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Abstract

Restricted and repetitive behaviors (RRB) are a core
symptom and an early marker of Autism Spectrum
Disorder (ASD). Despite technologies for detecting certain
forms of RRB, assessment and intervention for RRB still
heavily rely on professional experience and e↵ort.

This paper presents an ongoing investigation of a
technology that uses instrumented games or toys as
platforms to assess RRB and facilitate behavior
intervention during play. The design and implementation
of a prototype for the iPad are discussed. The same
technology can be applied to tangible objects such as
smart toys for a natural player-computer interface.
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Introduction

Autism, or Autism Spectrum Disorder (ASD), is a
developmental disorder that impairs an individual’s social
communication, sensory processing, and behavior. Early
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diagnosis and intensive intervention are critical to lowering
treatment cost and improving prognosis. Unfortunately, it
often requires enormous professional experience and e↵ort
to identify and treat symptoms of ASD [21]. Hence there
has been a great interest in technology that can recognize
and measure symptoms of ASD and even facilitate
interventions.

Restricted and Repetitive Behaviors (RRB) are one of the
core symptoms and diagnostic criteria of ASD [1].
Although no single type of RRB is unique to autism, a
pattern of multiple types of RRB can be an early indicator
of ASD [2, 13]. RRBs are also a frequent target of
behavioral interventions. The most widely used
intervention technique is Applied Behavior Analysis
(ABA). ABA principles including building response
repertoires, prompting variability, and reinforcing
variability have been found e↵ective for increasing
behavior variability in individuals with autism [21].

Among RRBs, stereotypical motor movements (SMM)
refer to repetitive, non-functional motor behaviors (e.g.,
body rocking and hand flapping). Sensors, such as
accelerometers [11, 7, 20, 9] and video cameras [3, 6], can
help recognize and measure SMMs, and provide valuable
data for identifying markers of ASD and assessing
treatment progress.

However, not all RRBs exhibit significant acceleration or
visual patterns. For example, when playing with toys,
many children with ASD tend to play in stereotypical ways
(e.g., stacking and lining up toys). Another challenge is
that when a RRB is identified, it still requires human
professionals to implement the interventions. To our
knowledge, few technologies can facilitate or even
implement behavioral interventions.

As our world becomes increasingly machine dense
(including both hardware and software), traditionally
analog and centralized ecosystems are becoming digital
and distributed. As an example, healthcare instead of
being delivered only in hospitals can now be accessed
where we are, and can be personalized to our own data
available through mobile sensors. Our next generation will
also benefit from such a transformation. We believe that
machines can provide more insight into a child’s
development and become a helper in their lives.

We attempt to push forward the technology to not only
recognizing and assessing RRBs, but also delivering
behavioral interventions within the context of play.
Instead of SMMs, we target a subtle form of RRB –
invariance in object manipulation. Our technology, Guided
Play, implements an intelligent agent that transforms
games and smart toys into behavior co-therapists. It
observes a child’s play, measures his/her behavior
variability, detects repetitive patterns, and joins the play
to increase behavior variability and repertoire. This paper
introduces a digital building block game that runs on the
iPad as part of our ongoing e↵ort to develop technologies
that can help identify symptoms of ASD and facilitate
behavior interventions.

Related Work

A large body of existing studies of RRB detection and
measurement focus on SMM, given that body motions
often emit significant acceleration or visual signals
recognizable by sensors.

One such line of research uses wearable accelerometers to
measure body movements and machine learning
algorithms to classify the movements as SMM or
non-SMM [7, 11, 6, 16]. Another approach is to track
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body motion in videos and use computer vision to detect
motion patterns [5, 14, 3] as well as other behavioral
elements such as facial expression, eye gaze, engagement,
etc [15, 8].

In addition to stereotypical body motions, children with
ASD often exhibit unusual and prolonged object
exploratory behaviors during play [2, 13]. Several “smart
toys” with embedded wireless sensors have been
created [20, 9] to track and identify stereotypical body
movements in play such as shaking, spinning, banging,
etc.

Our work is di↵erent in that it addresses a subtle form of
RRB not fully supported by exiting technology –
invariance in object manipulation and also supports
behavior intervention using principles of Applied Behavior
Analysis (ABA).

