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Abstract—This paper proposes a novel hybrid state estimation
method using traditional SCADA (Supervisory Control And
Data Acquisition) and newly deployed limited PMU (Phasor
Measurement Unit) measurements. System states are estimated
when a set of SCADA and/or PMU measurements come in. As
PMU measurements come much faster (typically one sample
in 20ms) than SCADA measurements (typically one sample in
10 seconds), in between two SCADA measurements, system
states of PMU unobservable buses are interpolated using an
interpolation matrix (H)live PMU measurements. In between
two SCADA samples, if PMU measurements change significantly,
pre-computed interpolation matrix (H) is compensated with a
sensitivity change matrix (∆H) and system states are estimated
using the corrected interpolation matrix. In order to compute
the ∆H , the method classified the measurement set into four
sub-sets i.e. PMU measurements, SCADA measurements of PMU
boundary buses with significant change, SCADA measurements
adjacent to the selected boundary buses, and remaining SCADA
measurements and run a modified weighted least square method
with different weights corresponding to each sub-set of mea-
surements. This compensation improves the estimation accuracy
significantly. Effectiveness of the proposed scheme is evaluated
on a number of IEEE benchmark test systems and evaluation
results are presented in this paper.

Index Terms—Phasor measurement unit, Synchrophasors,
State Estimation, Linear State Estimation, Hybrid State Esti-
mation, Observability

I. INTRODUCTION

Phasor Measurement Units (PMUs) are now well accepted
as measurement systems of choice by most power systems
around the world [1]. As compared to SCADA measurements,
PMU measurements are more accurate and of higher precision,
thus play an important role in enhancing performance of state
estimators [1]-[3]. However, being expensive, economic con-
straints do not allow PMUs to be installed in all the buses of a
large power system. Traditionally PMUs are placed in gradual
phases in large power systems. Thus, few PMU measurements
along with the traditional SCADA measurements are available
for state estimation. Since PMU data can be obtained as fast as
one measurement per cycle, it is envisaged that the estimation
should be real time and it should capture the dynamics of the
system in the magnitude of milliseconds.

Several state estimation methods incorporating PMU mea-
surements have already been proposed. For example, Bruno et
al. [4], Hongga et al. [5], and Fang et al. [6] proposed direct
state estimation methods using PMU measurements where the
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virtue of higher precision of PMU measurements is exploited.
However, these methods could not take the advantage of faster
data rate from PMUs as PMU measurements in between
two SCADA measurements are dropped and hence could
not track the system dynamics. Hui Xue et al.[7] and Jain
et al. [8] improved above mention methods by predicting
the change in SCADA measurements (due to slow change
in load) while PMU measurements arrive. However these
methods overlook the fast system dynamics trackable through
PMU measurements. Meliopoulos et al.[9] and Farantatos et
al.[10] suggested a distributed state estimator which estimates
the states locally at substation level. This type of estimator
requires the system to be completely observable through PMU.
Cheng et al.[11] proposed a linear state estimator for mixed
set of PMU measurements and traditional measurements. This
estimator is unable to track system dynamics in any unobserv-
able region through PMU. Nuqui et al.[12] suggested a hybrid
state estimator where classical state estimator is incorporated
along with the linear state estimator. However, this method
also could not track system dynamics during fault or sudden
change in load.

