam
Research Assistant
Physics and Media group
MIT Media Laboratory
deva@media.mit.edu

H. Shrikumar
Research Scientist
Physics and Media group
MIT Media Laboratory
shri@media.mit.edu *

Abstract

The housing industry of today produces
homes that are poorly prepared for the fu-
ture.

Rapidly changing demographics and re-
lated societal pressures will inevitably trans-
form the home into a center for preventative
health care, distributed energy production,
work, learning, and communication - requir-
ing us to rethink how we design and integrate
technology into our places of living. In addi-
tion, people have a powerful desire for their
places of living to reflect individual needs and
values.

The current housing development process,
however, discourages innovation and pro-
duces mostly low-grade, generic commodities.
It cannot efficiency respond to the unique re-
quirements of individual occupants.

We propose a strategy that may enable

* Authors names are listed in alphabetical order.

TThis work was done by Deva Seetharam and H.
Shrikumar while they were at the MIT Media Labo-
ratory.

customized, cost-effective, high performance
housing solutions. In this paper, we present
essential concepts for a building network that
is necessary to fully realize these goals.

We present the initial implementations of
building network called GSG 1.0 and cQt,
a language for programming distributed em-
bedded systems such as large-scale building
networks.

1 Introduction

A residential developer in Cambridge, Mas-
sachusetts recently said, "I would love to pro-
vide customized solutions - we could demand
higher prices - but customization results in
too much brain damage to be worth it.” There
are good reasons for this assessment.

The design process for a typical housing
development project can take many years.
Long before an individual occupant becomes
involved, governmental permitting and con-
struction bidding requires that key decisions
be made about unit layouts, fire alarm loca-

tions, electrical outlets, wheel chair access,
etc. With no individuals to design for, de-
velopers strive to hit the center of their mar-
ket. When a buyer finally enters the pic-
ture, their ”customization” choices are nec-
essarily limited to a few largely superficial al-
ternatives such as floor finishes and counter
tops. More fundamental customization, such
as room size, layout, or electrical access is
essentially reconfiguration of a finished build-
ing requiring time, complex coordination, and
disruptive operations.

To make customization practical, we pro-
pose the decoupling of the base building de-
sign, approval, and construction process from
the customization of individual apartments at
the time of sale. Implementation will involve
the following:

1. Chassis + infill. General Motors has
proposed a standard ”Hywire” chassis
across all of their models plus the mass-
customization of body components, in-
teriors, and electronics. Similarly, we
propose that buildings consist of an ef-
ficiently constructed building ”chassis”
that integrates structure, power, signal,
and other infrastructure plus customized
interior components that allow the oc-
cupant to tailor their interiors accord-
ing to their budget, needs, and values
[4]. This strategy will permit the cost
effective reconfiguration of interior com-
ponents. This builds on ”Open Build-
ing” concepts first developed by John
Habrakan over 30 years ago in the MIT
Department of Architecture [6].

2. Integrated sensing. The automotive, avi-
ation, and shipbuilding industries are
moving towards integrated modules sup-
plied by Tier 1 suppliers. Similarly,
we propose that interior components for
housing be integrated with a variety
of embedded technologies that are effi-
ciently installed in the controlled envi-
ronment of the factory. This will sup-
port, for example, the development of
affordable proactive health care environ-
ments containing hundreds of low cost
sensors, smoothing the transition of care
from the clinic to the home.

3. Design customization for non-experts.
Customization is only workable in pro-
duction housing if computational tools

assist in the design process and config-
uration since the expense of a skilled
specialist is prohibitive. Work is cur-
rently underway at MIT and elsewhere
that may be available to industry in the
near future [7].

4. Novel building networks. Customizable
and reconfigurable interior components
will require new approaches to building
networks. These networks must allow
control connections to be software bind-
ings rather than hardwired links, in order
to allow physical components to be easily
moved and reconfigured. Also, ubiqui-
tous sensing for health care, energy man-
agement, and other technology solutions
must be easily configurable, even by non-
experts.