Guided Play

This section details the design and implementation of the
Guided Play system.

Guided Play Coach

Instrument

Apparatus

instructions
measurements

Behavior 
model

Output components
(e.g., speaker, screen, etc.)

instructions

Figure 1: System architecture. Overview
Guided Play is an intelligent agent behind a game or
smart toy that transforms it into a platform for behavioral
assessment and intervention. We call such a game or toy
apparatus. As illustrated by Figure 1, Guided Play inserts
an instrument into the apparatus as a sensing and
communication plug-in. An instrument can be a wireless
sensor embedded in a smart toy similar to those used in
Westeyn et al. [20] or a software component running
inside a computer game.

Inspired by the principles of ABA, Guided Play embodies
the following steps:

• Observing. The instrument continuously reads and
sends behavioral data to Guided Play Coach, the
decision making component of the system, which
then measures various aspects of the behavior,
including variability and size of repertoire.

• Detecting. When a RRB is detected based on
pre-defined percentile thresholds, Guided Play
Coach via the instrument gives instructions to the
apparatus to start behavior shaping.

• Joining. The apparatus will then play with the child
(prompting next move, taking turns, etc.) instead of
being played by the child (without any intervention
of the child’s behavior).

• Guiding. Following the best practices of improving
behavior variability [21], Guided Play Coach
instructs the apparatus to expand the player’s
behavior repertoire by modeling new responses and
to vary his/her responses by giving prompts.

• Reinforcing. When desired behavior is observed, the
apparatus will deliver individualized reinforcements
to promote and maintain behavior variability.

Guided Play Blocks
To test the e�cacy of our approach, we created a
prototype using a building block game on the iPad as the
apparatus 1. Our hypothesis is that a child with RRB in a
real-life activity may also exhibit similar patterns in a
digital replica of the activity, and interventions carried out
in the digital activity may have impact on his/her
behavior in real-life.

1Guided Play app is available at http://guidedplay.toys
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We chose a block game for several reasons. First, the
level of block play is highly related to the stages of child
development, including spatial cognition, fine-motor skills,
classification, math, and social skills [19]. Second, blocks
have been successfully used in previous studies of RRB
interventions [12]. From a technical point of view, block
play is structured, and computers can understand the
dynamics of block play behavior.

Figure 2 gives a screenshot of the game running on an
iPad. On the left-hand side, there is a blocks panel
supplying blocks in various colors. All blocks are of the
same size and shape at the initial level. Higher levels will
provide di↵erent sizes and shapes. A player can move the
blocks one at a time from the blocks panel to the center
canvas using drag-and-drop gestures. The supply of
blocks is unlimited. When a block is placed on the
canvas, it will be aligned with existing blocks on the
canvas automatically to accommodate young children’s
inaccurate gestures, and a new one will be created to fill
the empty spot left on the blocks panel. Sound and
animation e↵ects are given to the movements to make the
blocks lifelike.

Figure 2: A screenshot of

Guided Play Blocks.

Behavior Modeling and Analysis
We use a graph-based formalism to model dynamic
building operations and static construction structures.
Each block movement will generate an operation graph
representing the operation and a structure graph as a
snapshot of the block structure updated by the operation.
A (node-edge) graph is a set of nodes connected by edges.
As an example, Figure 3(a) shows a block structure and
its corresponding structure graph after the i-th operation.
Figure 3(b) represents the i+1 -th operation that
transforms structure i into structure i+1 shown in
Figure 3(c).

In the graphs, a node always represents a block. In an
operation graph, e.g., the one shown in Figure 3(b), the
edge indicates the operation, annotated by its action
(“*”: new block, “+”: connect to, “-”: disconnect from,
etc.) and orientation (e.g., connect block 4 to the right of
block 1). In a structure graph, an edge represents the
connection between two blocks. The orientation of an
edge is denoted as a degree in the polar coordinate
system. For example, in Figure 3(a), the edge from node
3 to node 2 indicates that node 3 is connected to node 2
from the top (270 degrees).

The system maintains a history of all the operations and
structure snapshots. Based on the graph model, the
system computes the following measures.

