
Varying Bandwidth Resource Allocation Problem with
Bag Constraints

Venkatesan T. Chakaravarthy Vinayaka Pandit Yogish Sabharwal
Deva P. Seetharam

IBM India Research Lab, New Delhi
{vechakra, pvinayak, ysabharwal, dseetharam}@in.ibm.com

Abstract

We consider the problem of scheduling jobs on a pool of machines. Each job requires
multiple machines on which it executes in parallel. For each job, the input specifies
release time, deadline, processing time, profit and the number of machines required.
The total number of machines may be different at different points of time. A feasible
solution is a subset of jobs and a schedule for them such that at any timeslot, the
total number of machines required by the jobs active at the timeslot does not exceed
the number of machines available at that timeslot. We present an O(log(Bmax/Bmin))-
approximation algorithm, where Bmax and Bmin are the maximum and minimum
available bandwidth.

Our algorithm and the approximation ratio are applicable for more a general prob-
lem that we call the Varying bandwidth resource allocation problem with bag con-
straints (BagVBRap). The BagVBRap problem is a generalization of some previ-
ously studied scheduling and resource allocation problems.

1 Introduction

We consider scheduling problems in parallel and distributed settings in which we need to
schedule jobs on a system offering a certain amount of some resource. Each job requires a
particular amount of the resource for its execution. The total amount of the resource offered
by the system is different at different points of time. Our goal is to choose a subset of jobs and
schedule them such that at any timeslot, the total amount of resource requirement does not
exceed the total amount of the resource available at that timeslot. We wish to maximize the
profit of the chosen subset of jobs. The problem formulation is motivated by its applications
in environments such as cloud computing and bandwidth allocation in networks. Below, we
describe a real-life problem encountered in scheduling scientific applications on a massively
parallel system.

1

We now describe a scheduling problem typically faced in the scenario where a number
of users are trying to execute scientific applications on either a cluster of machines or a
supercomputer. The users have to make reservations for the resources in order to execute
their jobs. But, as there are multiple users competing for the same resources, a user may
not be allocated all the resources she requested. For the sake of simplicity, let us assume
that the resources are processors on the supercomputer or machines on the cluster. Consider
a particular user. The number of processors (or machines) allocated to the user may be
different at different points of time (because of reservation policies and the presence of
critical jobs) The user gets to know in advance the number of processors allocated to her
for each timeslot. The user has a set of jobs that she wishes to execute. Each job of the
user has a requirement on the number of processors needed for execution. In addition, each
job has a release time, a processing time, a deadline and a profit. The user would like to
select a subset of jobs and schedule them in such a way that at any timeslot, the total
number of processors required by the jobs active at the timeslot does not exceed the total
number processor available to the user at that timeslot. Naturally, the user would wish to
choose the subset of jobs having the maximum profit. We would like to highlight that such
a scenario is frequently encountered in practice. We assume that a job can be executed on
any subset of machines or processors as long as the resource requirement is met (i.e., the
machines/processors are identical) and the jobs may not be preempted. In fact, we consider
a more general scenario where job can even specify a set of time intervals where it can be
scheduled; note that this generalizes the notion of release time and deadline.

Motivated by scheduling and bandwidth allocation scenarios such as the above one, we
study an abstract problem that we call the Varying bandwidth resource allocation problem
with bag constraints (BagVBRap). We use bandwidth as a generic term to refer to the quan-
tity of the resource under contention. So, the input will specify the bandwidth available at
each timeslot, and for each job, its bandwidth requirement and the different time intervals
in which it can be scheduled. This kind of interval selection or interval scheduling prob-
lems arise naturally in practice. We refer to [10, 1, 11] for real-life applications of interval
selection and scheduling in parallel and distributed computing and network management.
The BagVBRap problem generalizes several previously studied scheduling and resource
allocation problems. We next define the problem and then discuss prior work.

1.1 BagVBRap: Problem Definition

The input consists of a set of jobs J . Each job J ∈ J consists of a set of job instances of
which at most one can be selected for execution. An instance u of a job J is specified by
an interval Iu = [a, b], where a and b are the start time and the finish time of the instance
u; we assume that a and b are integers. The instance u is also associated with a bandwidth
requirement ρu and a profit pu. Let D be the maximum finish time over all instances so that
the interval associated with every job instance is contained in the span [1, D]. We refer to
each integer 1 ≤ t ≤ D as a timeslot. For each timeslot t, the input specifies a number Bt

which is the bandwidth available at timeslot t.
We use the term instance as a shorthand for job instance. Let U denote the set of all

2

instances over all the jobs in J . For each instance u ∈ U , we view each interval Iu = [a, b]
as a set of timeslots in the range [a, b]. We view each job as a bag of its instances. We say
that the instance u is active at a timeslot t, if t ∈ Iu. For a timeslot t, let A(t) denote the
set of all instances active at timeslot t.

A feasible solution is a subset of instances S ⊆ U such that at every timeslot t, the sum
of the bandwidth requirements of the instances from S active at time t is at most Bt, i.e, for
every timeslot 1 ≤ t ≤ D, ∑

u∈S∩A(t)

ρu ≤ Bt.

We call this the bandwidth constraint. Furthermore, it is required that at most one instance
is picked from each job; we call this the bag constraint; we view a job as a bag of instances
and hence the terminology. The problem is to find a feasible solution S such that the sum
of the profits of the jobs in S is maximized. !