This paper proposes a novel hybrid state estimation al-
gorithm combining conventional SCADA and limited PMU
measurements. In between two SCADA measurements, when
a set of PMU samples comes in, system states of PMU
unobservable buses are interpolated from the live PMU data
using a pre-computed interpolation matrix (H). This interpo-
lation matrix is re-computed when both SCADA and PMU
measurements arrive together. In between two SCADA mea-
surements, if PMU measurements change significantly, pre-
computed interpolation matrix (H) is compensated with a sen-
sitivity change matrix (∆H) and system states are estimated
using the corrected interpolation matrix. In order to compute
∆H , proposed method classified the available measurement
set (M ) into four sub-sets i.e. PMU measurements (A ⊆M ),
SCADA measurements of PMU boundary buses (B ⊆ M ),
SCADA measurements adjacent to boundary buses (C ⊆M ),
and remaining SCADA measurements (D ⊆ M ). A modi-
fied weighted least square method with differential weights
(W (A) > W (D) > W (C) > W (B)) corresponding to each
sub-set of measurements is run to estimate the states of the
system. This differential weight factor improves the estimation
accuracy significantly. Effectiveness of the proposed method
is evaluated on a number of IEEE benchmark test systems and
simulation results are presented in this paper.

Rest of the paper is organized as follows. Section II presents
the partitioning of measurement set, Section III describes the
proposed method, Section IV presents the simulation results
and discussions and finally Section V concludes the work.
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Fig. 1. Partition of measurement

II. PARTITIONING OF MEASUREMENT SET

In order to improve the estimation accuracy during dis-
turbance, proposed method partitioned the measurement set
into four subsets based on disturbance location. The concept
is illustrated using the IEEE 14 bus test system as shown
in Figure 1. Let us assume that the system is completely
observable through SCADA measurements and there is only
one PMU at bus 2. Hence, the system is partially observable
(buses 1, 2, 3, 4 and 5) through PMU. Now consider a fault
occurs at bus 6 in between two sets of SCADA measurements.
Hence, this fault will only be reflected in PMU measurements
close to the fault. In this case sates of PMU observable bus
5 will change most as this is the closest observable bus of
the fault. Hence PMU unobservable bus 6 connected to 5
will be treated as disturbance location. If multiple buses are
connected to bus 5, all the buses directly connected to it
will be considered as disturbance location. As last SCADA
measurement of bus 6 is no more valid, least weight is given
to the bus 6 SCADA measurement in the WLS estimation.
Similarly, states of all the buses connected to bus 6 will also
change to some extent, hence SCADA measurements of buses
11 and 12 will also be given lower weight. Remaining set
of SCADA measurements (7, 8, 9, 10, 13 and 14) can be
given a moderate weight as they may not change for the given
fault. Being highly accurate and live, highest weight is given
to the set of PMU observable buses (e.g. 1, 2, 3, 4 and 5). An
example weight factors for these four subsets are presented in
figure 2.

III. PROPOSED STATE ESTIMATION

In this paper, a novel Linear State Estimation (LSE) method
is proposed based on LSE formulation developed by Nuqui
[12]. In the proposed method, a interpolation matrix H is
computed when both SCADA and PMU measurements comes
in together and in between two SCADA measurements when
a set of PMU measurement comes in, states are recomputed
directly using the interpolation matrix and the new set of

Fig. 2. Weights for sub-sets

PMU measurements. In case PMU measurements change
significantly, interpolation matrix (H) is compensated by a
factor called sensitivity change of interpolation matrix (∆H)
and states are computed. H is recomputed as soon as a new
set of SCADA measurements becomes available. This helps to
track the system dynamics more accurately. The mathematical
model of the proposed method is demonstrated as follows:

Let, a set of buses (O) is observable through PMUs whereas
another set of buses (U) is unobservable through PMUs. The
vector of observable buses consists of PMU placed buses
and buses directly connected to PMU buses. LSE interpolates
the voltages of unobserved buses from the observed ones.
The relationship between the vector of complex voltages of
unobserved buses EU and the vector of complex voltages of
observed buses EO is derived as follows [12]:

Nodal equations in a power system form can be written as:[
IBUS

]
=
[
YBUS

]
.
[
EBUS

]
(1)

Where, IBUS is bus injection vector, YBUS is bus ad-
mittance matrix, and EBUS is node voltage vector. The bus
admittance matrix YBUS is partitioned into four sub-matrices,
one each corresponding to self admittance of observable and
unobservable buses and two corresponding to the mutual
admittances of the lines connected between observable and
unobservable buses as follows:[

IO
IU

]
=

[
YOO YOU

YUO YUU

]
.