2

3

1

270

270

(a) Structure i

41 180, +

(b) Operation i+1

4

2

3

1

270

270

180

(c) Structure i+1

Figure 3: Graph-based modeling.

• Variability consists of operational variability and
structural variability. Operational variability
measures the variability of block operations (e.g.,
stacking on top, connecting to left, disconnecting,
etc.). Similar to Napolitano et al. [12], it is
measured as the average di↵erence between the
operation graphs within a given time window.
Structural variability is the variability of completed
block structures. It is calculated as the average
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di↵erence between the structure graphs within a
given time window.

• Complexity measures the complicatedness of the
blocks and their relationships. It is based on the
following block complexity metrics: dimensions
(height and width), size (number of blocks and
connections), symmetry (reflectional and
rotational), dimensionality (0D, 1D, 2D, and 3D),
and stage complexity (line, cross, enclosure, and
bridge) [17, 18].

• Structural categories. We are also interested in the
categories of the structures a child has made, which
represents his/her skill repertoire. To measure that,
the system groups similar block structures into a
category using a hierarchical clustering
algorithm [10].

Figure 4: An example of the

Guided Play mode.

Behavior Shaping
Guided Play works in two modes. Free play mode allows a
player to choose a target object and build it using the
blocks without interventions from the system. The system
quietly tracks a player’s interactions with the game except
that it provides sound and visual e↵ects to block
movements in order to keep the player engaged.

The system may decide to switch to guided play mode
when the player’s percentage of the behavior variability
among all same-aged players falls below a certain
threshold. Caregivers and professionals may manually
override the system’s decision. In the guided play mode,
the system uses the following proven methods [21] to
increase a player’s behavior variability.

• Building repertoire. Limited response repertoires is
one of the reasons for low variability in the behavior

of individuals with ASD [21]. Guided Play attempts
to expand a player’s construction structures by
modeling similar but di↵erent responses (new
objects to build). It maintains a library of
constructions collected from all the players and
grouped by age. Based on a child’s current
repertoire of block structures, it finds a structure in
the library that is closest to yet di↵erent from the
child’s constructions as a suggested object to build
next.

• Prompting variability. Apart from the prompts from
caregivers and therapists, the system can
independently prompt the player to build a new
structure using background and shape outlines, as
shown in Figure 4. The background is relevant to
the theme of the target object or object category.
The outline prompts the player to finish the object
by “filling in the blanks”. When the system detects
that the player is not following the prompt, it may
generate a next move for the player by adding a
missing block to the outline until the player comes
back to the game or the structure is completed.

• Reinforcing variability. In ABA, di↵erential
reinforcement refers to reinforcing (rewarding)
desired behavior and not reinforcing undesired
behavior. Studies have shown that di↵erential
reinforcement reliably increases the diversity of
behaviors including those in block play [21].

Guided Play gives immediate rewards (sound and
visual) when a player connects blocks. Finishing a
construction generates an animation relevant to the
object (car running in the case of Figure 4). The
rewards are pre-identified for each individual using
preference testing [12]. To promote variability,
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timing of the rewards can be controlled by
reinforcement schedules, such as percentile
schedule [4].

Conclusions and Future Work

We have presented the design and implementation of
Guided Play, a system that evaluates invariance in play
behavior and promotes behavior variability.

The initial version of the app is now available on the iOS
app store, and supports the free play mode and data
analytics. Other features such as the guided play mode
are under development. We are also interested in applying
the technology to digitally enhanced physical blocks [9].

In collaboration with behavioral scientists, we are
currently conducting a study to test the e↵ectiveness of
Guided Play for increasing variability in block play
behavior. The study will enroll 3 cohorts of 3 children
aged between 2 and 5 years old with ASD, who will each
receive approximately 6 hours of access to the app, with
sessions ranging between 30 and 60 minutes. The study
will use a multiple-baseline across-subjects design in which
several free play to guided play phase changes occur in
staggered fashion across multiple participants in order to
determine if the application of Guided Play causes change
in behavior. Expected measurable changes include
increased variability in block structures and operations
and increased construction complexity.
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