In our example scheduling problem described earlier, the bandwidth corresponds to the
number of machines/processors. The notion of the release time and the deadline is captured
by the notion of bags as follows. For a job J in the scheduling problem with release time
r and deadline d, and processing time s we create a bag containing d − r − s + 1 instances
corresponding to the integer intervals of length s lying between r and d. Note that the
bag constraint ensures that any chosen job is scheduled in exactly one of the possible time
intervals.

The concept of bag constraints is quite powerful. Apart from handling the notion of
release time and deadline, it can also work in a more general setting where a job can specify
a set of possible time intervals where it can be scheduled. Moreover, BagVBRap allows
for different instances of the same job to have different bandwidth requirements, processing
times and profits.

1.2 Prior Work

The BagVBRap problem is a generalized formulation that captures as special cases many
well-studied scheduling and resource allocation problems. Here we shall describe some im-
portant special cases and then present a brief survey of some of the prior work dealing with
these problems.

• Unit bandwidth resource allocation problem (UnitRap): This is the special case of
BagVBRap problem in which the bandwidth available is 1 across all timeslots and
each job has only once instance having a bandwidth requirement of 1.

• Unit bandwidth resource allocation problem with bag constraints (BagUnitRap): This
is the special case of BagVBRap problem, in which bandwidth available is 1 across
all timeslots and the bandwidth requirements of all instances is also 1.

• Uniform bandwidth resource allocation problem (UBRap): This is the special case of
the BagVBRap problem, where the bandwidth available is uniform across all times-

3

lots, (i.e., for all 1 ≤ t ≤ D, Bt = B for some fixed B given as part of the input) and
each job has only one instance.

• Uniform bandwidth resource allocation problem with bag constraints (BagUBRap):
This is the special case of the BagVBRap problem, where the bandwidth available is
uniform across all timeslots, i.e., for all 1 ≤ t ≤ D, Bt = B for some fixed B given as
part of the input.

• Varying bandwidth resource allocation problem (VBRap): This is the special case of
the BagVBRap problem, where each job has only one instance.

The simplest of the special cases is the UnitRap problem. Notice that in this problem,
the input is simply a set of intervals having profits and goal is to choose a subset of non-
overlapping intervals of maximum profit. In other words, this is the same as the classical
maximum weight independent set problem on interval graphs. This is well-known to be
solvable in polynomial time via dynamic programming [12].

Bar-Noy et al. [5] and Berman and Dasgupta [6] generalized the UnitRap problem by
introducing the notion of bag constraints and defined the BagUnitRap problem. They
both (independently) gave a 2-approximation algorithm for the BagUnitRap problem.
Spieksma [15] showed that the BagUnitRap problem is APX-hard.

Calinescu et al. [7] considered the UBRap problem and presented a 3-approximation
algorithm, based on LP-rounding technique.

Phillips et al. [14] gave a 6-approximation for the BagUBRap problem. Bar-Noy et
al. [4] obtained a 4-approximation for the same problem, via the local ratio technique. They
also showed how BagUBRap generalizes many previously studied problems in scheduling
and other scenarios.

The VBRap problem is equivalent to the unsplittable flow problem (UFP) on lines and
has been studied within that context. Chakrabarti et al. [8] presented a O(log(ρmax/ρmin))-
approximation algorithm, where ρmax and ρmin are the maximum and minimum bandwidth
requirements. They also considered a special case of VBRap satisfying the no-bottle as-
sumption, wherein it is assumed that the maximum bandwidth requirement is less than the
minimum bandwidth available; they presented a constant factor randomized approximation
algorithm for this special case. For the same special case, Chekuri et al. [9] improved the
constant factor. For the general UFP on line (i.e., the VBRap problem), Bansal et al. [3] pre-
sented an O(log n)-approximation algorithm. In a different paper, Bansal et al. [2] obtained
a quasi polynomial time PTAS for the VBRap problem.

A framework related to the resource allocation problem is the dynamic storage allocation
problem, wherein the bandwidth must be allocated to an instance in a contiguous manner.
Such a framework applies to resources such as storage and memory. Bar-Noy et al. [4] and
Leonardi et al. [13] study these related problems and develop constant factor approximation
algorithms.

The BagVBRap problem generalizes UBRap in two dimensions by introducing the
notions of varying bandwidth and bag constraints. The prior work have either considered
the notion of the bag constraints or the notion of the varying bandwidth. In this paper, we

4

study the most general BagVBRap problem and develop an approximation algorithm. To
the best of our knowledge, the general BagVBRap problem has not been addressed in prior
work.

1.3 Our Results

Our main result is an O(log(Bmax/Bmin))-approximation algorithm for the BagVBRap prob-
lem, where Bmax and Bmin are the maximum and minimum bandwidths available over all
timeslots.

In the second part of the paper, we present a constant factor approximation for a spe-
cial case of the BagVBRap problem that we denote as the LU-BagVBRap problem. In
this special case, the input satisfies the following property: for each job instance u, the
bandwidth available does not change during its interval Iu (i.e., for all instances u, for all
timeslots t1, t2 ∈ Iu, we have Bt1 = Bt2). We refer the property as the local uniformity
property. Our second result is a 5-approximation algorithm for the LU-BagVBRap prob-
lem. The motivation for studying the LU-BagVBRap problem comes from the fact that
it captures a natural multi-system generalization of the BagUBRap problem. Recall that
the BagUBRap is a scheduling problem wherein we have a single system offering a uniform
bandwidth. In the generalization, we have multiple systems each offering certain bandwidth
(which can be different for different systems). A job instance can be scheduled on any one
of the systems. We refer to this generalization as MultiBagUBRap. We present a reduc-
tion from MultiBagUBRap to LU-BagVBRap, there by getting a 5-approximation for
MultiBagUBRap.