It is important to note that we have not yet
built a building using this strategy. We are
studying the concepts and techniques using
models and other test implementations. In
this paper, we present our initial ideas, cur-
rent implementation and early observations.

The rest of this paper is organized as fol-
lows. We describe the architectural concepts
and components in section 2 and the building
control networks in section 3, current imple-
mentations in sections 4 and 5,related work
in section 6 and we conclude with discussions
and our plans for future work.

2 Background

The chassis+infill system mentioned in
Section [l] is fundamental to providing cus-
tomized, reconfigurable homes. Here is a de-
tailed description of how a building can be
constructed using chassis and infill.

The chassis is made up of beams and
columns. Columns are vertical and beams are
horizontal. As shown in Figure [T}, the chas-
sis provides heating, cooling and ventilation
with an air duct, electrical and data wiring
with raceways and an electrical track, while
also providing the building structure.

The infill is the walls, floors, and ceilings
of the home. The infill is the customizable
part of the system and allows the user to cus-
tomize the interior fit-out and exterior facade.
In addition, infill components may be easily
removed after construction to facilitate recon-
figuration.

Lineqr diffu

Air duci—8— b
Sensor pack——- \—an
b - //\'i } & Elwsation
G i 25 clatall of boit
tolarance slot
A
Track: for fioor units
{power and aignal) g
/] TN i l\ :
Removeble baam cover. 9] Flaghing
Pmrmmy_/ :
B mauiation Data raceway.
Finish elsments Roling shad 1

g7z Il (pansis and
ﬂmu;m ®
Bevviars (rainacrasn)

“Track for wall units
{poswer and signal

Figure 1: A detailed view of beams.

Figure [2 illustrates the steps involved in
constructing a house using chassis and infill.
Imagine that the house shown in Figure
is to be built (the floor plan is shown in Fig-
ure . Figure shows the construc-
tion sequence: First, the foundation with the
first story columns partially installed. These
columns are the beginnings of the chassis.
Second, most of the chassis have been fin-
ished as first story beams and columns have
been installed. Third, the chassis is com-
pleted and some infill wall and floor compo-
nents have been installed. Fourth, shows the
house almost complete. Infill roofing compo-
nents have been added as well as the second
story floor. All that remains to be installed
are the final infill wall components.

In essence, chassis and infill components
can be “plugged” together to build a house.
While the house is assembled, not only the
structure emerges, but also completely con-
nected data and power networks and a HVAC

distribution system.

Using the chassis+infill approach it might
be possible to easily construct and customize
houses. Furthermore, the houses could then
be easily reconfigured since most of the infill
wall panels can be moved as they don’t pro-
vide any structural support to the building.
For instance, if there are two rooms defined
by columns (a,b,c,d) and (c,d, e, f), the two
rooms could be merged to form one single
room (a,b,e, f) by removing the wall panel
joining the corners ¢ and d.

Conventional hardwired electrical connec-
tions are not suitable for these dynamically
reconfigurable buildings, as any change to the
physical structure would require affected por-
tions of the building to be rewired, probably
a complex task. Conventional wiring is labor
intensive and expensive, installing the system
during construction requires scheduling with
framing, drywall, and finishing. Modifying
the system after construction is complete is

(a) House

PN PN PN O

(b) Floor Plan

(c) Steps in Construction

Figure 2: An illustration of constructing a house using chassis and infill components.

even more expensive as it might require spe-
cialized labor and rebuilding of compromised
finishes.

We need novel wiring schemes to sup-
port reconfigurable buildings. The next sec-
tion presents these schemes and the enabling
building control networks.

3 Embedded Building Control
Networks

We need more “flexible” electrical net-
works; we are devising wiring schemes in
which the control connections between com-
ponents, such as lights and light switches,
are not hardwired but stored in software as
rewriteable bindings.

Every building component is equipped with
a microcontroller that provides the comput-
ing capacity for that component. The micro-
controller finds and maintains a list of other
components “connected” to the component
attached to that microcontroller. The com-
puting devices communicate with each other
using the data network available in the chas-
sis.