[
EO

EU

]
(2)

At a particular operating point, the injections IU at the
unobserved buses U is modeled as equivalent load admittances.
If Nu be number of unobserved buses, the current injections
IU at the unobserved buses are expressed as:[

IU
]

=
[
(Pi − jQi)/E

∗
i

]
, i = 1, 2, ...., NU (3)

The equivalent load admittance vector YU follows from the
relationship Y = I/E.[

YU
]

=
[
YL
]

=
[
(Pi − jQi)/|Ei|2

]
, i = 1, 2, ...., NU (4)

Where, YL is a diagonal matrix of size NU ∗ NU . With
the current injections at the unobserved buses converted into
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admittances, the original matrix equation (2) now becomes IO
−−−−

0

 =

 YOO | YOU

−−−− − −−−−
YUO | YT

 .
 EO

−−−−
EU

 (5)

Where,
YT = YUU + YL (6)

Performing the indicated operation on the lower row of matrix
equation (5) yields

0 = YUO.EO + YT .EU (7)

Which when solved for EU will now express the relationship
between the vector of PMU unobservable buses with the vector
of PMU observable buses. Hence,

EU = −Y −1
T .YUO.EO (8)

Let us denote the number of observed buses to be NO and
number of unobserved buses to be NU . The product Y −1

T .YUO

is a sparse matrix with admittance elements of dimension
NUXNO. Let us define this product to be H

H = −Y −1
T .YUO (9)

Yielding our model for interpolation of unobserved buses in
matrix form,

EU = H.EO (10)

If there is any change in configuration or power flow in
between the arrival of next set of PMU measurements, then
the above stated linear state estimator has to be updated. Any
set of interpolation coefficients H calculated using (9) assumes
a reference operating point, say ’0’. That is,

H0 = −(Y 0
T )−1.YUO (11)

Any deviation in operating point will create errors in the
following interpolation equation.

EU = H0.EO (12)

A method of updating the interpolators H as the system
changes its operating point can be found as given below:

H = −(YUU + diag[S∗
U/|EU |2])−1.YUO (13)

as,
YT = YUU + diag[S∗

U/|EU |2] (14)

Then we have the aforementioned expression of the interpo-
lation coefficients. From (9), we get

YT .H = −YUO (15)

Taking the differential of both sides of this matrix equation
yields,

∆YT .H + YT .∆H = 0 (16)

Which when solved for ∆H yields

∆H = −Y −1
T ∆YTH (17)

Now from (14), the differential of YT is,

∆YT =
(
diag

[
S

′∗
U /|E

′

U |2 − S0∗
U /|E0

U |2
])

(18)

Where, S
′

U is the injection of unobservable buses at the present
configuration, S0

U is the injection of unobservable buses at
the initial operating configuration, E

′

U is the voltage of unob-
servable buses at the present configuration, E0

U is the voltage
of unobservable buses at the initial operating configuration.
Since YUU is a constant matrix of YBUS elements, ∆YUU is
0. Finally, we have the following expression for the change in
the value of the interpolation coefficient matrix H.

∆H = −(Y 0
T )−1.

(
diag

[
S

′∗
U /|E

′

U |2 − S0∗
U /|E0

U |2
])
.H

(19)
Which expresses the relationship between the incremental
(sensitivity) changes in the interpolation coefficient matrix
with change in injected power at a unobservable bus. Hence,
the interpolation formula for unobserved buses becomes

EU = (H + ∆H).EO (20)

From the equation (20) it can be observed that when
traditional measurements and PMU measurements arrive si-
multaneously, admittance matrix can be recomputed based on
topology and state information and thereby, H can be updated
to calculate EU . But, PMU measurements can be obtained as
fast as every cycle, while other SCADA measurements get
updated every 2-10 seconds.