1.4 Proof Techniques

Our algorithm and analysis for the BagVBRap problem builds on the work of Calinescu
et al. [7]. Calinescu et al. [7] consider the UBRap problem and present a 3-approximation
algorithm. They divide the job instances into “large” and “small” instances based on their
bandwidth requirement. They find two feasible solutions, one consisting of only large in-
stances and the other consisting of only the small instances. Then, the best of the two
solutions is output. They observe that finding an optimal solution restricted to the large in-
stances alone reduces to the problem of finding maximum weight independent set on interval
graphs, which is solvable in polynomial time. In the case of small instances, they consider a
natural LP relaxation and design a rounding scheme. They show that this LP-based algo-
rithm is a 2-approximation, when only the small instances are considered. Then they argue
that the final solution output is a 3-approximation to the original input instance.

We extend their algorithm and analysis to handle the notion of bag constraints and the
notion of varying bandwidth. We also divide the instances into “large” and “small” instances.
We further classify the “large” instances into logarithmic number of buckets. When only
instances from any particular bucket are considered, we argue that finding the optimal
solution reduces to the BagUnitRap problem (with a factor two loss in approximation).
We then invoke the 2-approximation algorithm for BagUnitRap [5, 6] on each bucket

5

and obtain a 4-approximate feasible solution with respect to each bucket. The best of these
solution is picked and is guaranteed to be a log-factor approximation to the optimum solution
restricted to the large instances. We then consider the case of small instances. We extend
the LP-rounding scheme and its analysis to get a log-factor approximate feasible solution to
the optimum solution restricted to the small instances. Finally, we pick the better of the two
solutions. The main crux of our work lies in carefully incorporating the implications of the
bag constraints and varying bandwidth within the above framework of Calinescu et al. [7];
this requires introducing additional arguments.

2 An Approximation Algorithm for the BagVBRap
Problem

In this section, we present an approximation algorithm for the BagVBRap problem. We
start by developing some notations.

Let X ⊆ U be a set of instances. We say that the instances in X overlap, if there exists
a timeslot in which all the instances are active (i.e., ∩u∈XIu &= ∅). A subset X ⊆ U is
said to be an independent set, if no two instances in X are overlapping. For a subset of
instances X ⊆ U , let Profit(X) denote the sum of profits of the instances contained in X,
i.e., Profit(X) = Σu∈Xpu. Let Bmax and Bmin be the maximum and minimum bandwidth
available during the span of the schedule, i.e., Bmax = max {Bt | t ∈ [1, D]} and Bmin =
min {Bt | t ∈ [1, D]}.

Our goal is to develop an O(log (Bmax/Bmin)) approximation algorithm for BagVBRap.
We divide the instances into two categories – large instances and small instances based on a
fixed constant α defined to be α = 3/4. For an instance u, let Bminu denote the minimum
bandwidth available while it is active, i.e., Bminu = min {Bt | t ∈ Iu}. An instance u is
said to be large if ρu > α · Bminu; it is said to be small otherwise. Partition the set of all
instances U into Ul and Us, where Ul is the set of all large instances and Us is the set of all
small instances.

Let A∗ denote the optimal solution and let P ∗ = Profit(A∗). Let A∗
l be the optimal

solution when only the large job instances are considered. That is,

A∗
l = argmaxX{Profit(X) | X is a feasible solution and X ⊆ Ul}

Similarly, let A∗
s be the optimal solution when only the small job instances are considered.

Let P ∗
l = Profit(A∗

l) and P ∗
s = Profit(A∗

s). Notice that P ∗ ≤ P ∗
l + P ∗

s .
In Section 2.1, we develop an algorithm that outputs a feasible solution Al consisting of

only large instances having profit Pl = Profit(Al) such that for some constant c1,

P ∗
l ≤ c1 log (Bmax/Bmin)Pl (1)

Similarly, in Section 2.2, we develop an algorithm that outputs a feasible solution As con-
sisting of only small instances having profit Ps = Profit(As) such that for some constant

6

c2,

P ∗
s ≤ c2 log (Bmax/Bmin)Ps (2)

Of the two solutions Al and As, we output the one with the higher profit as the final
solution; we denote the output solution as A. Let P = Profit(A). It would follow that for
some constant c, P ∗ ≤ c log (Bmax/Bmin)P , establishing the following main theorem.

Theorem 2.1 Our algorithm for the BagVBRap problem has O(log (Bmax/Bmin)) approx-
imation ratio.