First, we present a few system require-
ments we have identified:

e Robust - Since building control is vital,
the system must be reliable and resilient
to a wide variety of failures.

e Intuitive User Interface - The system
should have convenient and simple user
interfaces.

e Self-maintaining - Since these net-
works would be used by untrained users,
the system must be self-maintaining.

e Size - The size of devices must be small
enough to be unobtrusive.

e Inexpensive - The circuitry and oper-
ations must not drastically increase the
costs of electrical networks.

Guided by these requirements, we have de-
signed a State-Coherence Protocol for dis-
tributed control. It consists of three layers,
named Get, Set, and Go, running on top of a
diminutive TCP/IP network. In the bottom-
up order, they are as follows:

1. GET - An idempotent transaction pro-
tocol, which ensures that control trans-
actions occur exactly once per interac-
tion, without race conditions, over-writes
or data corruption due to distributed ac-
tions.

2. SET - A coherence protocol, which op-
erates over GET, and brings together all
the nodes in a distributed control or co-
ordination context and ensures that they
operate in unison, with a distributed
consensus about the results.

3. GO - A concurrent programming lan-
guage for the application layer using a
distributed programming model based
on the concept of program devolution.
Devolution is an innovative distributed
programming technique that allows the
application designed to easily build com-
plex applications involving thousands or
even millions of nodes, without being
burdened with the need to program and
manage each node.

In the continued development of this
theme, we are developing systems to evaluate
our ideas and improve our implementations.
The next sections describe the current imple-
mentations - GSG 1.0 and c@t.

4 GSG 1.0

To explore our ideas of storing the control
connections as software bindings, we devel-
oped a building network system named GSG
1.0.

GSG 1.0 is a simple building control net-
work that operates on GET and SET proto-
cols. We made a few simplifications and the
resulting limitations are:

e System is implemented on a tiny mi-
crocontroller - PIC 16F84. This device
has very limited resources (1KB of code
memory, 64 bytes of EEPROM and 68
bytes of RAM).

e Reconfiguration of bindings has to be
performed manually either using an en-
hanced screwdriver or a desktop software
tool.

e The system uses a simple transport pro-
tocol. It is a broadcast network with no

routing functions and devices communi-
cate in a round-robin as determined by a
master device.

e Each device is assigned an 8-bit ID and
thereby limiting the number of devices
to 256. Also, a component can be con-
nected only to eight other components at
the same time.

We deliberately introduced these limita-
tions for two reasons:

1. We chose the tiny PIC 16F84 since we
are interested in studying how we can
implement systems using the least com-
puting resources. Also, authors have
had previous experience in implement-
ing complex systems on 16F84. In par-
ticular, one of the authors has already
successfully implemented a HT'TP server
[11] using PIC 16F84.

2. We wanted to keep the lower-layer proto-
cols and user interface simple in order to
focus on our application protocols - GET
and SET.

4.1 Hardware Details

For convenience, building components are
classified into input and output components.
Input components respond to user and envi-
ronmental events. Output components per-
form some function in response to those
events. A smart screwdrivell] is used as the
reconfiguration tool. For example, switches
and sensors are input components, and lamps
and fans are output components. Every input
and output component is assigned a 8-bit ID.
A block diagram of these components is given
in Figure

Every component is equipped with micro-
controller (PIC 16F84) based circuitry and
two status LEDs. Additionally, the input
components have two input ports - Add and
Remove and the output components have one
output port - Get.

4.2 Software Details

GSG 1.0 software can be classified into two
types - firmware that runs on microcontrollers
attached to the electrical components and the
remote administration tool.

IReferred to as just the screwdriver from now on.

Smart
Screwdriver

)

16F84 Input Component

D .
Green

Transfer| S 1ED
§5se e R o .
Py Add Remove i

Red
1ED

Output Component

D 9
Green
TED

O 16784
Get @
Red
LED

Contact Point

Figure 3: Block diagram of the hardware
components.

4.2.1 Firmware

The primary functions of firmware are event
management, connection management and
communication management.

e Connection Management

The screwdriver is used to make or break
the connections. For example, to con-
nect the switch (s1) and the lamp (I1), a
user would touch the Get port of the [y
(thereby pickup its ID) with the screw-
driver and drop off that ID at s for sy
to add the ID to its list of subscribers.