So, inorder to calculate ∆H only when PMU measurements
arrive, voltage magnitude and power injection of unobservable
buses are predicted since, ∆H is a function of power injection
and voltage magnitude of unobservable buses for the present
configuration, i.e.

∆H = f(S
′

U , |E
′

U |) (21)

Both S
′

U , |E
′

U | can be obtained with the help of a modified
weighted least square algorithm as explained below:

With the knowledge of PMU observable bus voltage vector
for present configuration and PMU unobservable bus voltage
vector for previous operating configuration, the change in
power flow for the lines are calculated. If the maximum
change is found to be greater than a pre specified value then
change in configuration (disturbance) can be inferred. In case
of disturbance, the states are updated using modified weighted
least square subroutine as follows:

Let, x = state vector of the system (bus voltage and power
angle), n = number of states = 2N − 1, for N bus system, z
= measurement vector, zεRm, m = number of measurements;
m > n, η = measurement noise vector, whose elements are
usually assumed to be independent Gaussian random variables
with zero mean.

In this WLS algorithm, normal traditional measurements
corresponding to unobservable regions through PMU mea-
surements are considered along with the PMU measurements
in order to obtain complete topological observability of the
system. Then,

z = h(x) + η (22)

Where, h(x) is a nonlinear vector function of x. Objective
function in WLS method is the weighted sum of squared error;
it can be defined as,

J(x) = [z − h(x)]T .R−1.[z − h(x)] (23)
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Where, h(x) is equivalent to estimated measurement, R is the
covariance matrix of measurement errors which are assumed
to be uncorrelated.

Expanding (23) in Taylor series and neglecting second and
higher order terms, we get

J(x) = [∆z − h(∆x)]T .R−1.[∆z − h(∆x)] (24)

which in iterative form can be written as,

J(xk) = [∆zk − h(∆xk)]T .R−1.[∆zk − h(∆xk)] (25)

where,
∆xk = xk − xk−1 (26)

∆z = z − h(xk) (27)

xk = state vector at the kth iteration P k = Jacobian matrix
δh(x)/δx with P k

ij = δhi/δxj |x=xk
At the optimum point,

∇J(x) = 0, which yields

∆xk = (P kTR−1P k)−1P kTR−1∆zk (28)

Weight factors for the above WLS method is selected as
follows: If the line corresponding to the maximum change
in power flow is connected to any PMU unobservable bus
(say bus ’a’) then SCADA measurements corresponding to bus
’a’ is given very low weight. Further, SCADA measurements
corresponding to all buses connected to bus ’a’ are also given
lower weight.

Equation (28) is solved iteratively by initializing the states
with the last estimated values. This reduces computational time
as compared to traditional WLS method where flat start is
considered. State vector x is updated, until all elements of ∆x
becomes less than a pre-specified convergence limit.

The flowchart in Figure 3 shows the implementation steps
of the above proposed method. It can be observed from
the flowchart that when the SCADA data arrive, based on
the classical state estimator and topology processor (both
not shown in the figure) results, YBUS is recalculated to
calculate H matrix. Whereas, when the PMU measurements
arrive, power flow is calculated in all the lines using present
PMU measurements and previous instant’s state estimation
results for PMU unobservable buses to judge on the change
of configuration in the present instant. If there is not much
change in configuration (maximum power flow change less
than a threshold value), linear state estimation is run based
on present PMU measurements, else H matrix is updated by
running a modified Weighted Least Square algorithm. Based
on this new value of H, unobservable regions’ voltages are
calculated.