2.1 Handling Large Instances

In this section, we consider only the large instances and find a feasible solution Al such that

P ∗
l ≤ 4

[
1 +

log (Bmax/Bmin)

1 + logα

]
· Pl. (3)

This would establish the claim in Equation 1.
In order to achieve this, we partition the set of large instances Ul into m sets Ul,0, Ul,1,

. . ., Ul,m−1 based on their bandwidth requirements, where m = (1 + log (Bmax/Bmin)
1+log α). For

0 ≤ i ≤ m − 1, define

Ul,i = {u ∈ Ul | bu ∈ [(2α)i · α · Bmin, (2α)i+1 · α · Bmin)}

Note that the smallest job is of size at least α · Bmin.
Similar to the way A∗

l is defined, for 0 ≤ i ≤ m − 1, we define A∗
l,i to be the optimal

feasible solution when only the job instances in Ul,i are considered; let P ∗
l,i = Profit(A∗

l,i).

Note that P ∗
l ≤

∑i=m−1
i=0 P ∗

l,i.
In the algorithm, for each 0 ≤ i ≤ m − 1, we will consider the set Ul,i and construct a

feasible solution Al,i consisting of only job instances from Ul,i such that P ∗
l,i ≤ 4Pl,i, where

Pl,i = Profit(Al,i). Then, the algorithm would pick the best of these m solutions and output
it as Al. It is easy to see that P ∗

l ≤ 4mPl. Equation 3 would follow.
Our algorithm for computing the feasible solutions Al,i (claimed above) is based on the

following crucial claims.

Claim 2.2 Fix any 0 ≤ k ≤ m − 1. Any feasible solution S cannot contain three or more
overlapping instances from Ul,k.

Proof: Clearly, it suffices if we prove that S cannot contain three overlapping instances from
Ul,k. We prove this by contradiction. Suppose there exist three instances u1, u2, u3 ∈ S ∩Ul,k

that are overlapping. It means that there exists a timeslot t ∈ Iu1 ∩ Iu2 ∩ Iu3 . For j = 1, 2, 3,
let tj denote a timeslot in Iuj satisfying Btj = Bminuj . Without loss of generality, let
t1 ≤ t2 ≤ t3. Then clearly at least one of u1 and u3 must also be active at t2, because

7

otherwise Iu1 ∩ Iu3 = ∅, contradicting the assumption that t ∈ Iu1 ∩ Iu2 ∩ Iu3. Without loss
of generality, let u1 be active at t2. Then,

ρuj ≥ (2α)kαBmin for j = 1, 2

whereas Bt2 = Bminu2 < (2α)k+1αBmin. Hence, ρu1 + ρu2 ≥ 2(2α)kαBmin > Bt2 . This
contradicts the fact that S is a feasible solution. This completes the proof of the claim. !

Claim 2.3 Fix any 0 ≤ k ≤ m − 1. For any feasible solution S, the set S ∩ Ul,k can be
partitioned into X1 and X2 such that X1 and X2 are independent sets.

Proof: At any timeslot t, at most two jobs from S ∩ Ul,k can be active at timeslot t (by
Claim 2.2). It is well known that interval graphs are perfect graphs [12]. It follows that the
instances in S ∩ Ul,k can be colored with two colors such that no two overlapping instances
receive the same color. The sets X1 and X2 are obtained by partitioning the instances
according to their color. !

For a given 0 ≤ i ≤ m− 1, let W ∗
l,i denote the maximum profit independent subset of Ul,i

satisfying the bag constraints. The lemma below follows from Claims 2.2 and 2.3.

Lemma 2.4 Fix any 0 ≤ k ≤ m − 1. Then, Profit(W ∗
l,k) ≥ P ∗

l,k/2.

Consider any 0 ≤ k ≤ m−1. Our algorithm to compute Al,k is as follows. We observe that
the problem of computing W ∗

l,k is the same as the BagUnitRap problem over the set Ul,k.
Recall that Bar-Noy et al. [5] and Berman and Dasgupta [6] presented a 2-approximation
algorithm for the BagUnitRap problem. We invoke their algorithm with Ul,k as input 1

and obtain a solution; Al,k is taken to be this solution. We have that Pl,k ≥ Profit(W ∗
l,k)/2.

Now by Lemma 2.4, Pl,k ≥ P ∗
l,k/4.

2.2 Handling Small Instances

In this section, we give an algorithm that finds a feasible solution As consisting only of
instance in Us satisfying

P ∗
s ≤

[
2 · (1 + log (Bmax/Bmin))

1 − α
+ 1

]
· Ps.

Our algorithm follows the general framework introduced by Calinescu et al. [7]. Addi-
tionally, we bring in the bag constraints and the varying nature of the bandwidth available.
We begin with the following natural IP for computing A∗

s.

1Ignoring the bandwidths (i.e., taking all bandwidths available and bandwidths required to be 1).

8

Maximize
∑

u∈U

puxu (4)

s.t.
∑

u:t∈Iu

ρuxu ≤ Bt for all 1 ≤ t ≤ D (5)

∑

u∈J

xu ≤ 1 for all J ∈ J (6)

xu ∈ {0, 1} for all u ∈ Us (7)

Note that (5) captures the bandwidth constraints and (6) captures the bag constraint.
Here xu = 1 if the instance u is selected in the solution and 0 otherwise. The natural
relaxation of this IP is obtained by replacing (7) with:

0 ≤ xu ≤ 1 for all u ∈ Us (8)

For each u ∈ Us, let xu be the fractional value assigned by the LP solution. We assume that
instances in Us are ordered in the increasing order of their start times.

We shall now discuss a rounding mechanism. We adapt the LIST algorithm and the
analysis of Calinescu et al.[7]. However, our analysis requires new arguments and yields an
O(log Bmax/Bmin)-approximation, instead of the constant factor obtained by Calinescu et al.