This module monitors the ports for con-
tacts with the screwdriver. If a contact
is made, an output component trans-
mits it ID to the screwdriver and an
input component receives a list of IDs
from the screwdriver. The input compo-
nent either adds or deletes the list of IDs
to/from its subscriber database depend-
ing on the contact port.

The input components maintain a
database of the output components that
are associated with them. As previ-
ously mentioned, the maximum number
of entries in the database is limited to
eight. That is, an input component can
be bound to a maximum of eight output
components.

¢ Event Management

The event management functionality
is implemented using the well-known

publisher-subscriber paradigm. The in-
put components observe user and en-
vironmental events and forward those
events to the subscribed output compo-
nents. The output components react to
those events as appropriate.

e Communication Management

The components are involved in
three types of communications: send-
ing/receiving IDs to/from screwdrivers,
event notifications, and responding to
network management messages.

The ID exchange messages are point-
to-point between the component and
the screwdriver. Components exchange
event management messages. The re-
mote administration tool (explained be-
low) sends management messages (via a
gateway) to read and alter the bindings
of the system.

4.2.2 Remote Administration Tool

A remote administration tool called GSGViz
is implemented in Java and it can be used to
modify and view connections of the building
network.

Every component is represented as a rect-
angle and the connections are represented as
a line from an input component to an output
component. A screenshot is shown in Figure
@

Users can make a new connection by draw-
ing a line from an input component to an
output component or break a connection by
deleting a line. GSGViz sends appropriate
creation or deletion messages encapsulated in
UDP packets to a gateway. The gateway
translates between UDP and GSG 1.0 pack-
ets.

5 c@Qt

GSG 1.0 has sixteen components. We
found that writing firmware for even sixteen
microcontrollers using the conventional meth-
ods to be tedious. We feel that there is need a
for language for programming networked em-
bedded systems such as large-scale building
networks as these systems have some unique
issues that are not addressed by existing lan-
guages. The unique issues are:

E& Get SetG..o_.
ET SET G..0.. Topology

Thermostat 1

' Thermostat 2

Upclotect ot Bon Fely 03 12:58:51 EGT 2003

Fan Coil2.

/

| coz Sensor

Heater

Figure 4: GSGViz Screenshot.

e Scale complexity - A building network
that supports a large building would con-
tain extremely large numbers of different
types of devices. For instance, a building
could contain several types of switches,
lamps, temperature sensors, motion sen-
sors and hundreds of each of those types
of devices.

e Interaction complexity - It would be nec-
essary for many devices to cooperate to
complete an application task. The com-
putations performed by individual de-
vices might be simple but the tasks com-
pleted collectively could be substantial.
For example, neither temperature sen-
sors nor fan controllers can complete
any significant application tasks on their
own. But, by cooperating, they can
maintain the desired temperatures in the
building.

Such collective computations would re-
quire a large number of network com-
munications. This is unlike conventional
computers where individual nodes per-

form sizeable tasks and coordinate with
other computers only occasionally.

e Spatial relations - Spatial and structural
relations between devices form a signifi-
cant part of the computations. For ex-
ample, a thermostat might need to inter-
act with all the fans/heaters in the same
room. It may not be possible to specify
the rooms before hand, as the rooms can
be restructured on the fly.

e Resource constraints - To minimize size
and cost of devices, it is important to
develop systems that are efficient along
multiple dimensions such as message,
time, and space complexities.

H. Shrikumar [I2] and Estrin et al [3] have
written in detail about the issues of massively
distributed embedded systems.

In an attempt to address these challenges,
we are developing a novel distributed pro-
gramming language called c@Qt.

5.1 Language Overview

Figure [5] shows a simple temperature con-
trol system written in c@t. In this appli-
cation, temperature sensors monitor the am-
bient temperature and if the temperature is
greater than or equal to seventy degrees, they
invoke the function activate on all the fans
that have more than 0.5 units of battery
power.

