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Abstract—Accurate occupancy information in commercial
buildings can enable several useful applications such as energy
management and dynamic seat allocation. Most prior efforts
in this space depend on deploying an additional network of
deeply coupled sensors to gather occupancy details. This paper
presents a novel approach for occupancy detection using only
context sources that are commonly available in commercial
buildings such as area access badges, Wi-Fi access points,
Calendar and Instant Messaging clients. We present models
to conduct a situation-centric profiling using such sources and
evaluate results of those models. Through a pilot study of a
building floor with 5 volunteers for 6 weeks, we demonstrate
the potential for detecting occupancies with accuracy as high
as 90%.
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I. INTRODUCTION

Accurate occupancy information in commercial buildings
can enable several useful applications such as energy man-
agement and dynamic seat allocation. Researchers have pro-
posed a number of schemes [1], [2] to perform occupancy-
driven control of electrical loads using various sensors (for
example, cameras, augmented PIRs, CO2 sensors, etc).
Although recent advances in wireless sensor networking
technologies reduce the wiring cost, costs for deployment
and management of a parallel sensor infrastructure remain
significant and limit the widespread adoption of these
schemes.

We approach the problem differently. We observe that
many office buildings today are equipped with computing
(Wi-Fi access points and mobile computing devices) and
security (access control systems) infrastructure that can
provide valuable cues for detecting occupancy. We call such
context sources as opportunistic context sources or soft-
sensors. Occupancy detection using such soft-sensors can
be economical and easier to adopt as it does not require in-
stallation of additional infrastructure. It is important to note
that this approach does not preclude additional occupancy
sensors but can incorporate data from hardware sensors in
locations where the software sensors prove to be inadequate.

The key contributions of this paper are two fold. First,
applying well-known machine learning techniques (regres-
sion and classification) to develop a cost-effective system
for inferring occupancy using opportunistic context sources;
second, evaluating the feasibility of the proposed approach
through a pilot trial conducted in an office for a period of six

weeks. The rest of the paper is organized as follows. Section
II gives an overview of the pilot and Section III identifies
system challenges. Section IV presents the details of these
two approaches and in Section V we present inference
results. Then we review existing body of work in Section
VI before we conclude in Section VII.

II. PILOT OVERVIEW

The pilot trial was conducted in a commercial building
by tracking five volunteers working on an office floor. The
floor consists of multiple open workstations and eleven
meeting rooms. A monitoring agent was installed on the vol-
unteers’ laptops1 and to collect the data once every minute
from the following: Wi-Fi Access Points, User Calendar,
System Activity Monitor, Instant Messaging (IM) Clients and
Time-of-day. Further details on each context source and the
type of context cues they provide are summarized in Table
I.

Ground Truth Establishment: For system validation (and
for training), the volunteers manually tagged (using a desk-
top application installed on their laptops) their current lo-
cation whenever they moved. For example, when they were
working in their cubicle, they entered the tag cubicle, while
attending a meeting, the tag meeting with the specific room
number and the tag break, when they took a break. These
tags were considered as the ‘Ground Truth’ while evaluating
the system.

III. CHALLENGES

Many of the aforementioned context sources (for ex-
ample, IM, Calendar) are meant for other purposes (e.g.
chatting or maintaining appointments) and are at best fuzzy
indicators of an employee’s state. Some of the challenges in
working with such sources are:

Unreliability: Context sources, like IM status, Calendar
rely on the employees to get updated properly. Cases need
to be considered where an employee might forget to update
the status promptly. For example, the employee might leave
his IM status as busy (usual indicator for being in a meeting)
even after returning to his cubicle from a meeting.

Conflicts: Conflicts amongst sources providing two dif-
ferent location estimates need to be addressed as well. For

1We did not include volunteer-owned cell phones as the volunteers may
not be open to installing a tracking application on their private phones. On
the other hand, the laptops are supplied and managed by the employers.
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Table I
DETAILS OF Context-Sources CONSIDERED IN THE PILOT

Context-
Source

Context-Cues

Wi-Fi
Access
Points

RSSI values of Wi-Fi access points seen by
employees’ laptops were mapped to a numeric
scale in the range 0 (no signal) to 100 (very
strong signal). 32 Wi-Fi access points are in-
stalled in our pilot site and subsets of six or
seven of them are reachable at different areas.

System
Activity

Provides a binary output specifying the state of
the employee’s laptop (Idle, Active).

IM
Client

Status updates of employees’ internal IM client
(Available, Away, Busy, In a Meeting, etc.) were
recorded during the data collection period.

Calendar Reports if the employee is scheduled to attend
a meeting with a meeting room. Takes a value
from the set (NoMeeting, MR204, MR205 etc.)

Time-
of-Day

To capture diurnal patterns of employees’ ac-
tivities. Time is represented as an epoch value.

example, consider a case where an employee is attending
a meeting in a specific meeting room (obtained from his
calendar entry) but leaves his laptop in the cubicle. The
Wi-Fi would indicate location as the cubicle whereas the
calendar would indicate that the volunteer is in the meeting
room.