IV. SIMULATION RESULTS

Performance of the proposed state estimation methods is
evaluated on IEEE 30 bus and IEEE 118 bus system. It
is assumed that both the systems are completely observ-
able through SCADA whereas some buses are unobservable
through PMUs. For simulations, SCADA data were generated
using a conventional Fast Decoupled power flow program,

whereas PMU data were generated using a time domain
transient stability program. To simulate real scenario, 2%
random error is incorporated in the SCADA data. However,
being highly accurate true values from transient stability
analysis are used as PMU measurements. The set of available
SCADA measurements is formed by selecting measurement
data randomly ensuring the observability and the redundancy
of 1.6. For IEEE 30 bus system, 5 PMUs were placed at
buses 2, 6, 10, 15, and 25 as shown in Figure 4 and for
IEEE 118 bus system 16 PMUs were placed at buses 8,
15, 26, 30, 38, 45, 52, 57, 63, 68, 74, 81, 90, 99, 108,
and 117 based on observability analysis. For simulation, it
is considered that PMU measurements arrive at an interval of
20ms, whereas SCADA measurements arrive at an interval of
4s. The algorithm is coded in C programming language in the
environment of Visual C++ in 32 bit Windows OS platform
with 2.10 GHz Intel Core 2 Duo processor.

To illustrate the effectiveness of the proposed method, for
IEEE 30 bus system a temporary (0.1 s) three phase to ground
fault is simulated at bus 13 which is unobservable through
PMUs as shown in Figure 4. When PMU measurements
come, power flow through all the lines connected between
any observable and unobservable buses are calculated. For
the given fault, it was found that power flow on line 12-
13 changes significantly (> 10%) from the last estimation.
Hence, unobservable bus 13 is treated as faulted bus. Though
in this case detected faulted bus is actually faulted bus, this
may not happen in all cases. Any unobservable bus connected
to an observable bus and close to the faulted bus may also
be detected as faulted bus when depth of observability is
low. Based on detected faulted bus, dynamic weight factors
are selected for different set of measurements. For example,
SCADA measurement corresponding to faulted bus, 13 will be
given least weight, SCADA measurements for buses (4, 12)
directly connected to the faulted bus will be given low weight,
remaining SCADA measurements will be given moderate
weight and the PMU measurements will be given the highest
weight. With such weights, states are estimated using WLS.

Estimated states of the faulted bus 13 and a remote bus
30 (not directly connected to faulted bus) are presented in
Figure 5 and Figure 6, respectively. Proposed estimation is
compared with estimation method in [12] and with the true
value obtained from time domain transient stability solution.
From Figure 5, it is clear that proposed estimation is much
better than the method in [12] and is very much close to the
actual. However, for any remote bus as shown in Figure 6,
both the methods can accurately estimate the system states.

For IEEE 118 bus test system, two case studies were made.
In the first case, a three phase temporary (0.1s) fault is
simulated at bus 18 and in the second case 60 MW load at bus
18 is suddenly thrown off for few seconds. Estimated states for
bus 18 in both the cases are presented in Figure 7 and Figure 8,
respectively. Though bus 18 is unobservable through PMU, in
both cases proposed estimation is much better than [12] and
very close to the actual.

For any system, if unobservable buses are far from PMU
observable buses, it is expected to have lower estimation
accuracies depending on their distance with respect to nearest
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Fig. 3. Flowchart for the proposed Hybrid State Estimation
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Fig. 4. IEEE 30 bus test system
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Fig. 5. Voltage and phase angle for bus 13 of IEEE 30 bus system for a 3
phase fault on bus 13
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Fig. 6. Voltage and phase angle for bus 30 of IEEE 30 bus system for a
three phase fault on bus 13