The algorithm produces a list L consisting of some m sets of instances S1, S2, ..., Sm

together with non-negative real-weights w(S1), w(S2), ..., w(Sm) satisfying the following four
properties.

1. For each 1 ≤ k ≤ m, the set Sk is a feasible solution.

2. For each 1 ≤ k ≤ m, 0 ≤ w(Sk) ≤ 1.

3. For each u ∈ Us,
∑

k:u∈Sk
w(Sk) = xu.

4.
∑m

k=1 w(Sk) ≤ ∆,

where

∆ = 1 +
2 · (1 + log (Bmax/Bmin))

1 − α
.

(Recall that α is a parameter set as α = 3/4).
Once the list L is constructed, we output the solution from S1, S2, . . . , Sm that has the

maximum profit; the output solution is taken to be As. Let the profit of As be denoted by
Ps. The rounding algorithm is shown in Figure 1. Lemma 2.5 shows that the list L satisifies
the four properties. Assuming the lemma, we now argue that P ∗

s ≤ ∆Ps. (Recall that P ∗
s is

9

1. Consider the instances in order of increasing start times – for instance u:
if xu = 0, proceed to the next instance
(If there are no more instances - goto Step 5)

2. Search L for a set not containing u to which u can be added without
violating Property 1.

3. If no such set exists,
create a new set V = {u} with weight w(V) = xu and add V to L.
set xu = 0 and return to Step 1.

4. Otherwise suppose S ∈ L is such a set
4a. If xu < w(S), then,

decrease w(S) to w(S) − xu.
create a new set V = S ∪ {u} with weights w(V) = xu and add V to L.
set xu = 0 and return to Step 1.

4b. If xu ≥ w(S), then,
add u to S and decrease xu to xu − w(S).
Return to Step 1.

5. Output the set with the maximum profit amongst the sets in L.

Figure 1: Rounding Algorithm

the profit of the optimal solution when only the small instances are considered). We have

P ∗
s ≤

∑

S∈L

puxu (LP relaxation gives an upper bound on P ∗
s)

≤
∑

u∈Us

pu

[
∑

S∈L : u∈S

w(S)

]
(By Property 3)

≤
∑

S∈L

w(S)

[
∑

u∈S

pu

]

≤
∑

S∈L

w(S)Profit(S)

≤ ∆Ps (By Property 4 and the choice of As).

We have shown that the feasible solution As satisfies Equation 2.
We now show that the sets in the list L satisfy the four properties.

Lemma 2.5 The rounding algorithm described above outputs a list L satisfying the 4 prop-
erties.

Proof: It is easy to see that Properties 1 and 2 are satisfied.

10

In order to show Property 3, for each instance u ∈ Us, let x̂u denote the original value
of xu that was input to the above procedure, i.e. output by the LP. It is easy to verify that
the algorithm maintains the following invariant, for any u ∈ Us:

xu +
∑

j:u∈Sj

w(Sj) = x̂u (9)

Property 3 follows from (9) and the fact that after all tasks have been processed xu = 0, for
any u ∈ Us.

It remains to prove Property 4. We shall show that this property is an invariant of the
algorithm. Note that a new set may be added to the list L either from step 3 or from step
4a. In the latter case, the weight of a set is split amongst itself and the newly created set,
leaving the sum of all weights unaffected.

In the former case, the newly created set is a singleton consisting of one instance, say u.
Let J be the job to which the instance u belongs. Recall that the instances are processed
in the increasing order of their start times. Let Qu be the set of instances that have so far
been processed including u. Consider the set L immediately after this singleton is added.
Partition the list L into L1 and L2, where L1 consists of all sets in L that contain some
instance of J (including u itself); L2 consists of all the sets in L that do not contain any
instance of J (i.e., L2 = L−L 1).

Claim 2.6
∑

S∈L1
w(S) ≤ 1.

Proof: Let J ′ be the instances in J that have already been processed, including u (i.e.,
J ′ = J ∩ Qu). For each u′ ∈ J ′, define Lu′

1 to be the sets in L1 that contain u′. Notice
that this defines a partition of L1. It directly follows from Property 3 that for any u′ ∈ J ′,∑

S∈Lu′
1

w(S) = x̂u′. Therefore,

∑

S∈L1

w(S) =
∑

u′∈J ′

∑

X∈Lu′
1

w(X) =
∑

u′∈J ′

x̂u′ ≤ 1,

where the last inequality follows from the bag constraint imposed in the LP. This completes
the proof of the claim. !

Now, let us consider the list L2. For a timeslot t ∈ Iu and a set S ∈ L, let ρt(S) be the
sum of the bandwidth requirements of the instances in S that are active at time t, i.e.,

ρt(S) =
∑

j∈S∩A(t)

ρj

Claim 2.7 For any timeslot t ∈ [1, D]

∑

S∈L

ρt(S)w(S) ≤ Bt

11

Proof: We have

∑

S∈L

ρt(S)w(S) =
∑

S∈L

∑

j∈S∩A(t)

ρjw(S)

=
∑

j∈Qu∩A(t)

ρj

∑

S∈L | j∈U

w(S)

=
∑

j∈Qu∩A(t)

ρj x̂j

≤ Bt,

where the last inequality follows from the constraint (5) of the linear program. The claim is
proved. !