A c@t program consists of four parts:

1. Device Declarations - Specifies the de-
vices that are part of the system. The
temperature control system consists of
two types of devices - fans and sensors.

2. Cluster Declarations - Specifies the car-
dinality of every type of device in the sys-
tem. In this example, there is one cluster
called temp-control and it is comprised
of 160 sensors and 90 fan controllers.

3. Device Set Specifications - An embed-
ded languageﬂ that can be used to se-
lect a subset of devices from the set of
declared devices. Device set expressions
start with the @ operator. For exam-
ple, the variable temperature is defined
on sensors using the expression (@ (=
device sensor)).

4. Variables and Functions - As in the other
high-level languages, programs can be
composed using functions and variables.
However, they can be defined on and ref-
erenced from multiple devices using de-
vice set specifications. For example, the
function activate that is defined on fans
is invoked from monitor, a function de-
fined on sensors.

c@t employs the following techniques to en-
able programming networked embedded sys-
tems easily and efficiently:

e Collective programming - Multiple de-
vices can be programmed together “Sys-
tem as a unit” approach. The language
allows the programmers to view and pro-
gram the system as a whole without wor-
rying about the myriad devices and de-
tails.

Scale complexity is alleviated using the
devolution. In c@t, users program just

21t is similar to how regular expressions are em-
bedded in languages such as Perl and Awk.

a small number of virtual components
which get automatically realized into po-
tentially a much larger number of physi-
cal components. This is possible because
building networks are usually composed
of a small number of equivalent classes
of devices. The equivalence could be in
terms of the functions performed or their
properties or their current states. For ex-
ample, although the temperature control
application consists of 250 individual de-
vices, they can be classified into sensors
and fans based on their roles.

In c@t, devices can also be classified us-
ing their dynamic characteristics such as
current states. For instance, the func-
tion active is invoked on fans, but only
on those fans that have more than 0.5
units of battery power.

The c@t compiler takes a single sequen-
tial c@Qt program that describes the sys-
tem level behavior and produces code
files for each target device that is part of
the system. For this temperature control
application, the compiler would produce
250 code files that would execute on 160
sensors and 90 fans.

Associative Naming - Since the systems
would be composed of equivalent sets
of devices, communication would be
not between individual devices, but
between sets of them. To specify com-
munications between sets of devices,
Associative Naming Scheme (ANS)
has been developed. This is a naming
mechanism that can be used to name
devices based on their static character-
istics (type, role, position etc) or their
dynamic characteristics (current state,
variable value etc). For example, the
expression (@ (grammar relational)
(filter (and (= device fan) (<
hop 3)))) specifies fans that are within
three hops of the sensor on which this
code is being executed.

Declarative network programming - In
c@t, the interactions between devices
can be implemented without writing any
low-level networking code. c@t uses the
paradigms of function calls and variable
references to represent the interactions
between devices. Further more, these

(declare-device sensor ((processor “16F628")))
(declare-device fan ((processor“18F2320™)))
(declare-cluster temp-control ((sensor 160) (fan 90)))

(define (@ (= device sensor)
(define (@ (= device sensor)
(if (>= temperature 70)
(activate (@ (grammar relational)

...) float temperature 0)
...) void (monitor)

(filter (and (= type fan) (> battery 0.5)))))))

(define (@ (= device fan)
(set! RB7 #x80))

...) void (activate)

Figure 5: Sample Application.

transfers of control and data can be im-
plemented without writing any low-level
networking code. For instance, the func-
tion activate defined on fan controllers
is invoked by the function monitor de-
fined on sensors as seamlessly as invoking
a local function.

The machine code produced by the c@t
compiler is vertically integrated. That
is, the c@t compiler not only produces
the application code, but also every sin-
gle code component that runs on devices.

Complete details of this language can be
found in [I0].