PMU observable bus. This is reasonable because changes in
states in those unobservable buses may not be reflected in the
PMU measurements. In order to verify the estimation accuracy
in such cases, system states were estimated for disturbances at
various tier of unobservability, where tier of unobservability is
defined as the maximum of all the minimum distances of buses
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Fig. 7. Voltage and phase angle for bus 18 of IEEE 118 bus system for a 3
phase fault on bus 18
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Fig. 8. Voltage and phase angle for bus 18 of IEEE 118 bus system for load
thrown off at bus 18

from nearest observable bus. For example, PMU observable
buses are in tier 0, buses directly connected to PMU observable
buses are in tier 1 and so on. Three case studies were simulated
on IEEE 118 bus test system. In the first case, PMUs were
placed in such a way that all buses will be within tier 3, for the
second case additional PMUs were placed to make all buses
within tier 2 and in third case few more PMUs were placed
to make the system observable within tier 1. For 118 bus test
system, initially 4 PMUs were placed at buses 17, 49, 85 and
94 to make it observable up to tier 3. For the next case 6 more
PMUs were placed at buses 9, 12, 23, 34, 71 and 105 and for
the third case 5 more PMUs were placed at buses 28, 63, 68,
77 and 110. A temporary (0.1 s) three phase to ground fault
was simulated on bus 4 which is in tiers 3, 2, and 1 for cases
1, 2, and 3, respectively. Estimated states for each case are
presented in Figure 9, Figure 10, and Figure 11, respectively.
It can be observed from Fig. 9- Fig. 11 that the estimated
results are more accurate for 1st tier observability as compared
to 2nd tier or 3rd tier cases. However, estimated results for 2nd

tier and 3rd tier are also very close to true value. This shows
that even if very few PMUs are placed strategically, proposed
estimation will provide reasonably accurate results.

Similarly, a simulated scenario is generated where the load
is thrown off on bus 4 which is in tiers 3, 2, and 1 for
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Fig. 9. Voltage and phase angle of bus 4 (at 3rd tier) for a fault in IEEE
118 bus system
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Fig. 10. Voltage and phase angle of bus 4 (at 2nd tier) for a fault in IEEE
118 bus system
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Fig. 11. Voltage and phase of bus 4 (at 1st tier) for a fault in IEEE 118 bus
system

cases 1, 2, and 3, respectively. Estimated states for each
case are presented in Figure 12, Figure 13, and Figure 14,
respectively. As expected, it can be observed from Fig. 12-
Fig. 14 that the estimated results are more accurate for 1st

tier observability as compared to 2nd tier or 3rd tier cases.
In this case also, estimated results for 2nd tier and 3rd tier
are also very close to true value. This shows that even if very
few PMUs are placed strategically, proposed estimation will

provide reasonably accurate results.
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Fig. 12. Voltage and phase angle of bus 4 (at 3rd tier) for load change in
IEEE 118 bus system
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Fig. 13. Voltage and phase angle of bus 4 (at 2nd tier) for load change in
IEEE 118 bus system
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Fig. 14. Voltage and phase of bus 4 (at 1st tier) for load change in IEEE
118 bus system

Computational efficiency of the proposed method is com-
pared with the traditional methods and experimental results
are presented in Table I. It can be seen from the Table I that
proposed method takes more time than LSE due to additional
computation. However, computation time requirement is much
less compared to the traditional WLS state estimator. It is also
clear that with the increase in system size computational speed
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up of the proposed method increases significantly compared
to conventional WLS.

TABLE I
EXECUTION TIME COMPARISON OF STATE ESTIMATION TECHNIQUES

IEEE No. of Time required Speed-up
system PMUs LSE WLS Proposed
30bus 4 0.03ms 6.1ms 2.1ms 2.9

118bus 16 0.07ms 72ms 13ms 5.54

V. CONCLUSION

This paper presented a novel hybrid state estimation tech-
nique combining SCADA and PMU measurements. The sim-
ulation results presented clearly show that the proposed state
estimation technique could accurately track the system dynam-
ics even in the presence of a disturbance in the unobservable
part of the system. Simulation results also show that with
strategic placing of PMUs, proposed method could estimate
the system states using minimum number of PMUs within
reasonable accuracy and could estimate the states as frequent
as PMU sampling rate. Hence, this estimation technique could
be utilized for faster control actions such as transient stability
analysis, FACTS devices control, voltage stability analysis, etc.
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