Consider any set S ∈ L2. We know that u could not be packed in S. The reason could
be twofold: either the bag constraint or the bandwidth constraint is violated. However, by
the definition of L2, S does not contain any instance from J . This implies that u was not
packed in S because of a violation of the bandwidth constraint. It follows that there must
exist a timeslot t ∈ Iu such that ρt(S)+ρu > Bt. Let τ(S) denote the smallest such timeslot,
which we refer to as the conflict timeslot of S, i.e., τ(S) = min{t ∈ Iu | ρt(S) + ρu > Bt}.

We geometrically divide the real interval [Bmin, Bmax] into r ranges and partition the set
L2 into r subsets based on the range in which Bτ(S) lies. Let r = (1 + log Bmax/Bmin). For
1 ≤ i ≤ r, define

Li
2 = {S ∈ L2 : 2i−1Bmin ≤ Bτ(S) < 2iBmin}

Claim 2.8 For any 1 ≤ k ≤ r, ∑

S∈Lk
2

w(S) ≤ 2

1 − α

Proof: Define
τ ∗ = min

S∈Lk
2

τ(S)

Applying Claim 2.7 at τ ∗, we get that
∑

S∈L

ρτ∗(S)w(S) ≤ Bτ∗ .

It follows that ∑

S∈Lk
2

ρτ∗(S)w(S) ≤ Bτ∗ .

Notice that Bτ∗ ≤ 2kBmin and so,
∑

S∈Lk
2

ρτ∗(S)w(S) ≤ 2kBmin (10)

12

Consider any S ∈ Lk
2. Since u is a small instance, we have that ρu ≤ αBminu ≤ αBτ(S).

Since τ(S) is a conflict timeslot of S, we have that ρτ(S)(S) + ρu > Bτ(S). It follows that

ρτ(S)(S) ≥ (1 − α)Bτ(S) ≥ (1 − α)2k−1Bmin

Recall that τ ∗ ≤ τ(S). Since the algorithm considers the instances in increasing start times,
all the instances in S that are active at timeslot τ(S) are also active at τ ∗. Therefore,
ρτ∗(S) ≥ ρτ(S)(S) and hence,

ρτ∗(S) ≥ (1 − α)2k−1Bmin (11)

Applying the above bound in (10), we get that

∑

S∈Lk
2

[(1 − α)2k−1Bmin]w(S) ≤ 2kBmin

It follows that ∑

S∈Lk
2

w(S) ≤ 2

1 − α

The claim is proved. !
Summing up over all the ranges shows that

∑

S∈L2

w(S) ≤ 2r

1 − α

Applying the above bound with Claim 2.6, we get that

∑

S∈L

w(S) ≤ 1 +
2r

1 − α

Lemma 2.5 is proved. !

3 The LU-BagVBRap Problem

In this section, we consider the LU-BagVBRap problem, a special case of the BagVBRap
problem, wherein the input satisfies the local uniformity property. We develop an algorithm
with an approximation ratio of 5. The motivation for studying LU-BagVBRap comes
from the fact that it captures the MultiBagUBRap problem, a multi-system general-
ization of the BagUBRap problem. We start by recollecting the problem definition of
LU-BagVBRap.

LU-BagVBRap Problem Definition: This is the special case of the BagVBRap
problem wherein the input satisfies local uniformity property: for every job instance u ∈ U ,
the bandwidth available during its time interval does not vary (i.e, for any t1, t2 ∈ Iu,
Bt1 = Bt2).

13

Theorem 3.1 The LU-BagVBRap problem can be approximated within a factor of 5.

The 5-approximation algorithm claimed in the above theorem and its analysis closely
follow the approximation algorithm and analysis presented in Section 2. We exploit the local
uniformity property to strengthen some crucial claims in the above analysis and obtain the
5-approximation algorithm. Due to lack of space, we defer further discussion to Appendix A.
There, we present a proof sketch highlighting the modifications to be made in the algorithm
and analysis of Section 2.

We now describe the MultiBagUBRap problem and show how it can be reduced to
the LU-BagVBRap problem. Recall that the BagUBRap problem is the special case of
BagVBRap in which the available bandwidth is same across all time slots, i.e, Bt = B for
all time instances t ∈ [1, D]. Meaning, we have a single system/machine offering a uniform
bandwidth of B across the time span [1, D]. Now, suppose we have multiple such machines,
each offering a uniform bandwidth. The bandwidths offered may vary from machine to
machine. Namely, there are m machines and the bandwidth offered by the machine r is B(r)
throughout the timespan [1, D]. We consider the natural problem of profit maximization
when the job instances can be scheduled on any of the machines as long as (i) the bag
constraints are satisfied and (ii) for each machine r and at each instant of time t, the sum of
bandwidth requirement of job instances active at timeslot t on machine r does not exceed
B(r). We call this the MultiBagUBRap problem.

We now present a reduction from MultiBagUBRap to LU-BagVBRap. As a result
of the reduction, we also get a 5-approximation for the MultiBagUBRap problem. The
idea of the reduction is as follows.

In the MultiBagUBRap problem input, suppose the span is [1, D] so that all the
instances have finish time at most D. We will create an input of LU-BagVBRap having
span [1, mD]. For 1 ≤ r ≤ m, the integer interval [1 + (r− 1)D, rD] will be used to simulate
the machine r. Consider a feasible solution to the MultiBagUBRap input. Instead of
viewing the jobs as executing concurrently on the m machines in the span [1, D], we adopt
the following way of viewing the execution. Suppose a job instance u specified by the interval
Iu = [a, b] is scheduled in the solution to be executed on the machine r; we will view it as
executing during the interval [(i − 1) · D + a, (i − 1) · D + b].