6 Related Work

The last few years have seen several inter-
esting innovations in the field of networked
embedded systems. New embedded comput-
ing platform such as Smart Dust (or motes)
[13] and the operating system Tiny OS have
been developed [5]. For GSG 1.0, we could
have used Smart Dust and Tiny OS as our
computing platform. Similarly, we could im-
plement GET and SET as application layer
protocols on top of JINT [I4]. We didn’t, be-
cause we wanted to try building the system
using minimal computing resources, an ap-
plication specific runtime environment, and a
decentralized architecture. All the function-
ality of GSG 1.0 can be achieved using an X-
10 [15] based system. However, X-10 require
too many manual procedures to be of use in
larger buildings. For that matter, even GSG
1.0 is based on manual procedures. But, GSG
1.0 is just a prototype and we are working on
systems that wouldn’t require any manual in-

tervention.

The language c@t has been designed to
program networked embedded systems such
as building control networks. Networked em-
bedded systems are actually a specialization
of both distributed computing and parallel
computing systems. Due to the common
characteristics, several useful techniques can
be borrowed from distributed [8| 2] and par-
allel computing languages [9].

Despite the similarities, it is not convenient
to program distributed embedded systems us-
ing these programming languages as there are
two fundamental differences:

1. Spatial relations are usually considered
to be irrelevant in concurrent systems.

2. Most distributed languages are imple-
mented on top of pre-existing network
infrastructure. We believe that a de-
layered approach to programming em-
bedded systems would lead to more effi-
cient results. Please see [12] for our views
on application specific network proto-
cols.

Technically, many languages such as C,
Java and processor specific assembly lan-
guages can be used to program distributed
embedded systems. However, the task be-
comes tedious as these languages don’t have
the right tools, abstractions, and constructs.
As Abelson et al [I] remark, a programming
language is more than just a means for in-
structing a computer to perform tasks. The
language also serves as a framework with
which we organize our ideas about systems.
We believe that languages specifically de-
signed for programming networked embedded
systems are necessary to program these sys-
tems conveniently and reliably.

7 Discussions and Future Work

We are in the beginning stages of develop-
ing the building networks and related tools.
We know that the system needs several im-
provements before it can be deployed in real-
life situations.

Obviously, GSG 1.0 approach is not suit-
able for real buildings. The seemingly sim-
ple screwdriver and GSGViz can become te-
dious if the number of components involved
is large. Further, if the component is inacces-
sible, only GSGViz can be used to manage
that component. We are working on systems
where building components self-organize into
semantically correct networks.

Figure [6]shows an architectural scale model
we have built of a chassis+infill building sys-
tem that contains the next generation of
building network elements. In this model,
devices compute their own address based on
their physical location relative to a root node
(cornerstone). The infrastructure provides lo-
cational cues to the components. The compo-
nents use this information to establish mean-
ingful bindings.

We are also in the process of improving the
c@t language. Two important characteristics
of c@t are:

1. It assumes there is no operating system
available on target devices. That is, the
compiler not only produces the applica-
tion code, but also every single piece of
code (network support, memory manage-
ment, etc) that runs on those devices.

2. All the devices in the system are pro-
grammed together and their interactions
are specified in a minimally constrained
fashion.

We would like to take advantage of these
characteristics to produce more efficient sys-
tems, as the generated code can be tailored
to application needs and features.

For instance, the temperature control sys-
tem presented in Section [5.1] can be realized
in at least three of possible ways:

1. A centralized solution, where a powerful
device (if available) is chosen as a reg-
istry and all the other devices register
themselves with that registry. When the
sensors need to activate a fan controller,
they can search this registry to choose

10

an appropriate device and send an acti-
vation message.

2. A completely decentralized solution. Ev-
ery time there is a temperature change,
the sensors could search the neighbor-
hood for fans and notify the best one.

3. A hybrid solution, where many clusters
are formed with one fan, one heater and
multiple sensors. Each cluster can have
its own small registry and the sensors
can find a device in the neighborhood by
searching this local registry.

One could object to this extensive offline
analysis approach on the following grounds:

o As the cost of microcontrollers is going
down while the amount of available on-
chip resources is going up, is such an ex-
tensive analysis necessary?