Heterogeneity of Spaces: Conventional localization sys-
tems primarily focus on closed spaces such as a meeting
room with a single entry/exit. However, a large portion in
commercial sites are often open spaces, like cubicles. In
fact, just about 5 percent of our candidate office is closed
spaces while the remaining area belongs to open spaces, hall
ways etc. We focus on both open and closed spaces. It is
challenging to monitor open spaces as they generally have
multiple entries/exits and seating densities vary across the
area.

In addition, the fundamental nature of information pro-
vided by context sources is different for each source. For
example, Wi-Fi provides location stamps based on the lo-
cation of laptops, an IM client refers to the current user
activity, whereas time-of-day captures daily patterns in a
series of activities an employee engages in. In order to
meet the challenges discussed above and to incorporate such
dissimilar cues, we model the context of an employee as
Situation. A situation is an abstraction of an employee’s
location, activity and behavioral patterns and can be consid-
ered as a function of observed context cues. Even though it
can be inferred at different granularity levels (e.g, browsing
internet, reading a research paper etc.), we are focusing at a
level that helps infer area occupancy. Such situations include
whether the employee is at her Cubicle, attending a Meeting,
or taking a Break. As an illustration, the Break situation is
a categorization for all the activities when the employee is
neither attending a meeting (in a meeting room) nor working
in her cubicle.

IV. SITUATION INFERENCE

Let possible situations be S = [S1, S2, S3, ...., SN ] and
input vector be Ct = [C1t, C2t . . . CNt], where Cit is the
cue from the ith context source at time t. Our objective is
to infer St ∈ S, the situation at time t, from the context
cues at that time instant. In the pilot, 36 context cues from
five context sources - 1. Wi-Fi (32 context cues from access
points2), 2. System Activity, 3. IM client, 4. Calendar and
5. Time-of-Day - form the input vector, C. Each training
instance relates such an input vector Ct′ to the manually
tagged situation, St′ , of the user at time t′, where St′ ∈ S.
Next we describe two inference models that we used.

A. Regression-based Model

In this model, we consider relative contributions of each
context cues to each of the situations and combine them as
follows:

w1.C1t + w2.C2t + . . .+ wN .CNt = Sj (1)

where [w1, w2 . . . wN ] are the unknown weights assigned
to observations [C1t, C2t . . . CNt] for situation Sj . Before
we solve W.C = S using standard techniques to get W , we
need to assign numeric values to the observation vector C
and the situation vector S.

Computing Observation Vector C : We assign
P (Cit|Sj) ∗ idf(Cit) as the numeric value to corresponding
elements in the C vector (i = 1 . . . N ), where P (Cit|Sj)
is computed from the training data as the Probability Mass
Function (PMF) of the observations from context source Ci,
for the situation Sj ; idf(Cit) is Inverse Document Frequency
(IDF) measure of Cit. The IDF measure enables us to de-
emphasize same context cue that occur in multiple situations.

Computing Situation Vector S : For S, we transform
each Si to a Cartesian point in (x, y) (say S′

i) plane such
that for any other situation Sj , |Si−Sj | ≥ ∆. S′

i sets target
point for situation Si during test time and the value of ∆
defines the distance between two target points. We associate
a threshold value τ around each S′

i to classify between
an ‘Inferred’ and a ‘Not Inferred’ state. Essentially, as τ
increases more states could be inferred, but, at the cost of
precision. Finally, at test time, given an input observation
C(t′) (context values at time t′), and the W vector (pre-
computed using training data), we assign a situation S′

i, if
Euclidean distance(S′

i, C) ≤ τ . For the rest, we mark them
not inferred.

In our prior paper [9], we describe applying this
regression-based approach to building energy management.

B. Classification:

In this approach, user situation is marked as the target
variable and a classification tree is constructed using the
C4.5 algorithm. Total number of classes is equal to the

2Values from unreachable access points are marked as 0 to complete the
input vector.
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Figure 1. Confusion matrices representing accuracy of inferring one volunteer’s situation using classification (top three) and regression (bottom three)
approaches using data from subsets of context-sources. Higher numbers in the primary diagonal indicate higher accuracy of inferences. On the other hand,
higher numbers in the non-primary diagonal indicate lower accuracy of inferences. It is important to note that both precision and recall for classification
based approach is much higher than that for regression-based one.

number of interested situations of a volunteer. Later, each
test instance I is mapped to one element of the set of
possible class labels. As shown in Figure 1, the classification
approach yields more accurate results than the regression
based one. Another benefit of using classification is that
it can process both numeric and nominal input variables,
therefore, no need of mapping the context cues to numeric
values.