Now given an input instance of MultiBagUBRap, we show how to transform it to create
an input instance of BagVBRap. The span in the new input instance will be [1, mD]. For
each job instance u with associated interval Iu = [a, b], we create m copies u; each copy
will have the same bandwidth requirement and profit as the instance u; for 1 ≤ i ≤ m, the
ith copy of u is declared to have the interval I i

u = [(i − 1)D + a, (i − 1)D + b]; if J ∈ J
is the job to which the instance u belongs, then all the m copies of u are made part of
same job in the transformed input. So, if a job earlier had x instances, it will have mx
instances in the transformed input. In the transformed input, the bandwidth available for
the timeslots (in the span [1, mD]) is declared as follows. For 1 ≤ r ≤ m, each timeslot t
in the range [1 + (r − 1)D, rD] will have bandwidth available Bt as B(r), where B(r) is the
bandwidth offered by the machine r. It is easy to see that the transformed input satisfies
the local uniformity property and there is a one-to-one correspondence between the feasible

14

solutions of the MultiBagUBRap instance and the feasible solutions of the transformed
LU-BagVBRap instance.

The above reduction combined with 5-approximation algorithm for the LU-BagVBRap
problem yields a 5-approximation algorithm for the MultiBagUBRap problem.

Theorem 3.2 The MultiBagUBRap problem can be approximated within a factor of 5.

References
[1] S. Albers. Resource Management in Large Networks. In J. Lerner, D. Wagner, and K. Zweig, edi-

tors, Algorithmics for Large and Complex Networks: Design, Analysis, and Simulation, pages 227–246.
Springer Berlin/Heidelberg, 2009.

[2] N. Bansal, A. Chakrabarti, A. Epstein, and B. Schieber. A quasi-ptas for unsplittable flow on line
graphs. In ACM Symposium on Theory of Computing (STOC), pages 721–729, 2006.

[3] N. Bansal, Z. Friggstad, R. Khandekar, and M. Salavatipour. A logarithmic approximation for unsplit-
table flow on line graphs. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 702–709,
2009.

[4] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Noar, and B. Schieber. A unified approach to approximating
resource allocation and scheduling. Journal of the ACM, 48(5):1069–1090, 2001.

[5] A. Bar-Noy, S. Guha, , J. Noar, and B. Schieber. Approximating the throughput of multiple machines
in real-time scheduling. Siam Journal of Computing, 31(2):331–352, 2001.

[6] P. Berman and B. Dasgupta. Multi-phase algorithms for throughput maximization for real-time schedul-
ing. Journal of Combinatorial Optimization, 4:307–323, 2000.

[7] G. Calinescu, A. Chakrabarti, H. Karloff, and Y. Rabani. Improved approximation algorithms for
resource allocation. In Prooceedings of the 9th International Conference on Interger Programming and
Combinatorial Optimization, 2002.

[8] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar. Approximation algorithms for the unsplittable
flow problem. Algorithmica, 47(1):53–78, 2007.

[9] C. Chekuri, M. Mydlarz, and F. Shepherd. Multicommodity demand flow in a tree and packing integer
programs. ACM Transactions on Algorithms, 3(3), 2007.

[10] T. Erlebach and F. Spieksma. Interval selection: Applications, algorithms, and lower bounds. J.
Algorithms, 46(1):27–53, 2003.

[11] M. Flammini, G. Monaco, G. Moscardelli, H. Shachnai, M. Shalom, T. Tamir, and S. Zaks. Minimizing
total busy time in parallel scheduling with application to optical networks. In 23rd IEEE International
Symposium on Parallel and Distributed Processing (IPDPS), 2009.

[12] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

[13] S. Leonardi, A. Marchetti-Spaccamela, and A. Vitaletti. Approximation algorithms for bandwidth and
storage allocation problems under real time constraints. In 20th Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), 2000.

[14] C. Phillips, R. Uma, and J. Wein. Off-line admission control for general scheduling problems. In
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2000.

[15] F. Spieksma. On the approximability of an interval scheduling problem. Journal of Scheduling, 2:215–
227, 1999.

15

A The LU-BagVBRap Problem: A 5-approximation
Algorithm

The 5-approximation algorithm claimed in Theorem 3.1 and its analysis closely follow the
approximation algorithm and analysis presented in Section 2. We exploit the local uni-
formity property to strengthen some crucial claims in the above analysis and obtain the
5-approximation algorithm. We present a proof sketch highlighting the modifications to be
made in the algorithm and analysis of Section 2.

As in Section 2, we divide the instances into two categories – large instances and small
instances. Consider an instance u. By the local uniformity property, the bandwidth available
is uniform throughout the interval Iu; let this bandwidth be B. We say that u is a large
instance, if ρu > B/2; it is said to be small otherwise. Partition the set of all instances U into
Ul and Us, where Ul is the set of all large instances and Us is the set of all small instances.

Let A∗ denote the optimal solution and let P ∗ = Profit(A∗). Let A∗
l be the optimal

solution when only the large job instances are considered. Similarly, let A∗
s be the optimal

solution when only the small job instances are considered. Let P ∗
l = Profit(A∗

l) and P ∗
s =

Profit(A∗
s). We have P ∗ ≤ P ∗

l + P ∗
s .