We believe this approach useful. Com-
piler attempts to minimize space com-
plexity, time complexity and message
complexity. Due to continuous reduc-
tion in memory costs, space complexity
may not be of concern. However, re-
sponse time, channel bandwidth and bat-
tery power are critical resources and they
need to be used efficiently.

e Is this approach possible? Since the num-
ber of devices in a metworked embedded
system such as a large-scale building net-
works can be extremely high, would it be
possible to perform such an extensive of-
fline analysis?

We don’t know as we have not imple-
mented this system. We have two pri-
mary reasons to believe that this can be
possible:

1. There are several well-known algo-
rithm analysis and network analysis
techniques that can be utilized.

2. Workstations are becoming increas-
ingly more powerful.

We are working on improving the various
aspects of the language, protocol, algorithms,
and architecture to design building networks
that can be employed in real life reconfig-
urable buildings.

Figure 6: An architectural scale model with the next generation building network.

Acknowledgments

We would like to thank Changing Places
and Things That Think Consortia of the
MIT Media Lab for supporting this work.
We are indebted to Prof. Neil Gershenfeld,
Prof. Gerald Jay Sussman, Matt Hancher
and Zoe Teegarden for inspiring and informa-
tive discussions. We are grateful to Jennifer
Beaudin, Steve Form, Stephen Intille, Charles
Kukla, Ran Tao, Emmanuel Tapia and other
members of Housen for their constant sup-
port and encouragement.

References

[1] H. Abelson, G. Sussman, and J. Suss-
man. Structure and Interpretation of
Computer Programs. MIT Press, 1996.

H.E. Bal, Steiner, and
A_.S.Tanenbaum. Programming lan-
guages for distributed computing
systems. ACM Computing Surveys,
21(3):261-322, September 1989.

J.G.

D. Estrin and et al. FEmbedded, Ev-
erywhere: A Research Agenda for Net-
worked Systems of Embedded Comput-
ers. Computer Science and Telecommu-
nications Board, 2001.

Partnership for Advancing Technol-
ogy in Housing (PATH). Whole-house

11

[10]

and building process redesign year one
progress report. Technical report, U.S.
Department of Housing and Urban De-
velopment Office of Policy Development
and Research, June 2002.

J. Hill, Szewczyk, A. Woo,
and D. Culler. Tinyos.
http://tinyos.millennium.berkeley.edu/.

R.

K. Larson. The home of the future.
A+U, 361, Oct. 2000.

K. Larson, M. Tapia, and J. Duarte.
A new epoch: Automated design tools

for the mass customization of housing.
A+U, 366, 2001.

G. Leavens. Introduction to the lit-
erature on programming language de-
sign. http://www.cs.iastate.edu/
“leavens/homepage.html| 1999.

C. Leopold. Parallel and Distributed
Computing - A Survey of Models,
Paradigms, and Approaches. John Wi-
ley & Sons, Inc., 2001.

D. Seetharam. c@t: A language for pro-
gramming massively distributed embed-
ded systems. Master’s thesis, MIT, Sep.
2002.

H. Shrikumar. ipic - a
match head sized web-server.
http://www.enablery.org/iPic.html.

http://www.cs.iastate.edu/~leavens/homepage.html
http://www.cs.iastate.edu/~leavens/homepage.html

[12] H. Shrikumar. Data composability in

[13]

[14]

[15]

myriad nets (invited talk): De-layering
in billion node mobile networks. In
Second ACM international workshop on
Data engineering for wireless and mobile
access, pages 43-43, 2001.

Smartdust. http://robotics.eecs.
berkeley.edu/ pister/SmartDust/.

J. Waldo. The Jini architecture for
network-centric computing. Communi-
cations of the ACM, 42(7):76-82, 1999.

X-10. http://www.x10.0rg.

12

http://robotics.eecs.berkeley.edu/~pister/SmartDust/
http://robotics.eecs.berkeley.edu/~pister/SmartDust/

	Introduction
	Background
	Embedded Building Control Networks
	GSG 1.0
	Hardware Details
	Software Details
	Firmware
	Remote Administration Tool

	c@t
	Language Overview

	Related Work
	Discussions and Future Work