V. RESULTS

We use Weka [4] to construct classifier and linear
regression models, as well as to evaluate those models
using the 10-fold cross validation approach. J48, a Java
implementation of the C4.5 algorithm [6] in Weka tool-set
is used to construct a well-pruned decision tree in each run
that avoids over-fitting. The tool-set also provides a linear
regression module, however, pre-processing of the data to
convert non-numeric values to numeric values was done
externally in Python.

A. System Accuracy

In our evaluation, we quantify system performance based
on correctly labelled data instances. While evaluating clas-
sification approach we consider all situations, as shown

in Figure 1 (top-row). On the other hand for regression,
we consider only situations that have sufficient number
of tagged data points necessary for effective learning and
testing. For instance, as shown in Figure 1 (bottom-row),
only five situations have been considered in regression.

Table II
PRECISION AND RECALL VALUES FOR DIFFERENT SITUATIONS

CONSIDERED FOR VOLUNTEER 1

Class (Situation) Precision/Recall
for Classifica-
tion

Precision/Recall
for Regression

Cubicle 0.891/0.896 0.919/0.594
Break 0.808/0.826 0.580/0.595
M1 0.934/0.946 0.171/0.585
M3 0.883/0.907 0.426/0.383
M7 0.886/0.886 0.771/0.161

Table II shows precision and recall values of inferred
situations for one volunteer that could be considered for
both regression and classification approaches. Classification
works better even for the situations where sufficient training
data is not available. While regression shows high precision
values for two situations, recall values for all the situations
are poor. For rest of the 4 volunteers, we show average
accuracy values obtained in Table III.
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Table III
AVERAGE ACCURACY VALUES FOR REST OF THE 4 VOLUNTEERS

(OVERALL PERCENTAGE ACCURACY)

Volunteer Classification Regression
Volunteer2 89.72% 64.21%
Volunteer3 90.94% 75.60%
Volunteer4 88.66% 80.68%
Volunteer5 87.59% 63.45%

B. Contribution of individual sources

In order to highlight the significance of each context
source, we start by creating an input vector based on only
Wi-Fi access points and then iteratively include context data
from other sources. Figure 1 (top-left) shows a confusion
matrix for predictions made by the classification model
while considering only access points. It represents the dispo-
sitions of data instances - the numbers along the main diag-
onal denote the correct decisions made and the numbers out
of this diagonal are the errors (confusion) between various
classes. It is clear that the model is unable to distinguish
between Cubicle and Break (C and B) classes because as
explained above the model is not able to distinguish between
the location of the volunteer and that of her laptop. Next,
in Figure 1 (top-middle), we include System Activity and
IM client along with access points. There is a considerable
increase in the accuracy of predicting Cubicle and Break
situations because these additional context sources can help
determine if the volunteer is taking a break or using the
laptop in her cubicle. Figure 1 (top-right) considers all the
context sources by including Calendar and Time-of-day.
These sources increase accuracy of inferring most situations
related to the meeting rooms because calendar entries point
to locations where meetings are scheduled and time-of-day
captures volunteers’ temporal regularities in taking breaks,
attending meetings, etc.

Similarly, the bottom three matrices in Figure 1 are con-
fusion matrices for regression based approach. Using only
access points (bottom-left), the model is confused between
three situations and reports a poor accuracy. Addition of
IM client status and System Activity improves inference for
Cubicle and Break situations. However, the model does not
capture patterns in the usual activities of the volunteer using
time-of-day parameter.

VI. RELATED WORK

Most commonly used sensors are Passive Infrared (PIR)
based sensors, but they can not determine number of people
in a given area. CO2-based occupancy detection sensors [7]
are slow to detect change of events; whereas large-scale
deployment of Camera [5], [2] or sonar-based surveillance
networks [8] incurs substantial deployment costs and main-
tenance overhead. They also bring up privacy issues as they
detect more than what is required. We argue for selective

deployment of high precision occupancy sensors only in
areas where opportunistic context sources are inadequate.

Erickson et al.[3] propose a more sophisticated wireless
network of cameras to determine coarse-grained floor-level
occupancies, while maintaining user comfort standards [2].
A more recent work [1], uses low cost and incrementally
deployable wireless PIR sensors with reed switches. Our
research augments this body of work by advocating a prior
context profiling, and smart identification of areas where
occupancies can be detected using existing soft sensor data.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel hardware-sensor
less scheme that leverages pre-existing opportunistic context
sources to derive occupancy details of a commercial build-
ing. Each soft sensor provides a cue about an employee’s
situation, and supervised learning algorithms fuse such cues
to infer situations and subsequently to occupancy figures.We
report system accuracy of as high as 90% through a pilot
study, which demonstrates that this scheme can support
context aware applications in smart buildings with minimal
or no additional sensors. We are conducting another pilot of
similar scale at a different building. In this pilot, along with
devising further techniques to increase the system accuracy,
we are exploring potential domain specific applications of
the scheme, such as dynamic seat allocation. Handling
privacy concerns and investigating unsupervised techniques
in detail remain focus of our work in the future.
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