Below, we develop two algorithms that deal with large instances and small instances,
respectively. The first algorithm outputs a feasible solution Al consisting of only large in-
stances having profit Pl = Profit(Al) such that P ∗

l ≤ 2Pl The second algorithm outputs a
feasible solution As consisting of only small instances having profit Ps = Profit(As) such
that P ∗

s ≤ 3Ps. Of the two solutions Al and As, we output the one with the higher profit as
the final solution; we denote the output solution as A. Let P = Profit(A). It follows that
P ∗ ≤ 5P . This establishes Theorem 3.1.

Handling Large Instances
We now describe the algorithm that deals with large instances. First, we strengthen

Claim 2.2 as follows.

Claim A.1 Any feasible solution S cannot contain two or more overlapping instances from
Ul.

Proof: By contradiction, suppose S contains two overlapping large instances u1 and u2. Let
the starting timeslot of u1 be t1 and that of u2 be t2. Without loss of generality, assume that
t1 ≤ t2. Then, both u1 and u2 are active at the timeslot t2. Let B = Bt2 be the bandwidth
available at t2. Since both the instances are large, we have that ρu1 > B/2 and ρu2 > B/2.
It follows that ρu1 + ρu2 > B, violating the bandwidth constraint. This contradicts the fact
that S is a feasible solution. !

Our algorithm to compute Al is as follows. We observe that the problem of computing P ∗
l

is the same as the BagUnitRap problem over the set Ul. We invoke the 2-approximation
algorithm for the BagUnitRap problem, due to Bar-Noy et al. [5] and Berman and Das-
gupta [6], with Ul as input and obtain a solution; Al is taken to be this solution. We conclude
that that P ∗

l ≤ 2Pl.

16

Handling Small Instances:
We now describe the algorithm that deals with the small instances. The algorithm and

analysis are similar to those presented in Section 2.2. We use the same LP relaxation and
the same rounding procedure given in Figure 1. The rounding procedure outputs a list L
of feasible solutions S1, S2, . . . , Sm, with weights w(S1), w(S2), . . . , w(Sm). Once the list L is
constructed, we output the solution from S1, S2, . . . , Sm that has the maximum profit; the
output solution is taken to be As. Let the profit of As be denoted by Ps. As before, we
will argue that the list satisfies four properties. The only modification is that we strengthen
property four as follows:
(4∗)

∑m
k=1 w(Sk) ≤ 3.

We next show that the sets in the list L satisfy the four properties. By the argument
given Section 2.2, this would imply that P ∗

s ≤ 3Ps. It is easy to see that Properties 1, 2 and
3 are satisfied by L. We proceed to show that L satisfies property 4∗. We shall show that
this property is an invariant of the algorithm. Note that a new set may be added to the list
L either from step 3 or from step 4a. In the latter case, the weight of a set is split amongst
itself and the newly created set, leaving the sum of all weights unaffected.

In the former case, the newly created set is a singleton consisting of one instance, say u.
Let J be the job to which the instance u belongs. Recall that the instances are processed in
the increasing order of their start times. Consider the set L immediately after this singleton
is added. Partition the list L into L1 and L2, where L1 consists of all sets in L that contain
some instance of J (including u itself); L2 consists of all the sets in L that do not contain
any instance of J (i.e., L2 = L−L 1). The following claim is proved similar to Claim 2.6.

Claim A.2
∑

S∈L1
w(S) ≤ 1.

Now, let us consider the list L2. For a timeslot t ∈ Iu and a set S ∈ L, let ρt(S) be the
sum of the bandwidth requirements of the instances in S that are active at time t, i.e.,

ρt(S) =
∑

j∈S∩A(t)

ρj

The following claim is proved similar to the Claim 2.7.

Claim A.3 For any timeslot t ∈ [1, D]

∑

S∈L

ρt(S)w(S) ≤ Bt

We strengthen Claim 2.8 as follows.

Claim A.4 For any 1 ≤ k ≤ r, ∑

S∈L2

w(S) ≤ 2

17

Proof: Let t1 be the starting timeslot of u. Consider any set S ∈ L2. We know that u could
not be packed in S. The reason could be twofold: either the bag constraint or the bandwidth
constraint is violated. However, by the definition of L2, S does not contain any instance
from J . This implies that u was not packed in S because of a violation of the bandwidth
constraint. It follows that there must exist a timeslot t ∈ Iu such that ρt(S) + ρu ≥ Bt.
Since the algorithm considers the instances in increasing start times, all the instances in S
that are active at timeslot t are also active at t1. Therefore, ρt1(S) ≥ ρt(S). By the local
uniformity property, we have that Bt = Bt1 . Thus, ρt1(S) + ρu ≥ Bt1 . Since u is a small
instance, we have that ρu ≤ Bt1/2. Hence, ρt1(S) ≥ Bt1 . Invoking Claim A.3 at the timeslot
t1, we get that ∑

S∈L2

ρt1(S)w(S) ≤ Bt1 .

It follows that ∑

S∈L2

(Bt1/2)w(S) ≤ Bt1 .

The claim is proved. !
Combining Claims A.2 and A.4, we get that

∑

S∈L

w(S) ≤ 3.

Thus, we have shown that L satisfies property 4∗.

18

