Envisioning a Robust, Scalable Metacognitive Architecture Built on Dimensionality Reduction Scruffy Metacognition

Jason B. Alonso¹ Kenneth C. Arnold^{2,3} Catherine Havasi^{3,2}

¹Personal Robots Group MIT Media Laboratory

²MIT Mind Machine Project

³Software Agents Group MIT Media Laboratory

AAAI-10 Workshop on Metacognition for Robust Social Systems July 2010

Alonso, Arnold, Havasi (MIT)

Scruffy Metacognition

< ロ > < 同 > < 回 > < 回 >

The Challenge

- Metacognitive architectures too expensive to explore iteratively
 - Programmers never count to 3.

< ロ > < 同 > < 回 > < 回 >

What to do?

How do we build a scalable framework for metacognitive architectures?

- Hand-crafted metareasoners are out.
- Use many instances of a few types of simple but powerful reasoning units.
 - Difference between reasoner and metareasoner in the inputs
 - Communicate with simple symbols, generally opaque semantics
 - What kinds of symbols? More later.

A B F A B F

What "reasoning units"?

What function should each component perform?

- Connectionist answer (switches, or "neurons") theoretically satisfying to some, practically less than enlightening
- Our answer: pattern discovery and matching
 - One basic process of an intelligent system is to identify useful patterns in its input and its output
 - One symbol <i> one pattern
 - Summarizing many inputs and outputs with fewer symbols
 - ... in essence, dimensionality reduction

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We claim...

- Planning can be a pattern completion problem that leverages dimensionality reduction
- Metacognitive functions, particularly metaplanning, can be built on these principles

< ロ > < 同 > < 回 > < 回 >

We are "Scruffies"

Imprecise and loosely statistical handling of symbolic representations

We are "Scruffies"

Imprecise and loosely statistical handling of symbolic ۲ representations

Current knowledge						
\rightarrow reading to your children is for educating them.	by 🏶 <u>kinchin</u>	Score: 6	6 99			
\rightarrow teaching other people is for educating them.	by 🍣 <u>Jake512</u>	Score: 4	6 99			
\rightarrow seeing art is for Education.	by 🌐 <u>MarkFarrar</u>	Score: 4	609			
\rightarrow Education is acquisition of knowledge and understanding	by 😌 <u>Bryan</u>	Score: 4	6 09			
\rightarrow <u>answering questions</u> is for <u>educating</u> .	by 🍔 <u>Laserjoy</u>	Score: 3	004			
\rightarrow <u>watching television</u> is for <u>education</u> .	by 🍣 justjim	Score: 3	699			
\rightarrow The effect of going to school is education	by 🏶 <u>damien29</u>	Score: 3	604			
\rightarrow <u>education</u> can <u>further your career</u>	by 😌 <u>budo</u>	Score: 3	609			
Page 1 of 17 <u>Next</u> <u>Last</u> (133 total)						
Open Mind wants to know						
educate Is similar to leam leam is similar to educate One of the things you do when you attend class is educate						

Open Mind Common Sense

Corpora

We are "Scruffies"

Imprecise and loosely statistical handling of symbolic ۲ representations

ConceptNet

Alonso, Arnold, Havasi (MIT)

э

Analysis

We are "Scruffies"

Imprecise and loosely statistical handling of symbolic ۲ representations

	cat	dog	airplane	toaster
IsA pet	+6	+5		
AtLocation home	+8	+2		+1
CapableOf fly	-3	-5	+9	
MadeOf metal			+1	+1
fur PartOf	+6	+5		

AnalogySpace, prepared

Analysis

We are "Scruffies"

Imprecise and loosely statistical handling of symbolic • representations (dynamic representations)

AnalogySpace, computed

Alonso, Arnold, Havasi (IVIII)	Alonso, /	Arnold,	Havasi	(MIT)
--------------------------------	-----------	---------	--------	-------

Scruffy Metacognition

Metacognition 2010 10/21

< ロ > < 同 > < 回 > < 回 >

An example

Sheep games

"Nexi, come take the sheep."

Alonso, Arnold, Havasi (MIT)

★週 ▶ ★ 国 ▶ ★ 国 ▶

Sheep games, continued

Now imagine two games...

- Both involve picking up toys and putting them somewhere
- How could Nexi know which game we're playing?

3 > 4 3

An architecture

Components

The Reducer

- Candid, Covariance-free Incremental Principal Component Analysis (CCIPCA) (Weng et al. 2003)
- Essentially AnalogySpace
 - Dynamically-generated representations
 - Open domain

(4) (5) (4) (5)

The Planner, part 1 of 2

- Build a model of salient patterns in observable events and behaviors
- Generate plans that achieve goals given this model
- Incremental. Learn/refine models from experience in real time
- Scruffy. Statistical handling of symbolic representations of the real world to draw robust conclusions
- In practice, two approaches:
 - Replay of natural responses to environment and teammates

Goal-seeking

A B F A B F

Components

The Planner, part 2 of 2

Image: A matrix

Intuitive Introduction to MIDAWT

Given a multivariate waveform (timeline):

- Detect instances of previously-seen patterns
- Refine models for those patterns (or record new pattern)
- Describe timeline as a combination of understood patterns
- Complete timeline by interpolating gaps in timeline

An example, revisited

An architecture

э

Summary

- The difference between cognition and metacognition is in the wiring, permitting scalable architectures.
- Systems that build their own representations dynamically are more robust.
- Forthcoming experiments
 - Mars Escape
 - Restaurant Game
 - Explore/exploit

A B F A B F

Here be dragons

2

イロト イヨト イヨト イヨト

A Unique MIDAWT/SP Insight

- When the astronaut player is engaged in a search activity with a bunch of boxes, the robot is not about to hit the elevator call button.
- Correlation not causal, but reflective of teaming behavior
- Anti-correlation not found in CBP or plan networks